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Abstract

The evolution of the pion distribution amplitude in next-to-leading order

is studied for a fixed and a running coupling constant. In both cases,

the evolution provides a logarithmic modification in the endpoint region.

Assuming a simple parameterization of the distribution amplitude at a

scale of Q0 ∼ 0.5 GeV, it is shown numerically that these effects are

large enough at Q ∼ 2 GeV that they have to be taken into account in

the next-to-leading-order analysis for exclusive processes. Alternatively, by

introducing a new distribution amplitude that evolves more smoothly, this

logarithmic modification can be included in the hard-scattering part of the

considered process.
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INTRODUCTION

The perturbative approach for hard exclusive quantum chromodynamic (QCD) processes

was developed for more than one decade [1–4] (see Ref. [5] for reviews). In this approach,

the scattering amplitude at large momentum transfer Q2 factorizes as a convolution

of process-independent distribution amplitudes, with a process-dependent perturbatively

computable hard-scattering amplitude. By using the leading-order perturbative QCD

(pQCD) analysis, which was performed for a large number of exclusive processes including

mesons and baryons, the qualitatively behavior for large Q2 could be well understood

[6,7]. However, using the asymptotic distribution amplitudes, which follow directly from

the solution of the evolution equation, results in predicted normalizations for the elastic

form factors at experimental accessible momentum transfer that are too small; in the case

of the magnetic nucleon form factor, this provides the opposite sign.

From deep inelastic scattering, where the application of pQCD is generally accepted, it

is known that the used parton distribution functions for accessible Q2 are far from their

asymptotic form where all higher moments mn, i.e., n > 0, vanish. It is therefore expected

that for the exclusive processes at accessible momentum transfer, the distribution amplitudes

are nonasymptotical. Choosing distribution amplitudes that are enhanced in the endpoint

region (and asymmetric for nucleons) provides the observed normalization and sign for the

elastic form factors.

Reference [8] argues that choosing such enhanced amplitudes provides inconsistencies

that affect the importance of higher twist contributions, as well as of perturbative

nonleading-order terms, and so the pQCD approach to elastic form factors probably is not

self-consistent. (A second point widely discussed in the literature is the nonperturbative

contribution from the hadronic wave function [8,9].) Phenomenological methods, such as

(1) introduce a gluon mass, (2) freeze the running coupling constant for small virtuality [10],

or (3) suppress the endpoint region by suitable distribution amplitudes or by a cutoff [11],

are used to improve the stability of the pQCD approach. Recent incorporation of Sudakov

suppression has shown that the pQCD approach for the pion form factor is self-consistent

for a momentum transfer of Q ∼ 20ΛQCD [12] (see also Ref. [13]).

The validity of the pQCD approach for exclusive processes can also be studied by direct

calculations of higher twist and perturbative nonleading contributions. It appears that

higher twist analyses have not been achieved quantitatively. The stability of the perturbation

theory has been investigated neglecting the evolution of the distribution amplitude by
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next-to-leading-order calculations for the pion transition form factor Ref. [14,15], the

pion form factor [16,17], and the two-photon processes γγ →M+M−(M = π,K) [18].

Discrepancies in the one-loop approximation of the hard-scattering amplitude for the pion

form factor were clarified in Ref. [19,20]. The next-to-leading-order correction to the pion

form factor and to the processes γγ → M+M− are rather large at accessible momentum

transfer.

Including the evolution of the distribution amplitude in these analyses requires the

solution of the differential-integral evolution equation, which can be done by using the

moment method. The corresponding two-loop approximation of the integral kernel

was computed by different authors and the obtained results agree with each other

[21]. It has been confirmed that the computed evolution kernel is consistent with

the Gribov-Lipatov-Altarelli-Parisi kernel [22] and with conformal symmetry breaking in

massless gauge field theories [23]. Because of the complicated structure of the evolution

kernel, only the first few moments of the evolution kernel had been computed numerically

[24]. Based on this incomplete computation, it was believed that the next-to-leading-order

correction to the evolution of the distribution amplitude and the contribution of this

correction to the pion form factor are rather small [24,25].

Recently, using conformal constraints, the complete formal solution of the evolution

equation in next-to-leading order could be obtained without knowing the evolution kernel

by a one-loop calculation [23]. This paper studies this solution in detail and shows that

the evolution of the distribution amplitude must be included in the next-to-leading order

analysis. Section 2 reviews to leading order the evolution equation of the distribution

amplitude and the solution in terms of the conformal spin expansion. The evolution of

the distribution amplitude in next-to-leading order for fixed αs is studied in Section 3.

This includes a detailed investigation of the large n behavior for the next-to-leading order

corrections to the eigenfunctions ϕefn (x, αs) and eigenvalues γn(αs) of the evolution kernel.

