
SLAGPUB-6632
SLAC/SSRL-O091

August 1994
~A/SSRL-w

Faster Magnet Sorting with a Threshold Acceptance Algorithm*
Steve Lidia

Department of Physics, University of California, Davis, CA 95616
and

Roger Carr
Star&ord Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory, Stanford University, Stadord, CA 94309

We introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet
insertion devices. Simulated annealing has been used in this role, but we find the technique of threshold
acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value
in designing very long insertion devices, such as long FEL’s. Our application of threshold acceptance to magnet
sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly
faster. We present typical cases showing time to convergence for various error tolerances, magnet numbers, and
temperature schedules.

1. Introduction

At present, permanent magnet insertion
devices usually require several hundred blocks of
magnetic material. Even with strict quality control,
there are errors in the magnitude and direction of the
fields of these blocks, on the order of 1%. By
carefully sorting the blocks into an optimum order,
the-errors may be canceled and the insertion device
field improved substantially beyond what a random
placement of blocks would yield. For a standard
undulator, one wishes for RMS field errors on the
order of OS%, and for an FEL undulator, one might
require 0.1% or less. The sorting is done by
measuring the magnetic moments of blocks, then
feeding these values to a computerized sorting
algorithm. Large scale sort optimization problems do
not lend themselves to rigorous solutions, but do
yield to Monte-Carlo techniques, such as simulated
annealing [l]. If one uses, say, RMS magnetic field
error as a merit criterion (or ‘cost function’), one
could sort magnets starting from a random ensemble,
by trading magnets and keeping trades that resulted
in improved cost function. This approach has the
fatal defect that it finds only the local minimum in
configuration space. It is really suitable only for the
final stage of optimization, which we call
‘quenching’, that is done after global searching has
been done to find the deepest ‘valley’ in
configuration space.

* Work supported by the US Department of Energy, Office of
Basic Energy Sciences, Materials Sciences Division and the
Department of Energy contract DE-AC03-76SFOO5 15.

Simulated annealing (SA) incorporates two
concepts. The first is the Metropolis algorithm [2].
One executes trades, and calculates a cost function
each time, as in quenching. But instead of keeping
only trades that improve the cost function C, one also
keeps trades that meet a Boltzmann criterion. If a
unit uniform variant is less than exp[-(Cnew -
Cold)/T], where T is a synthetic temperature, the
trade is kept. This allows the sort to climb up ‘hills’
in configuration space, and access neighboring
‘valleys’.

The other SA concept [l] is that one can
‘anneal’ the ensemble by lowering the temperature T.
One can start at a high temperature and execute the
Metropolis algorithm repetitively, until no further
improvement is found. This is a way to explore a
large region of configuration space. If one then
lowers temperature, the region of configuration space
is restricted; certain ‘hills’ become insurmountable.
One could continue lowering temperature to zero to
find the optimum; in practice, we lower temperature
to a low value, then end with quenching to find the
local minimum. This technique has already been
used to sort magnet blocks for insertion devices [3].

The Boltzmann criterion is not the only one
that might be used. Another technique is threshold
acceptance (TA) [4]. In this scheme, a trade is kept
if the change of cost function is no worse than a
certain threshold value, which we still call

Presented at the International Conference on Synchrotron Radiation Instrumentation, (SRI ‘94). Stony Brook, NY, July 18-22.1994

--

restricted, and an optimum is found. We quench at
the end of this sort as well.

In the following, we show by example thaE
TA obtains results as good as SA, but that it runs
significantly faster. This is due to the extra execution
cycles of the system random number generator and
exponentiation functions. Dueck and Scheuer [4]
note that SA explores a larger region of the
configuration space than TA, but that TA converges
to significantly lower values of the cost function than
SA in the same number of steps. Since the time to
sort an ensemble increases sharply with the number
of magnets, TA would be preferable to SA for large
sorting problems.

2. Cost Function

In insertion device design, one may imagine a
variety of cost functions. The cost function could be
as simple as the RMS deviation of the calculated field
from a sine function. We use a variation of this
concept. We consider only magnetic lattice
geometries where the ideal dipole moment of each
block aligns with either the longitudinal (z) or vertical
(y) directions. Helmholtz coil measurements provide
the Cartesian components of each block’s dipole
field. Averaging over the individual block volume,
we determine the components of each block’s
remanent field. From the position of each block in
the magnetic lattice, we know the ideal magnitude
and sign of its remanent field components. We
define the magnet errors as any field component
except the ensemble average of the magnetization
parallel to the easy axis. The cost function is then
constructed by correlating these error field
components with adjoining blocks. At each block
location, the local cost function is calculated using

CO% = { (24, + Bxn+l + Bxnsl j2

+ (2EYn +EY,+l +EYn-1)2

+ (2Ezn + & + Eznml I2 l1’2
where E is the corresponding error field in the
Cartesian component of the nth block. The global
cost function is then the ensemble average of the
local cost function. We use this same cost function
for SA, TA, and quenching. During execution,
however, we only calculate for those blocks which
are traded and their immediate neighbors. This
prevents recalculation of the entire global cost
function every time two blocks are traded? and
greatly speeds execution.

