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ABSTUCT

We show that the radiation damping rate of the transverse action of a particle in a

straight, continuous focusing system is independent of the particle energy, and that no

: quantum excitation is induced. This absolute damping effect leads to the existence of a

transverse ground state which the particle inevitably decays to, and fields the minimum

beam emit~ance that one can ever attain, ~emzn = h/2mc, limited only by the uncertainty

principle. Due to adiabatic invariance, the particle can be accelerated along the focusing

channel in its ground state without any radiation energy loss.
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In an electron or positron storage ring the amplitude of transverse oscillations damps

towards a stable closed trajectory. This damping is caused by the emission of synchrotron

radiation due to the uniform bending fields and by the replacement of the energy in the

longitudinal direction o~y. The damping time is approximately equ~ to the time it takes

to radiate away the initi~ energy of the particle. This damping is counteracted by random -

fluctuations generated by the discrete photons emitted by each electron, which leads to an

equilibrium beam emittance when the damping and excitation rates cancel!l’2]

~diation damping and excitation are, in principle, present in a straight magnetic or

electric focusing system

straight fine trajectory.

because particles with finite amplitude are bent back towards the

However, these effects may be modified because the fields are not

uniform in such a focusing system. Motivated by these considerations and ~so by proposals

for accelerating charged particles in crystals~’41 in this paper we study the radiation reaction

effect on a charged particle undulating in a straight, continuous focusing system.

Consider an electrostatic focusing channel that provides a transverse continuous potenti~

V(Z) = Kz2/2 for a charged particle, say a positron, where K is the focusing strength. The

parabolic potential could be, for example, an approximation of the Lindhard potential in
-.

the case of planar crystal channeling! ’e] For simplicity, we take z as the single transverse

dimension of the particle, which has relativistic energy ~ = ~m and which moves freely

(without acceleration) in the longitudin~ z-direction with a constant momentum pz = ~m~z

in the absence of radiation. We set e = ~ = c = 1 in most equations, but reinsert them

when suitable. The effect of the addition~ transverse dimension will be discussed later. We

consider the case in which the peak transverse momentum in one oscillation px,mx << p%.

Defining ~z = <-, we ~n approximate the tot~ ener~, ~ = ~m2 + fi + A + V(Z),

as ~~ + ~Z, where EX = p~/2EZ + V(x) is the s~called transverse energy. The motion of
-.

tbe particle is now deconpled into two parts: a free relativistic longitudinal motion and a
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transverse harmonic oscillation with an effective mass E=.

We now move straight to quantum mechanic~ analysis of the system because we want to

calculate the full radiation reaction including damping and excitation due to discrete photon

emissions. Work on relativistic crystal channeling has shown that the spin degree of freedom -

plays a negligible role!’l Therefore, we use the Klein-Gordon equation to describe the gener~

wave function V (z, Z, t) of the channeled particle,

[(-25 - 1)2 + m2]v = (is, - V)2V . (1)

In the absence of radiation, we let ~ = O and look for the energy levels E and the sta-

tionary states V(Z, z, t) = e-z~t [n,pz) of Eq.(1) by neglecting terms of the order (EZ/E)2~]

We find

E= EZ+EZ=
d

m2 +p~ +wz(n+ 1/2) , (2)

ln,P.) = (Cn/~)1/2(Ezwz) 1/4e’~Z~e-Ezwz~
2/2Hn(~=X) > (3)

where Cn = (2nn! W)’1, L is the length of the channel, ~z = <m as before, Wz =

~~ is the +ransverse oscillation frequency, n is the transverse quantum number (n=

O, 1,2...), tid Hn is the nth order Hermite polynomial. It is clear that the transverse energy

level EZ = (n+ l/2)wz and the transverse state function are controlled by both n and p..