Numerical results for the evolution of the asymptotic, the Chernyak-Zhitnitsky two-hump,

and another convex distribution amplitude are presented. Section 4 analyzes the solution of

the evolution equation in next-to-leading order with running coupling, showing by numerical

computation that the next-to-leading-order corrections are also large in this case. Section

5 discusses the obtained result, comparing it with a previous result [24], and presents the

conclusions.
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I. THE DISTRIBUTION AMPLITUDE AND THEIR EVOLUTION

The distribution amplitude ϕ(x,Q2) is the probability amplitude for finding a valence

quark [antiquark] with light cone momentum fraction x [1 − x] in the pion probed at

large momentum square Q2 [1]. This amplitude can be defined as expectation value of

renormalized nonlocal light cone operators [1,22]

ϕ(x,Q2) = f−1
π

∫ dκ

π
exp [iκ(ñP ) (2x− 1)] 〈0|O(κ; ñ)|P 〉

∣∣∣
µ2 = Q2 , (1)

where for simplicity, the renormalization point µ2 is set equal to the large momentum transfer

Q2 (this choice is not optimal with respect to the factorization scale setting for the considered

processes; however, it is sufficient for the following discussions). The light ray vector ñ is

chosen as ñ = (ñ+ = 0, ñ− = 2,~0⊥) so that ñP = P+, |P 〉 denotes the pion state with

momentum P , and

O(κ; ñ) = : ψ̄d(−κñ) γ5(ñγ)U(−κñ, κñ)ψu(κñ) : (2)

is the light-cone operator with the flavor content of the considered pion. The path ordered

phase factor U(−κñ, κñ) ensures the gauge invariance of this operator. The pion decay

constant fπ = 133 MeV introduced in (1) guarantees the normalization [1]

∫ 1

0
dx ϕ(x,Q2) = f−1

π

〈
0| : ψ̄d(0) γ5(ñγ)ψu(0) : |P

〉/
ñP = 1 . (3)

Analogous to a quantum mechanical ground state, it is to be expected that ϕ(x,Q2) can

be chosen positive. Notice that because of charge conjugation invariance, the symmetry

relation ϕ(x,Q2) = ϕ(1− x,Q2) holds true.

The evolution equation for ϕ(x,Q2) derived in Ref. [1,6] can also be obtained in a

straightforward manner from the renormalization group equation of the nonlocal operator

O(κ; ñ) [22]

Q2 d

dQ2
ϕ(x,Q2) =

∫ 1

0
dyV

(
x, y;αs(Q

2)
)
ϕ(y,Q2) , (4)

where αs = g2/(4π) is the QCD fine structure constant. The evolution kernel V (x, y;αs) =

(αs/2π) V (0)(x, y)+(αs/2π)2 V (1)(x, y)+ · · · has been computed perturbatively in one– and

two–loop approximation by using the dimensional regularization in the modified minimal

subtracted MS-scheme [21].
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The evolution equation (4) can be solved by conformal spin expansion

ϕ(x,Q2) =
∞∑
n=0

′ (1− x)x
Nn

C3/2
n (2x− 1)

〈
0|On(µ

2)|P
〉red

|µ2 = Q2
, (5)

Nn =
(n+ 1) (n+ 2)

4(2n+ 3)
,

where the sum runs only over even n [to ensure the above mentioned symmetry of ϕ(x,Q2)].

Here, 〈0|On(Q
2)|P 〉red =

∫ 1
0 dxC

3/2
n (2x − 1)ϕ(x,Q2) are reduced expectation values of local

operators that in leading order do not mix under renormalization [3,26]. In the free

field theory, these operators labeled by the conformal spin form an infinite irreducible

representation of the so-called collinear conformal algebra, which is a subalgebra O(2, 1)

of the full conformal algebra O(4, 2) [27]. The Gegenbauer polynomials C3/2
n of order 3/2

form an orthogonal and complete basis in the space of quadrate integrable functions with

the weight (1− x)x. Thus, expansion (5) converges if ϕ(x,Q2) vanishes at the endpoints of

the interval [0, 1]; see, for instance, Ref. [28]. This condition is automatically satisfied [6].

The Q-dependence of 〈0|On(Q
2)|P 〉red can be determined from the evolution equation

Q2 d

dQ2

〈
0|On(Q

2)|P
〉

=
1

2

n∑
k=0

′
γnk(αs(Q

2))
〈
0|Ok(Q

2)|P
〉
, (6)

where the anomalous dimension matrix γnk = (αs/2π) γ(0)
n δnk+(αs/2π)2γ

(1)
nk +· · · is diagonal

in one–loop order. In general, Poincaré-invariance of the theory assures the triangularity

of the matrix γ̂ : = {γnk}. The eigenvalues γn = γnn are identical with the flavor

nonsinglet anomalous dimensions known from deep inelastic scattering (moments of the

Gribov-Lipatov-Altarelli-Parisi kernel). In leading order the solution of (6) is given by

〈
0|On(Q

2)|P
〉

=

(
αs(Q

2
0)

αs(Q2)

)γ(0)
n /β0 〈

0|On(Q
2
0)|P

〉
, (7)

αs(Q
2) =

4π

β0 ln (Q2/Λ2)
,

where Q0 is an appropriate reference momentum, Λ is the QCD scale parameter,

γ(0)
n = CF

[
3 +

2

(n+ 1) (n+ 2)
− 4

n+1∑
i=1

′ 1

i

]
, (8)

CF = 4/3 and β0 = (11/3)CA−(2/3)nf , with nf is the number of active quarks and CA = 3.

