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1. Introduction

While the computation of amplitudes in perturbative QCD is central to the study of
jet and jet-associated physics at current and future hadron colliders, and thereby important
to the prospects of discovering new physics there, such computations are not easy. Recent
years have nonetheless seen a number of improvements in techniques both at tree level
and at the one-loop level, which have allowed the computation of a more extensive set
of matrix elements than previously possible. These techniques include the spinor helicity
basis [1]; recurrence relations for amplitudes [2,3,4,5]; and string-based techniques for one-
loop amplitudes [6,7,8]. Collinear limits are useful in constructing ansätze for amplitudes
with an arbitrary number of gluons, both at tree level [9,10] and at loop level [11]. They
also provide strong checks on results obtained by other means.

Recently we gave a formula [12,13] for all-multiplicity one-loop amplitudes in anN = 4
supersymmetric gauge theory, with the helicity configuration of the Parke-Taylor [9] tree-
level amplitudes (which have maximal helicity violation). The computation of this formula
utilized a new technique, based on the observation that for an N = 4 supersymmetric am-
plitude with all external gluons, all integrals that enter are determined by their absorptive
parts (that is, their cuts), and thus the amplitude can be computed from the interference
of appropriate tree amplitudes. The choice of external helicities in turn restricts the set of
tree helicity amplitudes that appear, and thereby renders the computation tractable even
for an arbitrary number of external legs. These amplitudes constitute part of the com-
putation of the corresponding one-loop amplitudes in QCD: the latter amplitudes have
a natural decomposition [8,14] into three pieces: an N = 4 supersymmetric amplitude,
the contribution of an internal N = 1 supersymmetric chiral matter multiplet, and the
contribution of an internal scalar.

In this paper, we show that a larger class of amplitudes can be calculated solely
from the knowledge of their cuts. In particular, the collection of amplitudes that can be
calculated in this manner — amplitudes which we shall term cut-constructible — includes
all purely massless one-loop amplitudes for which the loop integrals satisfy certain power-
counting criteria, given in section 3. As we shall show, all color-ordered amplitudes in
massless supersymmetric gauge theories with trivial superpotential are cut-constructible.
(We expect that the result to carry over to all amplitudes in massless supersymmetric
theories.) This observation is also useful in non-supersymmetric theories, where sums or
differences of certain contributions to amplitudes satisfy the criterion, allowing one to trade
a harder calculation for an easier one.

As applications of the method, we compute the one-loop maximally helicity-violating
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n-gluon amplitudes in N = 1 supersymmetric gauge theory, and those one-loop six-gluon
amplitudes in N = 4 supersymmetric gauge theory that were not previously computed in
ref. [12].

For amplitudes that are not cut-constructible, such as scalar-loop contributions to
n-gluon amplitudes, one may still use the cuts to determine efficiently all terms with loga-
rithms and dilogarithms. We will present an explicit scalar-loop example with an arbitrary
number of external legs. In this case, there are additional polynomial terms which cannot
be directly determined from the cuts, although the form of the missing polynomials is re-
stricted by the simple factorization properties of color-ordered amplitudes in the soft and
collinear limits. (The sorts of universal functions that enter into these limits also provide a
powerful means of summarizing the integrations over singular regions of phase space in the
construction of numerical programs [15].) A technique utilizing collinear factorization has
been used to construct an ansatz for the all-plus helicity configuration with an arbitrary
number of external legs [16,11], which was subsequently proven by Mahlon via recursive
techniques [5]. Recursive techniques have also been used to calculate a variety of other
non-cut-constructible amplitudes [4,5]. In this way the collinear and recursive techniques
complement the cutting method discussed in this paper.

In section 2 we briefly review salient features of color and supersymmetry decompo-
sitions of QCD amplitudes. Section 3 contains a “uniqueness” result which shows that a
one-loop amplitude whose diagrams all satisfy a certain power-counting criterion can be
completely determined from its cuts. A general discussion of the applicability of this result
to massless supersymmetric gauge theories is given in section 4. A concrete application
follows in section 5: by systematically determining all the cuts, we construct the maxi-
mally helicity-violating one-loop amplitudes in N = 1 supersymmetric gauge theory, for
an arbitrary number of external gluons. In section 6 we present those six-gluon amplitudes
in N = 4 supersymmetric gauge theory that have not appeared previously. In section 7
we show how one can apply cutting methods to non-supersymmetric theories. Section 8
contains our conclusions.