Coupling between the channeled particle and the radiation field, represented by the

vector potential ~ in Eq. ( 1), leads to spontaneous emission of photons. By choosing Coulomb

gauge, ~ . ~ = O, and ignoring the AT term (double-photon emission), we arrive at

[-V2 + m2 + 221. ~]V(z, z, t) = (i~t - V)2V($, z, t) . (4)

Moving to the interaction representation we write V(x, z, t) = exp(–ztiot)$(z, Z, t). Identi-
--

f~ing (fro – V)2 = (–V2 + m2), and neglecting ~(t) in the expansion of (i~t – V)2V(t) in
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Eq. (4), we obtain

Using first-rder, time-dependent perturbation theory (Fermi’s Golden R~e), we obtain

the transition rate ~tz for the particle from an initi~ state In, p.) (with energy ~) to a find

state In’, p~) (with energy ~’):

Wfz = 2~[Mfi[26(E – E’ – WT) ,

where the matrix element Mfi is defined by

(6)

(7)

The vector potential ~ acting on the radiation field creates a photon of momentum

~T and energy W7(W7 = 1~~[) with two possible polarizations 21 and ~2 (21 . t2 = O and

: 21,2. ~T = O). The operator (tio – V)’1 can be approximated m ti~l by neglecting terms

of the order (EZ~E). Therefore

(8)

The integral over z in the above equation gives rise to f(pz – pj – k~z), which expresses

the conservation of longitudinal momentum. Together with the conservation of energy, this

places a tight constraint on the radiation reaction of the particle. In order to conserve

longitudinal momentum, we have pj = pz – WTcos 0, where 0 is the photon emission angle

rektive to the focusing ~is.- For the photon energy W7 << E, the longitudinal energy,
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Ez= {-, must accordingly decrease by an amount

(9)

Since the total energy of the particle is reduced by an amount W7, its transverse energy .

EZ = E – EZ must decre~e by

AE= =wT(l–pcOse) >0 . (lo)

It follows that (n+ l/2)wz – (n’ + l/2)w~ = W7(1 – ~ cos e) >0. For a small change in EZ,

WI =
z ~K/(Ez – AEZ)N wZ(l + AE./2Ez). Substituting Eq.(9) for AEZ, we obtain an

equation that relates the change of the transverse quantum number to the photon energy

and its emission angle,

(n – n’)wj = (1 – ~ cos e)w7 + (w7~cos e) Ez/2Ez >0 , (11)

which is ~ways positive definite. We therefore conclude that both the transverse energy and

the transverse quantum number always decre~e after a photon emission process, independent

of the photon emission angle.

Let us introduce the harmonic number v = n – n’ and the pitch angle of the particle

ep = p=,mazlpz s ~m. Using the e~ansion 1 – @ cos e s 1/272 + e2/2, we find from

Eq.(11) a condition for the photon energy

(12)

Note that ~ep in the above equation plays the same role as the undulator strength parameter

[9]
in undulator radiation. - -.
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The exact form of the transition rate Wfz given by the integral over z in Eq. (8) is

more complex than usual because the initial and the final transverse states have different

effective m~ses. If we expand the final transverse wave function as a superposition of the

initial transverse wave functions, Wfz can then be expressed in terms of =sociated Legendre

polynomials and Laguerre functions~l”’ll] Taking the classical hmit for the transverse motion -

of the particle (n ~ 00, h ~ 0, but nh ~ EZ/wZ remains fied), the transition rate h~ the

following simple form for any kinematicdy allowed transition that satisfies Eq. (12):

T2
wf~ = ~ [( Sv30p cos 0 cos @– 2Sul~ sin 0)2 + (Sv30p sin +)2] 8[(1 – ~cos 0+0~/4)w7 – VU.],

(13)

where SUI = xl ~(va)~V-21(vb) and SV3 = xl J(va)[JV_2i_l(vb) + JV-21+l(vb)], a =

d: cos 0/8(1 – ~ cos O + 0~/4) and b = OPsin Ocos @/(l – ~ cos 0 + 0~/4), ~v is the Vth or-

der ,Bessel function; while @ is the azimuthal angle of the radiated photon. Compared with

Eq. (57) and Eq. (58) in Ref. 9, the analogy between chmneling radiation and undulator

radiation is obvious.

In the “undulator” regime where TOP <<1, without taking the classic~

can ev~uate Eq. (8) for w? << E by the so called dipole approximation
[7]

leading-order terms in k~zx are kept (kTZx = v~ a 76P << 1). Therefore, in

limit above, we

where only the

this regime, for

an arbitmry transverse level n,

selection rule) and is given by

the transition rate is nonzero only if n’ = n – 1 (the dipole

2T2WZ COS2O(COSe – P)2
wf2= Ew

zy [ (1 - pcose)2
(14)

This result can also be obtained by keeping the leadingarder terms in ~ep in Eq. (13).