Since γ(0)
n < 0 for n > 0, 〈0|On(Q

2)|P 〉red decrease [see Eq. (7)] with increasing Q2, so

that all harmonics with n > 0 will also be suppressed. Furthermore, current conservation

implies γ
(0)
0 = 0 so that from Eq. (5) the asymptotic distribution amplitude follows:

ϕas(x) = lim
Q2→∞

ϕ(x,Q2) = 6(1− x) x , (9)

which does not evolve in leading order.

5



   

In next-to-leading order the operators mix under renormalization with each other. Thus

the evolution of 〈0|On(Q
2)|P 〉red is determined by an infinite coupled first-order differential

equation system. Since the anomalous dimension matrix is triangular, this system can be

perturbatively solved, resulting in a behavior qualitatively different than the solution from

leading order.

For instance, if the initial condition is set as ϕ(x,Q2
0) = ϕas(x) = 6(1 − x)x at the

reference momentum square Q2
0, then all higher harmonics will also be excited. In the limit

Q2 → ∞, these excitations disappear, returning to ϕas(x). This effect is investigated more

generally and quantitatively in the following two sections.

II. NEXT TO LEADING ANALYSIS FOR FIXED COUPLING CONSTANT

To see the essential features of the next-to-leading-order correction, consider first the

solution of the evolution equation for fixed coupling constant αs. In this case, the mentioned

excitation of higher harmonics by evolution will not disappear in the asymptotic limit

Q2 →∞. Expansion of ϕ(x,Q2) with respect to the eigenfunctions ϕefn (x, αs) of the evolution

kernel V (x, y, αs) provides immediately the solution of the evolution equation:

ϕ
(
x,Q2

)
=

∞∑
n=0

′
ϕefn (x, αs)

(
Q2

Q2
0

)γn(αs)/2 〈
0|On(Q

2
0)|P

〉red
. (10)

The next-to-leading-order corrections to the evolution enters as a two–loop contribution

of the eigenvalues γn(αs)/2 and as αs corrections to the eigenfunctions ϕefn (x, αs). The

two–loop corrections of the eigenvalues are well known from the next-to-leading-order

analysis of deep inelastic scattering [29]. A closed expression for the αs corrections to

the eigenfunctions can be derived from conformal constraints and a one–loop calculation

of the special conformal anomaly in Ref. [23] (Here, the result is re-expressed by a linear

combination of Lerch transcendent φ[x, 1, i], and taking into account the term proportional

to β0.),

ϕefn (x, αs) = (−1)n
2 (3 + 2n)

(n+ 1)!

dn

dxn
x1+n (1− x)1+n

(
1 +

αs
2π

Fn(x) +O(α2
s)
)
, (11)
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where

Fn(x) = −(γ(0)
n − β0)

[
1

2
ln
(
x(1− x)

)
− ψ(2 + n) + ψ(4 + 2n)

]

+ CF

 ln2
(
1− x
x

)
2

−
1+n∑
i=1

(
−1

i
+

1 + δ0n
2 + n

) (
φ(1− x, 1, i) + φ(x, 1, i)

)

+ 2

(3 + 2n)
(
γE + ψ(2 + n)

)
(1 + n) (2 + n)

+ ψ′(2 + n)− π2

4

 , (12)

where ψ(z) = d ln(Γ[z])/dz, γE = 0.5772, . . . , and φ(x, 1, i) =
∑∞
k=0 x

k/(i + k). The term

proportional to γ(0)
n in Eq. (12) can be obtained directly by assuming a nontrivial fixpoint

α∗s, i.e., β(α∗s) = 0, from a conformal operator product expansion [31]. I thus refer to it

as conformal symmetry predicted part. Conformal symmetry breaking by the β-function

provides a shift of the anomalous dimensions γ(0)
n → γ(0)

n − β0. The remaining term in

Eq. (12) is proportional to the color factor CF , and can be interpreted as an ‘additional’

conformal symmetry breaking term that comes from the renormalization of the conformal

operators in gauge field theory.

A. Corrections to the eigenfunctions

Consider the asymptotic limit Q2 →∞. As in leading order, the asymptotic distribution

amplitude is completely determined by the eigenfunction ϕef0

ϕas0 (x, αs) = ϕef0 (x, αs) ,

= 6(1− x)x
(

1 +
αs
4π

{
CF

[
ln2

(
1− x
x

)
+ 2− π2

3

]
+ β0

[
ln
(
(1− x)x

)
+

5

3

]})
. (13)

The term in ϕef0 proportional to β0, gives a logarithmic modification. It is very interesting

that the conformal symmetry breaking term provides an unexpected ln2 modification of the

endpoint behavior. The αs correction to the asymptotic distribution amplitude (13) is shown

in Figs. 2(a,b).