2. Review

At tree level, amplitudes in an U(Nc) or SU(Nc) gauge theory with n external gluons
can be written in terms of color-ordered partial amplitudes Atree

n , multiplied by an asso-
ciated color trace [17,18]. In order to obtain the full amplitude, one must sum over all
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non-cyclic permutations,

Atree
n ({ki, λi, ai}) = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1) · · · T aσ(n)) Atree
n (kλσ(1)

σ(1) , . . . , k
λσ(n)

σ(n) ) , (2.1)

where ki, λi, and ai are respectively the momentum, helicity (±), and color index of
the i-th external gluon, g is the coupling constant, and Sn/Zn is the set of non-cyclic
permutations of {1, . . . , n}. The U(Nc) (SU(Nc)) generators T a are the set of hermitian
(traceless hermitian) Nc × Nc matrices, normalized so that Tr

(
T aT b

)
= δab. The color

decomposition (2.1) can be derived in conventional field theory by using

fabc = − i√
2

Tr
([
T a, T b

]
T c
)
, (2.2)

where the T a may by either SU(Nc) matrices or U(Nc) matrices. The structure constants
fabc vanish when any index belongs to the U(1), which is generated by the matrix T aU(1) ≡
1/
√
Nc; therefore the partial amplitudes satisfy the U(1) decoupling identities [18,2]

Atree
n ({ki, εi, ai}n−1

i=1 ; kn, εn, aU(1)) = 0 . (2.3)

One may perform a similar color decomposition for one-loop amplitudes; in this case,
there are up to two traces over color matrices [19], and one must also sum over the dif-
ferent spins J of the internal particles circulating in the loop. When all internal particles
transform as color adjoints, the result takes the form

An ({ki, λi, ai}) = gn
∑

J=0, 12 ,1

nJ

bn/2c+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c (σ) A[J]
n;c(σ), (2.4)

where bxc is the largest integer less than or equal to x, and nJ is the number of particles
of spin J . The leading color-structure factor

Grn;1(1) = Nc Tr (T a1 · · · T an) (2.5)

is just Nc times the tree color factor, and the subleading color structures are given by

Grn;c(1) = Tr (T a1 · · ·T ac−1) Tr (T ac · · · T an) . (2.6)

Sn is the set of all permutations of n objects, and Sn;c is the subset leaving Grn;c invariant.
Once again it is convenient to use U(Nc) matrices; the extra U(1) decouples from all final
results [19]. (For internal particles in the fundamental (Nc + N̄c) representation, only the
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single-trace color structure (c = 1) would be present, and the corresponding color factor
would be smaller by a factor of Nc. In this case the U(1) gauge boson will not decouple from
the partial amplitude, so one should only sum over SU(Nc) indices when color-summing
the cross-section.) In each case the massless spin-J particle is taken to have two helicity
states whether it is a gauge boson, a Weyl fermion, or a complex scalar.

In the next-to-leading-order correction to the cross-section, summed over colors, the
leading contribution for large Nc comes from A

[J]
n;1; the remaining partial amplitudes A[J]

n;c

(c > 1) produce corrections which are down by a factor of 1/N2
c [19]. For amplitudes

whose external legs are purely in the adjoint representation, we showed in section 7 of
ref. [12] how to obtain A

[J]
n;c as a sum over permutations of the leading contribution A[J]

n;1.
Therefore, it is sufficient to calculate the A[J]

n;1. These color-ordered partial amplitudes
involve a limited class of loop integrals, those where the external legs (including attached
trees we amputate to leave off-shell legs) are ordered sequentially.