The behavior of both SA and TA depend
upon several parameters. The first is the number of

-- 2

magnet blocks in the set. Second is the schedule
ratio between temperatures of successive iterations of
the algorithm. Third is the relative error between
values of the cost function in successive iteration
cycles that must be achieved before the iteration
completes. This parameter was used to determine
when the algorithm has completed both a search at a
given temperature and when it has completed all
iteration cycles at the global level.

We first calculate the total cost function and
then perform a number of random block trades to
determine an average fluctuation of the cost function.
This fluctuation is then doubled to give an initial
temperature. A desired starting point for each
algorithm is a temperature for which the ratio of
accepted to attempted block trades is 80%. For TA,
doubling the initial fluctuation was found to produce
this acceptance ratio. But for SA, which has a
tougher acceptance criteria, the temperature is
repeatedly doubled until the acceptance ratio equals
or exceeds 80%. The iteration cycles begin by
reducing the temperature by the given schedule ratio’
factor, and then performing many random block
trades until the relative change in the cost function
has a magnitude no larger than the given relative
error.

100 1000

Number of Blocks

Figure 1 - Variation of cost function and CPU time
with number of magnet blocks, with schedule ratio
of 0.80 and relative error of 0.001.

We allowed each algorithm to complete its
global search before local minimization by
quenching. Two indicators measure the resulting
performance of the algorithm: the final value of the
cost function before quenching; and the amount of
CPU time it took to complete the global search. For
this paper we used data randomly taken from a set of

:

explore different regions of the available
configuration space. A schedule ratio close to unity
ensures that the temperature is lowered slowly, while
a low relative error allows for greater range of
exploration at a given temperature.

478 blocks, with approximately gaussian
distributions of remanent field and angular
declination from the ideal easy axis, and a uniform
distribution of azimuthal angles. The mean remanent
field was 1.234 Tesla and the error (standard
deviation) in the remanent field was 1.5%. The error
in angular declination was approximately 1.5”. For
the cases with 2000 magnet blocks a truncated
gaussian distribution of blocks was generated with
identical errors. The algorithms were implemented in
FORTRAN on a DEC Alpha AXP 3000/600 running
VMS.

0.36 .: 1. ...i .,. . . .; : ; : : i : : ;j
0.32

8
0.28

3
x
3 0.24

5;

3 0.20

4. Results and Discussion

In Figures 1,2, and 3 we plot the variation of
the cost function and CPU time with numbers of
blocks, relative error, and schedule ratio,
respectively. Each point in these plots is an average
over- five runs, where identical sets of initial
randomization seed values was used for both TA
and SA.

y/IcPuTiieI ij
0.16

The final value of the cost function before
quenching is nearly identical for SA and TA.
However, the CPU time is much different. On the
average, TA completes its global search faster than
SA with comparable optimization of the cost
function.

Relative Error

Figure 3 - Variation of cost function and CPU time
with relative error, with 400 blocks and schedule
ratio 0.80.

.0.250
The cost function and RMS error before

sorting was 0.59 and lS%, respectively. To
achieve a better than 0.5% RMS error, a sort would
have to find a cost function before quenching less
than 0.2. This requires a schedule ratio of at least
0.90 and a relative error less than 0.001. TA
outperforms SA in this region. In our design [5], a
final cost function of 0.193 before quenching
resulted in an RMS error of 0.3%. A schedule ratio
of 0.90 and a relative error during the threshold
accepting of 0.0005, and a relative error during
quenching of 0.0001 were used. Most cases of
interest will require sorting parameters as stringent as
these, making TA an attractive alternative to SA.

500

250

0

9.225

5. Conclusion
0.70 0.80 0.90

Schedule Ratio

1.00

We have introduced a new technique for
sorting large sets of magnet blocks for insertion
device optimization. We have shown that the
average behavior of the TA algorithm is to converge
to an equal level of quality as SA, but at a faster rate.
This new technique may prove especially useful in
the optimization of long insertion devices or FEL’s.

Figure 2 - Variation of cost function and CPU time
with schedule ratio, with 478 blocks and relative
error of 0.001.

The performance difference between TA and
SA is particularly sensitive to variations in relative
error and schedule ratio. These two parameters
determine the extent and speed with which TA or SA

6. References

[l] S. Kirkpatrick, et. al., Science 220 (1983) 671.

f”ds’;“: Metropolis. et. al., J. Chem. Phys. 21 (1953)

[3] A.D. Cox and B.P. Youngman, SPIE Proc. 582
(1985) 91.

[4] G. Dueck and T. Scheuer, J. Comp. Phys. 90
(1990) 161.

[5] R.-Carr and S. Lidia, SPIE Proc. 2013 (1993)
56.

4