We next study quantitatively the αs contributions for the eigenfunctions with

arbitrary n. For this purpose, it is technically more convenient to deal with the following

representation [23]:
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ϕefn (x, αs) =
(1− x)x
Nn

C3/2
n (2x− 1) +

αs
2π

ϕef(1)
n (x) +O(α2

s) ,

ϕef(1)
n (x) =

∞∑
k=n+2

′ (1− x)x
Nk

C
3
2
k (2x− 1) c

(1)
kn , (14)

where

c
(1)
kn =

(2n+ 3) (γ(0)
n − β0 + 4Akn)

(k − n) (k + n+ 3)
+

2(2n+ 3)
(
Akn − ψ(k + 2) + ψ(1)

)
(n+ 1) (n+ 2)

,

and

Akn = CF

[
ψ

(
k + n+ 4

2

)
− ψ

(
k − n

2

)
+ 2ψ (k − n)− ψ (k + 2)− ψ(1)

]
(15)

are only nonzero if k−n even. To comprehend these αs contributions quantitatively, consider

the amplitude at x = 0.5. However, since the ln2
(
(1−x)/x

)
term in Eq. (13) disappears at

x = 0.5, it is clear that the large contributions of the endpoint region will be dropped out.

Nevertheless, from Eq. (14) and C
3/2
2n (0) = (−1)(n) Γ(3/2 + n) /

(
Γ(1 + n) Γ(3/2)

)
[30], the

relative contributions r(1)
n = ϕ(1)ef

n (0.5) /ϕ(0)ef
n (0.5) increase logarithmically with n, and are

of order 2 for n = 10 (β0 = 0), respectively, for n = 2 (β0 = 9).

To take into account the missed logarithmic modification in the endpoint behavior, it is

more reasonable to use the following quantitative measure for the O(αs) contribution:

Rn(αs) =

(∫ 1

0

Nnϕ
ef
n (x, αs)

2

(1− x) x − 1

)1/2
=
αs
2π

R(1)
n +O(α2

s) . (16)

Figure 1(a,b) shows that this analysis provides qualitatively the same n-dependence as for

r(1)
n , and that the αs contributions are now larger. Moreover, the following are common

features of the αs corrections to the eigenfunctions:

• For n = 0 and β0 = 0, only the ‘additional’ conformal symmetry breaking part gives a

contribution, of order αs/2π. For β0 6= 0, this term is partly cancelled.

• Contributions from the symmetry predicted and breaking parts have different phases,

so that the net-contribution is smaller.

• In the case of β0 = 0, the minimum is at n=6. For β0 6= 0, this effect is washed out.

For small n and β0 = 0, the corrections are small.
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• The relative corrections are growing logarithmically,

r(1)
n ∼ 0.347β0 − (2.71 + 1.39 ln(2 + n))CF ,

R(1)
n ∼

[
0.411β2

0 +
(
54.7− 35.9 ln(2 + n) + 6.58 ln2(2 + n)

)
C2
F

+
(
− 8.98 + 3.29 ln(2 + n)

)
β0CF

](1/2)
,

and in the limit n→∞, the relative corrections are independent of β0.

Later, the evolution of ϕ(x,Q2) will be computed numerically. For this purpose, it is

necessary to know how well the partial sums

ϕ
ef(1)
ni (x) =

n+2i∑
k=n+2

′ (1− x)x
Nk

C
3/2
k (2x− 1) c

(1)
kn (17)

approximate the functional series (14). This is also important for the case of running

coupling, where the partial waves beyond the leading order are given by the functional series

that have convergence properties similar to the series for the eigenfunctions. The relative

deviation from ϕef(1)
n (x) can be measured by

∆ni =

√√√√√1−
∫ 1
0 dx ϕ

ef(1)
ni (x)2

/(
x(1− x)

)
∫ 1
0 dx ϕef(1)

n (x)2
/(

x(1− x)
) , ∫ 1

0
dx

ϕ
ef(1)
ni (x)2

x(1− x) =
n+2i∑
k=n+2

′
(
c
(1)
kn

)2

Nk

. (18)

Numerical computation shows that for n = 0, where β0 = 0, the deviation is 43% for

i = 1, about 10% for i = 5, and about 1% for i = 21. In general, to get the same deviation

for n > 0, a larger number of terms is taken into account; e.g., for n = 4 the deviation is

50% for i = 5, 10% for i = 19, and 1% for i = 82. In Figs. 1(c,d), the n-dependence of the

deviation is shown for the cases that keep (c) two terms and (d) ten terms of the expansion

(17). To remain under the 3% level for n ≤ 500 it is necessary to keep 50 terms. The

asymptotic expansion of ∆ni for large i and n, where i¿ n,

∆ni '
√

1

1 + i

√√√√√√√√√√√√√

(
0.5−

2CF [2.96 + ln(1 + i)]

β0 − CF [0.692− 4 ln(2 + n)]

)2

0.411 +
48.7C

2

F − 8.42CF
[
β0 − CF [0.692− 4 ln(2 + n)]

]
(
β0 − CF [0.692− 4 ln(2 + n)]

)2

+ · · · (19)

is proportional to 1/
√

1 + i for fixed n. Furthermore, ∆ni increases with n and has the limit

limn→∞∆ni ' 0.78/
√

1 + i. In this limit there are much larger values when n is moderately

large; e.g., n ∼ 100:
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lim
n→∞

∆n2 ' 0.49 , lim
n→∞

∆n10 ' 0.235 , lim
n→∞

∆n50 ' 0.11 , lim
n→∞

∆n5000 ' 0.011 . (20)

To approximate the logarithmic endpoint behavior of ϕefn (x, αs), a much larger number

of terms than suggested from the previous analysis should be taken into account. For

situations where the endpoint behavior is crucial, e.g., for the next-to-leading-order analysis

of the elastic pion form factor, it is better to use the following integral representation [23]:

ϕefn (x, αs) =
∫ 1

0
dy

(
δ(x− y) +

αs
2π

c(1)(x, y) + · · ·
) (1− y)y

Nn

C3/2
n (2y − 1) , (21)

where

c(1)(x, y) = (I − P)

(
β0

2
S(x, y)−

∫ 1

0
dz S(x, z) V (0)(z, y) + [g(x, y)]+

)
,

[g(x, y)]+ = g(x, y)− δ(x− y)
∫ 1

0
dz g(z, y) ,

g(x, y) = CF θ(y − x)
ln
(
1− x

y

)
(x− y) +

{
x→ 1− x
y → 1− y

}
. (22)

Furthermore, the convolution with the kernel S(x, y) generates a shift of the Gegenbauer

polynomial order

∫ 1

0
dyS(x, y)

(1− y)y
Nn

C3/2
n (2y − 1) =

d

dρ

(
(1− x)x

)1+ρ

Nn

C3/2+ρ
n (2x− 1) |ρ=0

, (23)

and the operator P projects on the diagonal part of the expansion of a function f(x, y) with

respect to C
3/2
i ; i.e., Pf(x, y) =

∑∞
i=0(1− x)x/NiC

3/2
i (2x− 1)fiiC

3/2
i (2y− 1), where fij with

0 ≤ i, j ≤ ∞ are the expansion coefficients. Although the operator P and the kernel S(x, y)

are only defined implicitly, Eq. (22) is nevertheless helpful to convolute c(1)(x, y) with a

given hard scattering amplitude.

Finally, from Eq. (21), the αs corrections to the eigenfunctions can be written as

convolution

δef ϕ(x,Q2) =
αs
2π

∫ 1

0
dy

(
c(1)(x, y) + · · ·

)
ϕd(y,Q2) , (24)

where the partial waves of ϕd(x,Q2) are given as Gegenbauer polynomials

ϕd(x,Q2) =
∞∑
n=0

′ (1− x)x
Nn

C3/2
n (2x− 1)

(
Q2

Q2
0

)γn(αs)/2 〈
0|On(Q

2
0)|P

〉red
. (25)

A further advantage of the representation (24) is that the above mentioned excitation of

higher harmonics is now completely included in the kernel c(1)(x, y).
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B. Corrections to the eigenvalues

The two-loop corrections to the anomalous dimensions γn(αs) are given in Ref. [29]. As

in one-loop order γ(1)
n < 0 for all n > 0 holds true. Thus, if these two-loop corrections are

resumed in

(Q/Q0)
(αs/2π) γ(0)

n + (αs/2π)2 γ(1)
n ,

the (modified) partial waves for n > 0 will be more strongly suppressed than in leading

order. The relative two-loop corrections to γn(αs) are about 4.5αs/(2π) [4αs/(2π)] for all

n > 0 and nf = 3 [nf = 4], giving a correction of 20% for reliable values of αs ∼ 0.35. The

relative correction to the evolution of the distribution amplitude is probably of the same

order. (This kind of correction does not appear directly in the evolution of the asymptotic

distribution amplitude, so that in this case they are much smaller.)

If the corrections arising from the eigenvalues are expanded with respect to αs, it is

possible to write these corrections as convolution with the leading order solution of the

evolution equation,

δev ϕ(x,Q2) =
(
αs
2π

)2

ln

(
Q2

Q2
0

)∫ 1

0
dy V d(1)(x, y) ϕLO(y,Q2) (26)

where V d(1)(x, y) = PV (1)(x, y) is the diagonal part of V (1)(x, y).

Although the kernel V (1)(x, y) is known in a closed form, it seems a more difficult task

to extract the diagonal part V d(1)(x, y). A reasonable approximation can be found from the

fact that γ(1)
n grows like γ(0)

n , i.e., only logarithmically, for increasing n. The simple form of

the asymptotic expansion

γas(0)
n ' −5.3333 ln(2 + n) + 0.9215 ,

γas(1)
n ' −(33.237− 2.963nf ) ln(2 + n) + 15.315− 1.4363nf , (27)

and the eigenvalue equation [which is known from the one-loop approximation of V (x, y)]∫ 1

0
dy [vb(x, y)]+ (1− y) y C3/2

n (2y − 1) = 2
(
1− γE − ψ(n+ 2)

)
(1− x)x C3/2

n (2x− 1) ,

[vb(x, y)]+ = vb(x, y)− δ(x− y)
∫ 1

0
dz vb(z, y) , (28)

vb(x, y) = θ(y − x) x

y(y − x) +

{
x→ 1− x
y → 1− y

}
,
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where ψ(n+ 2) = ln(n+ 2) +O(1/n) for large n, allows us to reexpress Eq. (26) as

δev ϕ(x,Q2) =
(
αs
2π

)2
ln

(
Q2

Q2
0

)[ ∫ 1

0
dy
(
aδ(x− y) + b[vb(x, y)]+

)
ϕLO(y,Q2) +R(x,Q2)

]
, (29)

where a ' 0.6315−0.0918nf and b ' 8.309−0.7408nf . The terms in the sum representation

of the remainder

R(x,Q2) =
∫ 1

0
dy
(
V d(1)(x, y)− aδ(x− y)− b[vb(x, y)]+

)
ϕLO(y,Q2) ,

(30)

=
1

2

∞∑
n=0

′ (1− x)x
Nn

C3/2
n (2x− 1)

(
γ(1)
n − γas(1)n

)(Q2

Q2
0

)αsγ(0)
n /(4π) 〈

0|On(Q
2
0)|P

〉red

are additionally suppressed by O(1/n). Thus, for the same accuracy, the approximation of

R(x,Q2) by a partial sum requires less terms than the approximation of ϕLO(y,Q2) itself.