We also draw lessons from string-based techniques for computing one-loop amplitudes
in gauge theories [6,7], used previously to calculate all one-loop five-gluon helicity am-
plitudes [8]. The techniques, though independent of the conventional Feynman-diagram
expansion, can be understood using a reorganization of a conventional approach [20,21] uti-
lizing the background-field method [22] and a second-order formalism for internal fermions.
Such an approach has also proven useful for the computation of effective actions [23]. The
string-based techniques further reveal that gluon amplitudes are most naturally written
in a form [8,14] that reflects the simplicity of contributions from different supersymmetry
multiplets,

A
[0]
n;1 = cΓ

(
V snA

tree
n + iF sn

)
,

A
[1/2]
n;1 = −cΓ

(
(V fn + V sn )Atree

n + i(F fn + F sn)
)
,

A
[1]
n;1 = cΓ

(
(V gn + 4V fn + V sn )Atree

n + i(F gn + 4F fn + F sn)
)
,

(2.7)

where, with ε = (4−D)/2 the dimensional regularization parameter,

rΓ =
Γ(1 + ε)Γ2(1− ε)

Γ(1 − 2ε)
, cΓ =

rΓ
(4π)2−ε , (2.8)

and we have assumed use of a supersymmetry preserving regulator [24,6]. In equation (2.7)
the superscripts g, f and s reflect the supersymmetric decomposition, whereas the split
into V and F type pieces indicates the singularities as ε→ 0.

All singular pieces (poles in ε) are proportional to the tree amplitude, and hence
are contained in the Vn factors; the Fn terms, in contrast, are finite as ε → 0 and may
involve different spinor-product forms [1] than the tree. While Vn contains only momentum
invariants but no spinor products, the ratio of Fn to the tree amplitude will in general
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contain not just momentum invariants but spinor products as well. (The latter could be
replaced in such a phase-free ratio by combinations of momentum invariants and contracted
antisymmetric tensors such as ε(1, 2, 3, 4) ≡ 4iεµνρσk

µ
1 k

ν
2k

ρ
3k

σ
4 , but the latter combinations

cannot be eliminated from the Fn.) There is of course some freedom in shifting terms
between Vn and Fn.

The organization (2.7) in terms of g, f and s pieces is equivalent to calculating the
fermion and gluon loop contributions in terms of the scalar loop contributions plus the
contributions from supersymmetric multiplets. In an N = 4 super-Yang-Mills theory,
summing over the contributions from one gluon, four Weyl fermions and three complex (or
six real) scalars, all functions except V gn and F gn cancel from eq. (2.7) and the amplitudes
are

AN=4
n;1 ≡ A

[1]
n;1 + 4A[1/2]

n;1 + 3A[0]
n;1 = cΓ (V gn Atree

n + iF gn ). (2.9)

For an N = 1 chiral multiplet, containing one scalar and one Weyl fermion, only the
functions V fn and F fn survive,

AN=1 chiral
n;1 ≡ A

[1/2]
n;1 +A

[0]
n;1 = −cΓ

(
V fn A

tree
n + iF fn

)
. (2.10)

We can thus rewrite equation (2.7) in terms of the N = 4 supersymmetric amplitude,
the contribution of an N = 1 supersymmetric chiral multiplet, and the contribution of a
complex scalar,

A
[1/2]
n;1 = AN=1 chiral

n;1 −A[0]
n;1 ,

A
[1]
n;1 = AN=4

n;1 − 4AN=1 chiral
n;1 +A

[0]
n;1 .

(2.11)

These equations, which hold for supersymmetry preserving regulators [24,6], may be
converted to the ’t Hooft-Veltman (HV) [25] or conventional [26] schemes by accounting
for the [ε]-scalar differences between the schemes. In the ’t Hooft-Veltman or conventional
scheme we must remove [ε]-scalars propagating in the gluon loop. For the amplitudes with
external gluon helicities in four dimensions (±) we modify the above relation to

A
[1/2]
n;1

∣∣∣
HV, conventional

= AN=1 chiral
n;1 −A[0]

n;1 ,

A[1]
n;1

∣∣∣
HV, conventional

= AN=4
n;1 − 4AN=1 chiral

n;1 + (1− ε)A[0]
n;1 ,

(2.12)

where the quantities on the right-hand-side are ones computed in this paper. In the
conventional scheme there are additional amplitudes with external [ε]-helicities [27,6]. For
the case of n external gluons these are given by the corresponding tree amplitudes with
[ε]-helicities (which are proportional to ε) multiplied by the universal singularities [15,28]
contained in the Vn.
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Given the explicit results of section 5 for AN=1 chiral
n;1 in the maximally helicity-violating

(MHV) configurations, and of ref. [12] for the corresponding N = 4 amplitudes, only the
computation of the scalar contribution A

[0]
n;1 remains in order to obtain the full QCD

amplitude for this choice of helicities.

