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ABSTRACT 

Methods of studying strong electroweak symmetry breaking at future e+e- 
linear colliders are reviewed. Specifically, we review precision measurements of 
triple gauge boson vertex parameters and the rescattering of longitudinal W 
bosons in the process e+e- 4 W+W-. Quantitative estimates of the sensitiv- 
ity of each technique to strong electroweak symmetry breaking are included. 

1. Introduction 

-- 

The exploration of electroweak symmetry breaking is the primary task of the next 
generation of pp and e+e- colliders. In this paper we review how strong electroweak 

-symmetry breaking can be studied using the process e+e- + W+W- at the next 
generation e + - e linear collider (NLC). We assume two stages for the center-of-mass 
energy and luminosity of the NLC.l In the initial stage the center-of-mass energy is 
500 GeV and the design luminosity is 0.8 x 1O34 crn-‘.s-l. In the second stage the 
center-of-mass energy is 1500 GeV and the design luminosity is 1.9 x 1O34 cm-’ s-l. 
We will assume lo7 seconds at the design luminosity for our integrated luminosity. 

Strong electroweak symmetry breaking affects the reaction e+e- --f W+W- by 
producing anomalous couplings at the W+W - y and W+W-2 vertices and by pro- 
ducing observable W+W- final-state rescattering effects. We will use the three-gauge 
boson vertex formalism of Ref. 2 when we discuss anomalous three-gauge boson cou- 
plings. For example, we will be referring later to the parameters ICY, IEZ, and gf, which 
are defined in Eq. 2.1 of Ref. 2. 
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If we have an unnormalized probability density function p(Z, ~5’) then we write 

In order to account for detector resolution, experimental cuts, initial-state radia- 
tion, initial-state electron polarization, and distinct final-state event topologies, we use 
the following expression for the unnormalized probability density function 1~: 

where k is the initial-state electron polarization index and 1 is the final-state event 
topology index. Here 2’ denotes the true values of the measured variables, and Q’ = 
(q2, q2), where q2 and ?j2 are the invariant masses squared of the leptonically de- 
caying W and hadronically decaying W respectively. We define z’ = (zi, 22) where 

~1 = Ee-/Eb, 752 = &+/,?!?b, Eb is the beam energy, and E,h are the electron and 
positron energies following initial state bremsstrahlung and beamstrahlung. The resolu- 
tion function is r(Z, 57, $, z’ ), q(Z’, {, Z) is the detection efficiency function, t(Z’, cr’, Z , Z) 
is the multi-differential cross-section, and h(2) is the multi-differential luminosity. 

With initial-state polarizations and distinct final-state event topologies, the ex- 
pression for (V-l), is somewhat complicated unless we make some additional defin- 
tions. Define 

Eki ii o=J d3 fikl@, 4 (16) 

and 

xx=+, (17) 

where & is the luminosity at polarization k and L is the total luminosity. Note that 
the systematic error for & will be much smaller than the systematic error for f& Next 
define 

(18) 

(19) 

(20) 

(21) 

(22) 

The inverse of the covariance matrix is then given by 

(V-l), = N C[Qijl + C&l] 
1 

(23) 
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where 
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Fig. 1. The 95% confidence level contours for LgL and LgR at fi = 500 GeV with 80 fb-‘, 
and at Jr;; = 1500 GeV with 190 fb-‘. The outer contour is for fi = 500 GeV. In each 
case the initial state electron polarization is 90%. 

4. Results 

We will now plot 95% confidence level contours for some fit parameters based 
on the covariance matrix calculation described above. In making these plots our ex- 
pression for /&l(zi, 3 has been simplified. The errors on our reconstructed quantities 
cos 8, cos 0*, $*, cos 19*, p are small enough that the resolution function rl can be ap- 
proximated by a delta function. Also, the imposition of our second cut, Eq. 10, allows 
us to approximate the efficiency function Al by a delta function at q2 = M&, q2 = M$, 
zi = 1, and ~2 = 1. As a result, we have 

/%d(& a’> = tkl(& z) (26) 

-- 
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where t#(&, Z) is now the narrow-width, multi-differential cross-section2 with initial- 
state electron polarization P,(k) at the nominal e+e- center-of-mass energy. For all of 
our examples we will assume that half of the luminosity is taken with P,(l) = -0.9 
and half with Pe(2) = +0.9. The final-state event topology index takes on the values 
1 = 1,2, where 1= 1 refers to the final state with the W- decaying leptonically and the 
W+ decaying hadronically, while 1 = 2 refers to the final state with the W- decaying 
hadronically and the W+ decaying leptonically. 
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Figure 2. Confidence level contours for the real and imaginary parts of FT at fi = 1500 
GeV with 190 fb-‘. The initial state electron polarization is 90%. The contour about 
the light Higgs value of FT = (1,O) is 95% confidence level and the contour about the 
MP = 4 TeV point is 68% confidence level. 

Figure 1 shows the 95% confidence level contours for LgL and LgR at fi = 
500 GeV with 80 fb-l, and at fi = 1500 GeV with 190 f b-l. The outer contour is for 
,/ii = 500 GeV. 

Figure 2 contains confidence level contours for the real and imaginary parts of FT 
at fi = 1500 GeV with 190 fb-‘. Shown are the 95% confidence level contour about 
the light Higgs value of FT, and the 68% confidence level (i.e., la probability) contour 
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about the value of FT for a 4 TeV techni-rho. We see that even the non-resonant LET 
point is well outside the light Higgs 95% confidence level region. In fact, the LET 
point intersects the 99.99945% confidence level contour about the light Higgs point, 
corresponding to a 4.50 signal. The 6 TeV and 4 TeV techni-rho points correspond 
to 4.8~ and 6.50 signals, respectively. At a slightly higher integrated luminosity of 
225 fb-l, we would obtain 7.la, 5.30 and 5.0a signals for a 4 TeV techni-rho, a 6 TeV 
techni-rho, and LET, respectively. 

In conclusion, the process e+e- + W+W- is an effective probe of strong elec- 
troweak symmetry breaking. The chiral Lagrangian parameters L~L and L~R can be 
determined with an accuracy of f1.5 at fi = 500 GeV and f0.5 at fi = 1500 GeV 
(95% C.L.). w,f-w,- rescattering allows us to discover and identify techni-rho reso- 
nances with masses as large as 4 TeV. For higher techni-rho masses it may be difficult 
to distinguish the resonances from LET, but the higher mass techni-rho’s, as well as 
LET, can be clearly distinguished from the Standard Model with a light Higgs. 
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