C. Complete next-to-leading order corrections

In the asymptotic limit, each given distribution amplitude ϕ(x,Q2
0) at reference

momentum square Q2
0 extends into the asymptotic distribution amplitude (13). Thus, in this

limit, the relative next-to-leading-order correction
[
ϕNLO(x)− ϕLO(x)

]
/ϕLO(x) is uniquely

given by

ϕasNLO(x)− ϕasLO(x)

ϕasLO(x)
=
αs
4π

(
CF

[
ln2

(
1− x
x

)
+ 2− π2

3

]
+ β0

[
ln
(
(1− x)x

)
+

5

3

])
, (31)

so it is large and enhanced in the endpoint region. The next-to-leading-order contribution

by the evolution of the distribution amplitude is also important away from this asymptotic

limit.

It is possible to get information about the distribution amplitude at low momentum

transfer; e.g., Q0 ∼ 0.5 GeV, from nonperturbative methods such as sum rules [32] and

lattice calculation [33]. However, the obtained results are inconclusive, so it is not possible

to distinguish between the following parameterizations:

ϕas(x) = 6x(1− x) ,

ϕCZ(x) = 30x(1− x)
(
1− 4x(1− x)

)
, (32)

ϕco(x) =
8

π

(
x(1− x)

)1/2
.

12



  

The function ϕco(x) which was used for the next-to-leading-order analyses of the pion form

factor in Ref. [17] is only one example of further convex amplitudes. (For a numerical

calculation, ϕco(x) is more suitable than broader amplitudes, which had previously been

assumed to be more realistic.) Furthermore, it is assumed that the evolution of ϕ(x,Q2) for

Q > 0.5 GeV can be obtained from the perturbative solution of the evolution equation.

The evolution of ϕ(x,Q2) is controlled by Eq. (10), where the reduced expectation values

〈0|On(Q
2
0)|P 〉

red
are computed from the nonperturbative input ϕ(x,Q2

0), which is assumed

to be one of the functions in Eq. (32). It follows from Eqs. (10) and (14) up to corrections

of order O(α2
s),

〈
0|On(Q

2
0)|P

〉red
= mn(Q

2
0)−

αs
2π

n−2∑
i=0

′
c
(1)
ni mi(Q

2
0) ,

mn(Q
2
0) =

∫ 1

0
dx C3/2

n (2x− 1) ϕ(x,Q2
0) , (33)

where the coefficients c
(1)
ni are defined in Eq. (15).

Taking into account a sufficient number of terms in the series (10), the distribution

amplitude at the factorization scale for exclusive processes assumed to be Q ∼ 2 GeV can

be obtained numerically. The number of active flavors is three, and the value for the fixed

coupling constant is αs = 0.5. The distribution amplitude was approximated by the first 100

nontrivial terms (i = 0, 2, . . . , 200). The corresponding eigenfunctions ϕefn (x, αs) take into

account the (102 − i/2) terms of the expansions with respect to Gegenbauer polynomials.

The distribution amplitude ϕ(xj, Q
2) at Q = 2 GeV was then computed for different points

xj, j = 0, 1, . . . , 70 and interpolated to a smooth function.

It can be seen in Figs. 2(b,c,d) that the relative next-to-leading-order corrections have

the following features:

• Independent of the shape of ϕ(x,Q0), the relative next-to-leading-order corrections are

characterized by logarithmic enhancement at the endpoints caused by both corrections

to the eigenfunctions and to the eigenvalues.

• For partial waves with n > 0, the corrections coming from the eigenvalues are larger

than from the eigenfunctions. However, these corrections disappear in the asymptotic

limit.

• Amplitudes enhanced at the endpoints, also have larger relative next-to-leading-order

corrections that are negative.
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Although it was possible for the chosen distribution amplitudes to compute the evolution

in next-to-leading-order numerically, this will be a difficult task for amplitudes that are

broader. In addition, the complete next-to-leading-order analyses for an exclusive process

can be done more conveniently if the next-to-leading-order correction is written as a

convolution, with the distribution amplitude ϕd(x,Q2) defined in Eq. (25), which also evolves

smoothly in next-to-leading-order (no excitation of higher harmonics). Since ϕ(x,Q2) =

ϕd(x,Q2) + δefϕ(x,Q2) from Eq. (24),

ϕ(x,Q2) =
∫ 1

0
dy

(
δ(x− y) +

αs
2π

c(1)(x, y) + · · ·
)
ϕd(y,Q2) . (34)

Again, the excitation of the higher partial waves is completely included in the convolution

with c(1)(x, y). Notice that ϕd(y,Q2
0) may be used instead of ϕ(y,Q2

0) as an initial condition.

