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We introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet 
insertion devices. Simulated annealing has been used in this role, but we find the technique of threshold 
acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value 
in designing very long insertion devices, such as long FEL’s. Our application of threshold acceptance to magnet 
sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly 
faster. We present typical cases showing time to convergence for various error tolerances, magnet numbers, and 
temperature schedules. 

1. Introduction 

At present, permanent magnet insertion 
devices usually require several hundred blocks of 
magnetic material. Even with strict quality control, 
there are errors in the magnitude and direction of the 
fields of these blocks, on the order of 1%. By 
carefully sorting the blocks into an optimum order, 
the-errors may be canceled and the insertion device 
field improved substantially beyond what a random 
placement of blocks would yield. For a standard 
undulator, one wishes for RMS field errors on the 
order of OS%, and for an FEL undulator, one might 
require 0.1% or less. The sorting is done by 
measuring the magnetic moments of blocks, then 
feeding these values to a computerized sorting 
algorithm. Large scale sort optimization problems do 
not lend themselves to rigorous solutions, but do 
yield to Monte-Carlo techniques, such as simulated 
annealing [l]. If one uses, say, RMS magnetic field 
error as a merit criterion (or ‘cost function’), one 
could sort magnets starting from a random ensemble, 
by trading magnets and keeping trades that resulted 
in improved cost function. This approach has the 
fatal defect that it finds only the local minimum in 
configuration space. It is really suitable only for the 
final stage of optimization, which we call 
‘quenching’, that is done after global searching has 
been done to find the deepest ‘valley’ in 
configuration space. 
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Simulated annealing (SA) incorporates two 
concepts. The first is the Metropolis algorithm [2]. 
One executes trades, and calculates a cost function 
each time, as in quenching. But instead of keeping 
only trades that improve the cost function C, one also 
keeps trades that meet a Boltzmann criterion. If a 
unit uniform variant is less than exp[-(Cnew - 
Cold)/T], where T is a synthetic temperature, the 
trade is kept. This allows the sort to climb up ‘hills’ 
in configuration space, and access neighboring 
‘valleys’. 

The other SA concept [l] is that one can 
‘anneal’ the ensemble by lowering the temperature T. 
One can start at a high temperature and execute the 
Metropolis algorithm repetitively, until no further 
improvement is found. This is a way to explore a 
large region of configuration space. If one then 
lowers temperature, the region of configuration space 
is restricted; certain ‘hills’ become insurmountable. 
One could continue lowering temperature to zero to 
find the optimum; in practice, we lower temperature 
to a low value, then end with quenching to find the 
local minimum. This technique has already been 
used to sort magnet blocks for insertion devices [3]. 

The Boltzmann criterion is not the only one 
that might be used. Another technique is threshold 
acceptance (TA) [4]. In this scheme, a trade is kept 
if the change of cost function is no worse than a 
certain threshold value, which we still call 
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restricted, and an optimum is found. We quench at 
the end of this sort as well. 

In the following, we show by example thaE 
TA obtains results as good as SA, but that it runs 
significantly faster. This is due to the extra execution 
cycles of the system random number generator and 
exponentiation functions. Dueck and Scheuer [4] 
note that SA explores a larger region of the 
configuration space than TA, but that TA converges 
to significantly lower values of the cost function than 
SA in the same number of steps. Since the time to 
sort an ensemble increases sharply with the number 
of magnets, TA would be preferable to SA for large 
sorting problems. 

2. Cost Function 

In insertion device design, one may imagine a 
variety of cost functions. The cost function could be 
as simple as the RMS deviation of the calculated field 
from a sine function. We use a variation of this 
concept. We consider only magnetic lattice 
geometries where the ideal dipole moment of each 
block aligns with either the longitudinal (z) or vertical 
(y) directions. Helmholtz coil measurements provide 
the Cartesian components of each block’s dipole 
field. Averaging over the individual block volume, 
we determine the components of each block’s 
remanent field. From the position of each block in 
the magnetic lattice, we know the ideal magnitude 
and sign of its remanent field components. We 
define the magnet errors as any field component 
except the ensemble average of the magnetization 
parallel to the easy axis. The cost function is then 
constructed by correlating these error field 
components with adjoining blocks. At each block 
location, the local cost function is calculated using 

CO% = { ( 24, + Bxn+l + Bxnsl j2 

+ ( 2EYn +EY,+l +EYn-1)2 

+ ( 2Ezn + & + Eznml I2 l1’2 
where E is the corresponding error field in the 
Cartesian component of the nth block. The global 
cost function is then the ensemble average of the 
local cost function. We use this same cost function 
for SA, TA, and quenching. During execution, 
however, we only calculate for those blocks which 
are traded and their immediate neighbors. This 
prevents recalculation of the entire global cost 
function every time two blocks are traded? and 
greatly speeds execution. 