3. A Uniqueness Result

In this section, we shall prove that a certain class of amplitudes can be determined en-
tirely from the knowledge of their cuts; we call such amplitudes cut-constructible. The class
consists of color-ordered one-loop amplitudes in massless theories for which a diagrammatic
representation exists where all the loop-momentum integrals satisfy the following power-
counting criterion: the m-point integrals have at mostm−2 powers of the loop momentum
in the numerator of the integrand, and the two-point (bubble) integrals have at most one
power of the loop momentum. In other words, in the dimensionally-regulated integral

Im[P (pµ)] = (−1)m+1i (4π)2−ε
∫

d4−2εp

(2π)4−2ε

P (pµ)
p2 (p−K1)2 (p−K1 −K2)2 · · · (p+Km)2 ,

(3.1)
where Ki are (sums of) external momenta ki for the amplitude, the loop-momentum poly-
nomial P (pµ) should have degree at most m − 2, except for m = 2 when it should be at
most linear.

We refer to this result as a “uniqueness” result because the issue is whether the cuts
uniquely determine an amplitude. An equivalent question is whether one can rule out
terms in an amplitude that are pure “polynomials” — actually, rational functions — in
the kinematic invariants, which cannot be detected by any cut. By inspecting the integrals
appearing in cut-constructible amplitudes, we shall show that they have no such additive
polynomial ambiguity.

In general, the power counting associated with a given amplitude depends on the
specific gauge choice, regulator, and diagrammatic organization. In order to apply the
uniqueness result, we need only find one organization of the diagrams satisfying the power-
counting criterion. It is often convenient to use string-based diagrams or background-field-
gauge (superspace) diagrams [29], because they can satisfy the power-counting criterion
even when the corresponding diagrams in conventional Feynman gauge do not. Further-
more, amplitudes which satisfy the power-counting criterion with a supersymmetry pre-
serving regulator [24,6] will generally not do so in the ’t Hooft-Veltman [25] or conventional
[26] schemes.
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In a previous paper [12] we considered the case of N = 4 supersymmetric amplitudes,
where the loop integrals satisfy an even more stringent power-counting criterion (m-point
integrals have at most m − 4 powers of the loop-momentum). The proof of uniqueness
presented here is an extension of the proof given in ref. [12]. An outline of the proof follows.
We first note that any one-loopm-point tensor integral in 4−2ε dimensions with m ≥ 4 can
be reduced to a combination of scalar box integrals, tensor triangle integrals, and tensor
bubble integrals, using standard integral reduction formulae [30,31,32]. (A tensor integral
means any integral with non-constant P (pµ), while a scalar integral has P (pµ) = 1.) When
applied to integrals obeying the power-counting criterion, the reduction formulae maintain
the discrepancy of two units between the number of legs in the integral and the degree
of the loop-momentum polynomial, so that only scalar box integrals and linear triangle
and bubble integrals appear. (In the N = 4 case the triangle and bubble integrals were
absent.) The linear bubble integrals arise directly from internal propagator diagrams, in
amplitudes with external fermions. We define a set of integral functions Fn related to
these integrals, such that any cut-constructible n-point amplitude An can be written as a
linear combination of the elements of Fn,

An =
∑

i|Ii∈Fn

ciIi , (3.2)

with coefficients ci allowed to be arbitrary rational functions of the momentum invariants.
Finally, direct inspection of the integrals in Fn shows that any cut-free linear combination
of these integrals must vanish, and therefore the cuts contain sufficient information to
completely determine An.

We do not review in detail the general techniques [30,31,32] for reducing dimensionally-
regulated (m ≥ 4)-point tensor integrals to lower-point and lower-degree integrals, because
we need only two particular features. First, scalar (m > 4)-point integrals can be re-
duced to a linear combination of scalar box integrals [31,32], provided that at least four
of the external momentum vectors are kept in four dimensions.† Second, in the reduction