T%erefore, in the undulalor regime the rate of change of the particle’s tot~ energy due to
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dipole radiation is

(15)

where re = e2/m& is the cl~sicd electron radius.

amptitude. of the oscillating particle in the large n

After identifying ntiz with the rms -

limit (nhuz R E. = K(z2) ), we see

that dE/dt in the above expression is identical to the clmsicd radiation power, which is

proportional to E2F~ (Fl being the trmsverse focusing field strength).

Since the action of the transverse oscillation Jn = EZ/wZ = (n+ 1/2)h, the decrement

of the transverse energy level leads to the radiation damping of this action. For sufficiently

small oscillation amplitude so that only dipole transition is allowed, the rate of change of

the transverse energy level is

$ =~J$(nt-n)wfi
(16)

2 r.K_ _—nG –rCn .
= 3mc

Thus the darnp~ng rate of the transverse action is dJn/dt = –rcnh N –rcJn for l~ge n,

and the damping constant, r~ = 2reK/3mc, is independent of the energy of the channeled

particle. Note that in the case of radiation in a bending magnet, there is an additional term

of opposite sign independent of the quantum level in question that represents the excitation

of transverse oscillations!l This term is absent in Eq. ( 16). Therefore in a straight, continuous

focusing channel, no intrinsic quantum excitation is induced by the random photon emissions,

and the radiation damping is absolute.

One can use classical radiation reaction to obtain a similar result for the radiation dampi-

ng of the transverse oscillation amplitude!12] However, our treatment shows that it is the

a~tion that damps expo;ent;dly (the change of energy modifies the amplitude damping).
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It dso clearly shows how to extend the restits to the case where ~OP z 1. More impor-

tantly, the quantum mechanical calcdation above automatically takes into account the ftil

radiation reaction and shows the absence of excitation in this system (a surprising result

viewed from the standpoint of electron synchrotrons and storage rings). It is difficdt if not

impossible to model the radiation reaction effect of discrete photon emissions classimlly for

YOP<<1, because the time during which a typical photon is emitted is much longer than the

oscillation period in the unddator regime?]

The excitation-free reaction of radiation comes from the fact that the transverse quantum

level must decrease after each radiation process, independent of the photon emission mgle. In

the longitudinal direction the particle recoils against the emitted photon in order to conserve

the longitudinal momentum between the two particles. However in the transverse direction

the existence of the focusing force destroys the momentum balance and suppresses the recoil

effect. The extemd focusing environment absorbs the excess transverse momentum during

the process of radiation. In this sense, the radiation reaction of a channeled particle in the

transverse dimension is similar to that in the Mossbauer effect!13]

Because of the lack of recoil and excitation in the transverse dimension, the particle

damps ex~onentially to its transverse ground state (n = O), md this ground state is stable

against further radiation (energy md

the ground state the particle reaches

this minimum action to a normalized

momentum conservation forbid further radiation). In

the minimum value of the action Jo = h/2. Relating

emittance, we find

yemzn E Jo/me= >C/2 , (17)

where .xC = h/me is the Compton wavelength. This minimum is also the fundamental
--

emittance limited by the uncertainty principle.
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One cm estimate the time needed for a particle to damp to its ground state. Suppose

the particle enters the focusing channel with a transverse energy (nz + l/2)wz satis~ng the

undtiator condition, it reaches the ground state in a time tg N ln(nz)/rc. To illustrate

the range of damping times, let us consider two extreme examples: crystal channels md

conventional focusing devicw for accelerators. The channeling strength for a typical crystal

channel is K x 1011GeV/m2, so rC N (lOnsec)–l. When a 100MeV particle is initially barely

captured by the crystal channel, the transverse energy of the p@icle is of the order of the

maximum channeling potential energy 100eV, and the corresponding quantum number nz is

about 500. Thus, in the absence of any dechwneling effects such as mtitiple scattering~4] the

time it t&es to damp to the ground state is tg z 60nsec. For a conventional finear focusing

device, the focusing strength is about K N 30 Gev/m2, so rc x (30sec)-1. The damping

time to the ground state in this case depends upon the logarithm of the initial state ni, but

will usually be several e-folding--times.