The behavior of both SA and TA depend 
upon several parameters. The first is the number of 
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magnet blocks in the set. Second is the schedule 
ratio between temperatures of successive iterations of 
the algorithm. Third is the relative error between 
values of the cost function in successive iteration 
cycles that must be achieved before the iteration 
completes. This parameter was used to determine 
when the algorithm has completed both a search at a 
given temperature and when it has completed all 
iteration cycles at the global level. 

We first calculate the total cost function and 
then perform a number of random block trades to 
determine an average fluctuation of the cost function. 
This fluctuation is then doubled to give an initial 
temperature. A desired starting point for each 
algorithm is a temperature for which the ratio of 
accepted to attempted block trades is 80%. For TA, 
doubling the initial fluctuation was found to produce 
this acceptance ratio. But for SA, which has a 
tougher acceptance criteria, the temperature is 
repeatedly doubled until the acceptance ratio equals 
or exceeds 80%. The iteration cycles begin by 
reducing the temperature by the given schedule ratio’ 
factor, and then performing many random block 
trades until the relative change in the cost function 
has a magnitude no larger than the given relative 
error. 

100 1000 

Number of Blocks 

Figure 1 - Variation of cost function and CPU time 
with number of magnet blocks, with schedule ratio 
of 0.80 and relative error of 0.001. 

We allowed each algorithm to complete its 
global search before local minimization by 
quenching. Two indicators measure the resulting 
performance of the algorithm: the final value of the 
cost function before quenching; and the amount of 
CPU time it took to complete the global search. For 
this paper we used data randomly taken from a set of 
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explore different regions of the available 
configuration space. A schedule ratio close to unity 
ensures that the temperature is lowered slowly, while 
a low relative error allows for greater range of 
exploration at a given temperature. 

478 blocks, with approximately gaussian 
distributions of remanent field and angular 
declination from the ideal easy axis, and a uniform 
distribution of azimuthal angles. The mean remanent 
field was 1.234 Tesla and the error (standard 
deviation) in the remanent field was 1.5%. The error 
in angular declination was approximately 1.5”. For 
the cases with 2000 magnet blocks a truncated 
gaussian distribution of blocks was generated with 
identical errors. The algorithms were implemented in 
FORTRAN on a DEC Alpha AXP 3000/600 running 
VMS. 
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4. Results and Discussion 

In Figures 1,2, and 3 we plot the variation of 
the cost function and CPU time with numbers of 
blocks, relative error, and schedule ratio, 
respectively. Each point in these plots is an average 
over- five runs, where identical sets of initial 
randomization seed values was used for both TA 
and SA. 
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The final value of the cost function before 
quenching is nearly identical for SA and TA. 
However, the CPU time is much different. On the 
average, TA completes its global search faster than 
SA with comparable optimization of the cost 
function. 

Relative Error 

Figure 3 - Variation of cost function and CPU time 
with relative error, with 400 blocks and schedule 
ratio 0.80. 
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The cost function and RMS error before 

sorting was 0.59 and lS%, respectively. To 
achieve a better than 0.5% RMS error, a sort would 
have to find a cost function before quenching less 
than 0.2. This requires a schedule ratio of at least 
0.90 and a relative error less than 0.001. TA 
outperforms SA in this region. In our design [5], a 
final cost function of 0.193 before quenching 
resulted in an RMS error of 0.3%. A schedule ratio 
of 0.90 and a relative error during the threshold 
accepting of 0.0005, and a relative error during 
quenching of 0.0001 were used. Most cases of 
interest will require sorting parameters as stringent as 
these, making TA an attractive alternative to SA. 
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5. Conclusion 
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We have introduced a new technique for 
sorting large sets of magnet blocks for insertion 
device optimization. We have shown that the 
average behavior of the TA algorithm is to converge 
to an equal level of quality as SA, but at a faster rate. 
This new technique may prove especially useful in 
the optimization of long insertion devices or FEL’s. 

Figure 2 - Variation of cost function and CPU time 
with schedule ratio, with 478 blocks and relative 
error of 0.001. 

The performance difference between TA and 
SA is particularly sensitive to variations in relative 
error and schedule ratio. These two parameters 
determine the extent and speed with which TA or SA 
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