† There is a technical complication having to do with the number of independent kinematic variables
for n-point processes in four dimensions. Momentum conservation leaves n(n − 3)/2 kinematic in-

variants, e.g. the t
[r]
i defined below, but for n ≥ 6 only 3n − 10 of these are actually independent

in four dimensions, due to constraints imposed by the vanishing of various Gram determinants [33].
In explicit loop calculations we wish to restrict all external momenta to four dimensions, so that we
can use four-dimensional tree amplitudes to evaluate cuts of the loop amplitudes. However, then the
Gram-determinantal constraints would complicate our argument that the cut-constructible ampli-

tudes are uniquely determined, which implicitly assumes that the t
[r]
i are all independent. A solution

is to restrict exactly four momenta to D = 4 — this is the minimum number needed for the (m > 4)-
point reduction formulae to hold [31] — but leave the rest free in D = 4 − 2ε, thus removing the
Gram-determinantal constraints and validating the uniqueness argument.
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of (m > 4)-point tensor integrals, the degree of the loop-momentum polynomial always
shrinks along with the number of legs. The reduction procedure involves replacing a loop
momentum in the numerator by a linear combination of inverse propagators (p − pi)2,
which are cancelled against factors in the denominator to reduce the number of legs of
the integral, plus a constant (in the loop momentum), pµ =

∑
i α

µ
i (p − pi)2 + αµ0 . The

reduction thus maintains the criterion of having two fewer powers of loop momentum in
the integrand than the number of external legs. Reducing the (quadratic and linear) ten-
sor box integrals in the same way [30], one arrives finally at the aforementioned linear
combination of scalar box integrals, linear triangle integrals and linear bubble integrals.

As shown in appendix I, the linear bubble integrals can be reduced to the corre-
sponding scalar bubble integrals, and the linear triangle integrals can be reduced to scalar
triangle integrals plus scalar bubbles. The momenta flowing out of the legs of the integrals,
Ki are sums of external momenta ki of the original n-point integral. Assuming that the
amplitude is color-ordered (as is the case for all leading-color amplitudes), the momen-
tum invariants encountered as arguments of the integrals all involve sums of color-adjacent
momenta,

t
[r]
i ≡ (ki + ki+1 + · · ·+ ki+r−1)2, (3.3)

where momentum labels are taken mod n. In particular, the external legs of the box,
triangle, and bubble integrals may be off-shell, or massive (K2

i 6= 0). Thus the set Fn of
functions that can appear in color-ordered cut-constructible n-point amplitudes (n > 4) is

Fn ≡ {I4m
4:r,r′,r′′;i, I

3m
4:r,r′ ;i, I

2mh
4:r;i , I

2m e
4:r;i , I

1m
4:i , I

3m
3:r,r′;i, I

2m
3:r;i, I

1m
3:i , I2:r;i}. (3.4)

The elements of Fn are given in eqs. (I.16), (I.4), (I.5), (I.8) and (I.2) and are depicted in
fig. 1, fig. 2, and fig. 3. The indices labeling the ordered external momenta ki increase in
the clockwise direction in the figure. Note that these functions are not linearly independent
in general.
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Figure 3. The bubble integrals that may appear.
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Any cut-constructible amplitude An is a linear combination of functions in Fn, as in
equation (3.2), where the coefficients ci are rational functions of the kinematic invariants,
arising in part from the diagrammatic rules and in part from the integral reduction pro-
cedure. (‘Kinematic invariants’ here includes the spinor products [1] used to give compact
forms for helicity amplitudes.) The functions in Fn contain logarithms and dilogarithms
whose arguments depend only on the kinematic invariants t[r]i .

We wish to show that any such amplitude An is uniquely determined by its cuts. To
be more precise, given two linear combinations of integral functions possessing the same
cuts, ∑

i|Ii∈Fn

ciIi

∣∣∣∣
cuts

=
∑

i|Ii∈Fn

c′iIi

∣∣∣∣
cuts

, (3.5)

their difference must be a rational function of the momentum invariants,∑
i|Ii∈Fn

(ci − c′i) Ii = rational, (3.6)

and we wish to show that the rational function appearing on the right-hand side of (3.6)
must vanish.

A cursory examination of the set of functions shows why one might expect this to be
true. The cuts uniquely determine the coefficients of the logarithms and dilogarithms, and
the set of functions is dominated in content by these functions. At O(ε0), rational terms
only appear in a small number of places — in the bubbles and in the π2 terms in the boxes
— and they are always associated with logarithms and dilogarithms.