Another novel characteristic of this radiation reaction is that the relative damping rate

of the transverse action can be much faster than the relative damping rate of longitudinal

momentum, i.e., the radiation reaction is asymmetric in these two dimensions. The rate

of change of th-e longitudinal momentum can be obtained from the ener~ loss equation,

Eq. (15), with the approximation pz s Ez s E. We obtain

1 dpz 1 dE——w ——
p. dt –Edt

~ +729; , (18)

which is less than rC for ~26j <2. In the undulator regime we have the condition ~OP <<1,

thus

1 dJn 1 dpz—— ~ rc >> _—
J. dt pz dt .

(19)

One major consequence of the above inequ~ity is that a particle may lose only a negligible

amount of tot~ energy ‘when it is damped to the transverse ground state. By replacing
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n = nz exp(-~Ct) and Wz s ~w- in Eq.(15) and integrating over time, we find the find

energy retained in the ground state nf = O is

Ef = E2/[1 + (7ep):/4]2 . (20)

Note that Eq. (20) is derived in the undulator regime where ~OP <<1. Thus particles that

enter the focusing channel with the same initial ener~ but different initial pitch angles will

all end up in the transverse ground state with a very small relative longitudinal energy spread

of (7ep):/2.

We have shown that the radiation reaction in a straight, continuous focusing channel is

&ndarnentaUy different from that in a bending magnet. In a uniform magnetic field, the

radiating partick recoils against the emitted photon by both reducing its orbital quantum

number and by shifting the center of its circdar orbit?] This latter change is allowed due to

the trmslational invariance of the system in the plane perpendicular to the magnetic field,

i.e., the system is degenerate with regard to the orbiting centers. The center shift is even

necessary in order that the tangent of the particle trajectory be continuous before and after

the emission. Therefore, the photon emission yields a random recoil of the electron due to

variations in both angle and magnitude of the photon’s momentum. The resdting random

shifts in the orbit center give rise to the random excitations of radial betatron oscillations.

On the other hand, the existence of a focusing axis in a straight, continuous focusing

environment removes such a degeneracy and therefore eliminates any quantum excitation

to the particle from random photon emissions. In a conventional storage ring, the stored

particles me confined by both bending and focusing fields. However, the focusing field is

typically so much weaker than the bending field that its radiation effect is negligible. On

the average, radiation damping in a conventional storage ring shrinks the momentum vector

of the particle proportiofially~l’ls]
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Nevertheless, the above results of straight, focusing channels can be extended to “quasi-

straight” systems provided that the focusing field is much stronger thm the bending field.

The radiation formation length due to bending is of the order p/y!’”] where p is the bending

radius. When this length is much longer than the betatron wavelength, the transverse

damping due to the local osci~ations is much faster than that caused by the global bending -

of the trajectory. h this case the radiation reaction is dominated by the focusing field!lll

We note that all the restits obttined here are not affected by adiabatic acceleration along

the longitudinal direction, since both the action and the stationary states in our system are

adiabatic invariants. The condition for adiabatic acceleration is given by

dEaCml

dt
<<wzE=~ . (21)

Using the previous examples, we get WZE w 105GeV/m for a crystal channel and 2GeV/m

for a conventional focusing device when the energ of the particle is only 100MeV. Obvi-

busly, the above inequality is guaranteed by any foreseeable acceleration mechanism. We

conclude that the particle, once damped to its transverse ground state in a continuous focus-

ing channel, can be accelerated adiabatically along the channel without any further radiation

loss. Therefore, the theoretical minimum transverse emittance can be retained at a much

higher accelerated particle energy, and the relative longitudinal energy spread can be reduced

through acceleration.