In fact, this corresponds to the choice of another factorization scheme for the considered

exclusive process (redefinition of the soft and hard parts).

The complete αs correction to the evolution of the distribution amplitude in

next-to-leading-order can easily be obtained from (24) and (26):

ϕ(x,Q2) = ϕLO(x,Q2) + δef ϕ(x,Q2) + δev ϕ(x,Q2) , (35)

=
∫ 1

0
dy

(
δ(x− y) +

αs
2π

[
c(1)(x, y) +

αs
2π

ln
(
Q2

Q2
0

)
V d(1)(x, y)

]
+ · · ·

)
ϕLO(y,Q2) .

III. NEXT-TO-LEADING-ORDER ANALYSIS FOR RUNNING COUPLING

CONSTANT

This section discusses the solution of the evolution equation in next-to-leading-order for

running coupling, which was derived in [23,31],

ϕ
(
x,Q2

)
=

∞∑
n=0

′
ϕn
(
x, αs(Q

2)
)

exp
[
1

2

∫ Q2

Q2
0

dt

t
γn
(
g(t)

)] 〈
0|On(Q

2
0)|P

〉red
. (36)

The partial waves ϕn(x, αs(Q
2)) are now Q2 dependent nonpolynomial functions, known as

functional series

ϕn
(
x, αs(Q

2)
)

=
(1− x)x
Nn

C
3
2
n (2x− 1) +

αs(Q
2)

2π
ϕ(1)
n (x,Q2) + · · · ,

ϕ(1)
n (x,Q2) =

∞∑
k=n+2

′ (1− x)x
Nk

C
3
2
k (2x− 1) skn

(
αs(Q

2)
)
c
(1)
kn , (37)
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where c
(1)
kn are the expansion coefficients of the eigenfunction defined in Eq. (15) and

skn
(
αs(Q

2)
)

=
γ

(0)
k − γ(0)

n

γ
(0)
k − γ

(0)
n + β0

[
1−

(
αs(Q

2
0)

αs(Q2)

)
1 + (γ

(0)
k − γ(0)

n )/β0

]
. (38)

Since these partial waves satisfy the convenient initial condition

ϕn
(
x, αs(Q

2
0)
)

=
(1− x)x
Nk

C
3/2
k (2x− 1) , (39)

the expectation values 〈0|On(Q
2
0)|P 〉

red
can be now simpler computed as for fixed αs〈

0|On(Q
2
0)|P

〉red
=

∫ 1

0
dx C

3
2
n (2x− 1) ϕ(x,Q2

0) . (40)

Because of the asymptotic behavior of γ
(0)
k = −4 ln(k+2)+ · · ·, skn

(
αs(Q

2)
)

approaches

1 for k À n and αs(Q
2
0) > αs(Q

2) [see Fig. 3(a)]. Consequently, the behavior of

ϕ(1)
n

(
x, αs(Q

2)
)

in the endpoint region is determined by c
(1)
kn ; i.e., it has the same logarithmic

modification as ϕef(1)
n (x).

To avoid this excitation of higher harmonics (Gegenbauer polynomials) by the evolution,

a new distribution amplitude analogous to the case for the fixed coupling constant is

introduced that satisfies a diagonal evolution equation (the corresponding evolution kernel

has to be diagonal with respect to Gegenbauer polynomials). A formal representation for

this transformation kernel was given in [24],

W =
∫ ∞
0

dt exp
{
−(β0 − V (0))t

}
⊗
[
(I − P)V (1)

]
⊗ exp

{
−V (0)t

}
, (41)

but, as was pointed out, this representation cannot be used for explicit calculations.

Hopefully, changing the factorization scheme for the exclusive process under consideration

will allow us to factorize the process amplitude in terms of the desired diagonal distribution

amplitude ϕd(x,Q2).

For the numerical study of the next-to-leading-order corrections, assume that the

distribution amplitude at Q0 = 0.5 GeV (Λ(3) = 0.4 in next-to-leading-order; i.e., that

αs(Q
2
0) ∼ 0.9) can be parametrized by one of the functions in Eq. (32). The amplitudes are

evolved to a scale Q = 2 GeV, where αs(Q
2) ∼ 0.3. The number of active flavors is three,

taking into account the first 100 nontrivial terms in the partial sums for both series (36)

and (37) [the asymptotic (Chernyak-Zhitnitsky) distribution amplitude requires only 1 (2)

term(s) in (36)]. The result in Figs. 3(b,c,d) shows that the relative next-to-leading-order

corrections for running coupling have qualitative and quantitative features similar to those

in the case of fixed coupling discussed in Section 3.3.
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IV. SUMMARY AND CONCLUSION

This paper has shown that the (relative) next-to-leading-order correction to the evolution

of the pion distribution amplitude is rather large, especially in the endpoint region, and that

in this region the negative corrections are larger for enhanced amplitudes. The αs correction

to the partial waves comes from the off-diagonal matrix elements of γnk; it can be interpreted

as excitation of higher harmonics (Gegenbauer polynomials) by evolution, and appears as

ln(x(1−x)) and ln2(x/(1−x)) terms. The two-loop contribution to the anomalous dimension

γn is for n > 0 much larger than the off-diagonal matrix elements of γnk; i.e., about 20%

of the one-loop approximation. However, the exponentiation of the two-loop contribution

provides a larger suppression of the corresponding harmonic’s as in leading order (expansion

with respect to αs provides a large (negative) excitation of the harmonics).