We shall prove the result by inspecting the different channels that can possess cuts,
working always at O(ε0), and demonstrating that the different functional dependence in
the different channels either uniquely singles out one of the functions, or else singles out a
set of functions lacking cut-free parts. We first illustrate the method using the four-point
case. In this case,

F4 = {I0m
4 , I1m

3:3 , I
1m
3:2 , I2:2;1, I2:2;4} , (3.7)

is the set of scalar integrals depicted in fig. 4. (Other scalar integral functions are equiva-
lent to these: I1m

3:1 = I1m
3:3 , etc.) As discussed in appendix I, the tensor integrals that appear

in an explicit evaluation of a cut-constructible four-point amplitude, such as triangle in-
tegrals with one power of loop momentum in the numerator of their integrands, can be
written as a linear combination of this set of integrals. Because we are only considering
color-ordered partial amplitudes, the legs of all diagrams follow the same ordering, say,
1, 2, 3, 4. For this simple case, we make the kinematic variable dependence explicit with
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the notation

I0m
4 (s, t) ≡ I0m

4 , I1m
3 (s) ≡ I1m

3:3 , I1m
3 (t) ≡ I1m

3:2 ,

I2(s) ≡ I2:2;1 , I2(t) ≡ I2:2;4 ,
(3.8)

where s = (k1 + k2)2 and t = (k2 + k3)2 are the usual Mandelstam variables.

(b)

(e)

(c)

(d)

I 4

1

2 3

(a)

0m

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Figure 4. The integral functions that may appear in a four-point calculation.

The five integral functions in F4 are given explicitly in equations (I.15), (I.4) and (I.2)
of appendix I. Each one contains at O(ε0) a logarithm or a product of logarithms unique to
that function, as shown in Table 1. Therefore the only way to satisfy eq. (3.6) is to choose
the coefficient of every integral to vanish, ci−c′i = 0. In other words, one cannot construct
a non-vanishing cut-free massless four-point integral, and hence amplitude, that satisfies
the power-counting criterion. This result applies, for example, to one-loop four-gluon
amplitudes in a supersymmetric gauge theory.

Integral Unique Function

a I0m
4 (s, t) ln(−s) ln(−t)

b I1m
3 (s) ln(−s)2

c I1m
3 (t) ln(−t)2

d I2(s) ln(−s)
e I2(t) ln(−t)

Table 1: The set of integral functions that may appear in a cut-constructible massless

four-point amplitude, together with the independent logarithms.

12



The proof for the n-point case is similar, although more involved. We will again
show, by inspecting the integral functions in Fn, that the only solutions to (3.6) have zero
right-hand side. (Note that, as in the four-point case, some of the integral functions have
multiple names, so we need not count these twice; I2m e

4:r;i = I2m e
4:n−r−2;i+r+1, while I2:r;i,

I3m
3:r,r′;i and I4m

4:r,r′ ,r′′;i respectively have two-, three- and four-fold naming degeneracies.)
We successively inspect the integrals in kinematic regimes where one of the kinematic
invariants, say s, is taken to be large, while the others remain fixed. In this regime
we isolate terms of the form ln(−s) ln(−s′). The region of large kinematic invariants is
useful because it simplifies the functional form of the integrals, particularly the three-mass
triangle and the four-mass box. For example,

Li2

(
1− ss′

tt′

)
→ − ln(−s) ln(−s′) + · · · (3.9)

where Li2 is the dilogarithm [34]. In these kinematic regimes the terms involving square-
root arguments also reduce to simple products of logarithms. In taking certain kinematic
invariants to be large, we do not take the limit of infinite s, but keep the full functional
form in the coefficients ci − c′i.

With successive judicious choices of s one can isolate a single coefficient at a time
from the sum, for certain of the functions in Fn; that is only a single integral contains the
chosen ln(−s) ln(−s′), after noting the vanishing of prior coefficients. The coefficient of the
isolated function must therefore be zero as well, in order to obtain a cut-free result (3.6).
We display in table 2 the order in which we examine the integrals for large t[r]i and the
product of logarithms thereby isolated.

Consider the first entry, the three-mass box I3m
4:r,r′;i. For a color-ordered amplitude

with the ordering of legs shown in fig. 1a we examine the regime where the kinematic
variable t[r]i is large. The combination ln(−t[r]i ) ln(−t[n−r−r

′−1]
i+r+r′ ) appears only in the single

integral function I3m
4:r,r′;i; in fact, these two kinematic variables appear together only in this

function. (For non-color ordered amplitudes more functions can contain this combination,
complicating the situation.) One then deduces that the coefficients of the three-mass boxes
in eq. (3.6) are zero. The ordering of the table is such that at each stage only a single
function contains the pairs s and s′ together. In checking the behavior for large kinematics
one merely checks that the coefficient of ln(−s) ln(−s′) is nonzero, thereby requiring the
corresponding difference of coefficients ci − c′i to be set to zero. We can then proceed
through the table, at each turn forcing additional differences of coefficients to vanish.