We have left out the other transverse degree of freedom of the particle for the s~e of

simplicity. H the y direction is free of any force, the particle radiating a photon with a

momentum component in the ~ direction must recoil by the

total momentum in this direction. So, in general, quantum

same magnitude to conserve

excitations are present in a

force-free dimension. However, if a continuous focusing force also

and if both transverse mcillations satisfy the conditions ~0~ <<

11

exists in the ~ direction,

1 md ~d~ << 1, then it
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is straightforward to extend the discussion above to both transverse dimensions because

radiation reaction effects in the x and the y directions are completely decoupled. Photons

are emitted by changing either n= or ~ by one, and dl the previous restits apply to both

dimensions. In the case where the oscillation amplitude is large in the x or in the y direction,

there is some coupling between the two transverse degrees of freedom. But if we defie the

total trmsverse ener~

El= p;/2EZ + Klx2/2 + p:/2EZ + K2y2/2 , (22)

from the conservation of both energy and longitudinal momentum, it follows that El always

decreases after a random photon emission. Combining this with the existence of a focusing

axis in the continuous focusing system, we conclude that the particle must damp to a mutual

transverse ground state (n= = O..and nv = O) that is stable against further radiation.

The basic results obtained here apply to any straight or qumi-straight, continuous focus-

ing system. The excitation-free, asymmetric radiation reaction in such systems is the direct

consequence of the tinematic requirements and does not depend on the various approxima-

tions used here. -There may be interesting applications of this phenomenon in beam handling,

cooling and acceleration. For example, in a sufficiently low-energy, focusing-dominated elec-

tron ring, the absolute transverse damping could perhaps be utifized to obtain ultra-cool

beams in transverse phase space with negligible total energy loss. Proposals of miniature

linacs powered by lasers ‘1’]would require very strong mesoscopic focusing systems. The re

suits of this ktter provide a new damping mechanism to prevent ernitt ante growth. The

existence of a trmsverse ground state for the accelerated particles might dso be quite rel-

evant and important. However, when realistic systems are considered, some of the results

shown here may be modified. For instance, if other sources of excitation (multiple Coulomb

scattering, imperfections ~etc~) are present, then the beam may not reach the minimum emit-
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tance. When these additiond effects are included, the actual equilibrium beam emittance

will depend upon the details of the application considered.

ACKNOWLEDGEMENT

We appreciate useful discussions with Alex Chao, John Irwin and Claudio Pelle@ni.

. --

13



I .

REFERENCES

1. M. Sands, “The Physics of Electron storage Rings,” SLAC Report-121, lg70.

2. A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electrons, AIP ~anslation -

Series, (AIP, New York, 1986).

3. P. Chen and R. J. Noble, “Channeled Particle Acceleration by Pl~ma Waves in Met-

tis,” in Relativistic Channeling, ed. R. A. Carrigan and J. Ellison (Plenum Press, New

York, 1987).

4. T. Tajima and M. Cavenago, Phys. Rev. Lett. 59 (1987) 1440.

5. J. Lindhard, Mat. Fys. Medd. Da. Vial. Selsk. 34 (1965).

6. S. Kheifets and T. Knight., J. Appl. Phys. 50 (1979) 5937.

7. M. A. Kumakhov and F. F. Komarov, Radiation From Charged Particles in Solids,

AIP Translation Series, (AIP, New York,1989).

8. J. U. Andersen, E. Bonderup and R. H. Pantell, Ann. Rev. Nucl. Part. Scj. 33 (1983)

453. -

9. A. Hofmann, “Theory of Synchrotron ~diation,” Stanford SSRL, ACD-NOTE 38

(1986).

10. V. A. Bwylev, V. I. Glebov, and N.K. Zhevago, Sov. Phys. JEPT 51 (1980) 31.

11. Z. Huang, P. Chen and R. D. Ruth, to appem in the Proceedings of the 6th

Workshop on Advanc& Acmlerator Concepts, ed. A. M. Sessler (1994).

12. M. A. Kumakhov and R. Wedell, Phys. Stat. Sol. (B) 92 (i979) 65.

--

International

13. See, for example, W. A. Harrison, Solid State TheoW, (McGraw-Hill, New York, 1970).

14



I* *

14. In fact, multiple Coulomb scattering is a main factor restricting the damping effect in

a crystal channel. See ref. 7 and 12.

15. K. W. Robinson, Phys. Rev. 111 (1958) 373.

16. R. B. Palmer, Part. Accel. 11 (1980) 81.

. --

15