The obtained large next-to-leading-order correction seems to contradict a previous

analysis [24], where it was found that this correction is rather small. The explanation for this

discrepancy is that (1) only the first few expansion coefficients cnk were taken into account,

and (2) the authors looked only to the evolution of ϕ(x,Q2) at x = 0.5. Furthermore, the

reference momentum chosen for use in Ref. [24] was Q0 = 10Λ(3) = 1 GeV in leading order;

i.e., αs(Q
2
0 = 1GeV2) ∼ 0.3. Such a choice provides a much smaller next-to-leading-order

correction for Q0 = 1.25Λ(3) (because αs(Q
2
0 = 1.252Λ2) ∼ 0.9, perturbation theory should

be valid for the evolution of the distribution amplitude). Using a popular parameterization

at lower reference momentum (e.g., Q0 ∼ 0.5 GeV) provides logarithmic correction, which

should be included in the input amplitude at a higher reference momentum.

The question of whether to include an αs suppressed logarithmic correction to the input

amplitude ϕ(x,Q2
0) can be avoid by chosing a distribution amplitude that evolves smoothly,

with no excitation of higher harmonics by evolution. The amplitude ϕd(x,Q2) satisfies an

evolution equation where the corresponding evolution kernel V d(x, y) is diagonal with respect

to Gegenbauer polynomials. Consequently, in such a factorization scheme, the contribution

responsible for the mentioned excitation of higher harmonics is now included as the αs

correction to the hard scattering amplitude of the considered process.

Because of the size of the discovered correction and its dependence upon the input

amplitude, the evolution of the distribution amplitude has to be included in the

next-to-leading-order analysis of exclusive hard momentum processes. For large enough

Q2, the Sudakov suppression can be neglected so that, using the known expressions for the

hard scattering amplitudes of the pion transition form factor and the electromagnetic form
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factor, it should be straightforward to re-analyze the next-to-leading-order corrections for

these processes. Because of the large number of Feynman diagrams, the αs correction to the

hard scattering amplitude for the γγ → M+M− processes for the case of equal momentum

sharing was only computed numerically. It should nevertheless be possible to estimate the

size of the correction coming from the evolution of the distribution amplitude. A general

next-to-leading-order analysis for arbitrary distribution amplitudes requires an analytical

calculation of the hard scattering amplitude (448 diagrams).
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Fig. 1. Values of r(1)
n (boxes) and R(1)

n (circles) are given when (a) β0 is set to

zero, and (b) β0 = 9. The difference of the relative value of the conformal symmetry

predicted part (upper half plane) and of the relative value of the ‘additional’ conformal

symmetry breaking term (lower half plane) is shown by filled boxes (circles). The lines

represent the corresponding asymptotic expressions. (Subasymptotic terms were also

taken into account for the approximation of R(1)
n .) The relative deviation of the partial

sums ϕ
ef(1)
nk (x) from the exact αs correction ϕef(1)

n (x) is given (c) for k = 2 and (d) for

k = 10.

21



   

(b)

(d)

x

–4

–2

2

0

0.4 0.80

–1

2

1

0

7778A2
8–94

x

0

–4

4
(c)

(a)

0.4 0.80

0

1

2

α s
  (

2π
)

α s
  (

2π
)

Fig. 2. Evolution of the pion distribution amplitude for fixed αs = 0.5 and three

active flavors. As nonperturbative inputs, three distribution amplitudes defined in

Eq. (32) are chosen at the reference momentum scale Q0 = 0.5 GeV. They are shown in

(a); ϕas(x,Q2) in leading order (solid), ϕCZ(x,Q2) (dashed), ϕco(x,Q2) (dash-dotted),

ϕas(x,Q2) in next-to-leading-order (dotted). The relative next-to-leading-order

corrections at Q = 2 GeV are shown for ϕas(x,Q2) in (b), for ϕCZ(x,Q2) in (c), and for

ϕco(x,Q2) in (d) showing that the endpoint behavior of the distribution amplitudes

changed more drastically under evolution. The next-to-leading-order corrections of

the eigenvalues are neglected for the dashed line, expanded with respect to αs for

the dash-dotted line, and taken into account by resummation for the solid line. The

correction in the asymptotic limit is dotted.
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Fig. 3. The evolution of the pion distribution amplitude for running αs is essentially

determined by the matrix valued function skn
(
αs(Q

2)
)
. (a) shows that skn

(
αs(Q

2)
)

defined in Eq. (38) as a function of k/(n + 2) is nearly n independent, and for

αs(Q
2) = 0.5αs(Q

2
0) it is almost of order O(1). The relative next-to-leading-order

corrections for ϕas(x,Q2) in (b), for ϕCZ(x,Q2) in (c), and for ϕco(x,Q2) in (d) are

comparable to the fixed coupling result. Here, αs(Q
2
0) = 0.9, αs(Q

2) = 0.3, and three

active flavors were chosen. The meaning of the solid, dashed, and dash-dotted lines is

the same as for Fig. 2(b,c,d).
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