Upon reaching the end of the table, we are left with three kinds of integrals: one-
and two-mass triangle integrals, and bubble integrals. The former two contain no rational

13



pieces at all at O(ε0), but only logarithms squared; whatever linear combination makes
the logarithms vanish eliminates these integrals entirely. This leaves us only with bubble
integrals; while these do contain rational pieces at O(ε0), requiring the coefficient of each of
the single powers of logarithms of independent invariants to vanish eliminates the bubble
integrals, leaving us with the desired result, that the rational function on the right-hand
side of equation (3.6) indeed vanishes.

Integral Unique Function

a I3m
4:r,r′ ;i ln(−t[r]i ) ln(−t[n−r−r

′−1]
i+r+r′ )

b I2m e
4:r;i ln(−t[r]i ) ln(−t[n−r−2]

i+r+1 )

c I4m
4:r,r′ ,r′′;i ln(−t[r]i ) ln(−t[r

′′]
i+r+r′)

d I2m h
4:r;i ln(−t[r]i ) ln(−t[n−r−1]

i+r )

e I1m
4;i ln(−t[r]i ) ln(−t[r+1]

i )

f I3m
3:r,r′ ;i ln(−t[r]i ) ln(−t[r

′ ]
i+r)

Table 2: Following the ordering shown and taking large t
[r]
i makes the proof of unique-

ness of the cuts straightforward.

For integrals and thus amplitudes that fail to satisfy the power-counting criterion
given at the beginning of the section, for example m-point loop diagrams containing terms
with m powers of the loop momentum, the result should not be expected to hold, and in
fact can be shown explicitly to be violated. Here, after a Passarino-Veltman reduction, one
has additional functions beyond those mentioned previously, for example bubble integrals
with up to two powers of the loop momentum in the numerator of the integrand. Denote
the loop momentum by pµ; the bubble integrals with loop-momentum polynomial 1 and
pµpν , defined in equation (I.1), are respectively

I2[1](K) =
rΓ

ε(1 − 2ε)
(−K2)−ε ,

I2[pµpν ](K) =
rΓ(−K2)−ε

ε(1− 2ε)

[
KµKν

3

(
1 +

ε

6

)
− ηµνK2

12

(
1 +

2ε
3

)]
,

(3.10)

where Kµ is the momentum flowing out one side of the bubble. The linear combination

(KµKν

3
− ηµνK2

12

)
I2[1](K)− I2[pµpν ](K) = −rΓ

18
(KµKν − ηµνK2) (3.11)

provides a solution to eq. (3.6). The presence of such a combination within the amplitude
thus cannot be determined from the cuts. Such combinations of integrals do occur in
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QCD calculations. Simple examples are the four-gluon amplitudes [6] where all external
helicities are the same or where one leg is of opposite helicity. In these two cases the cuts all
vanish but the amplitudes do not; furthermore, they are not equal, showing that the cuts
in this case do not uniquely determine the amplitude. (The integrals in these amplitudes
do violate the required power-counting criterion.)

4. Supersymmetric Theories

In this section, we show that the power-counting criterion of section 3 is satisfied
by all color-ordered one-loop amplitudes in massless supersymmetric gauge theories with
no superpotential. Thus such amplitudes can be computed solely from the knowledge of
their cuts. Color-ordering is irrelevant to the power-counting, but it is required for the
uniqueness argument of section 3 to be valid. The leading-color contributions to a given
amplitude in SU(Nc) (super-) gauge theory are always color-ordered, and in many cases
the subleading-color contributions can be expressed as sums over permutations of color-
ordered objects [12,13,35]. While we expect that the result extends to the full amplitude, as
well as to amplitudes in all massless supersymmetric theories (i.e. including nonvanishing
terms in the superpotential), we shall not present an argument for such an extension here.

We shall use ordinary (as opposed to superspace) diagrams, and background-field
gauge. We always assume the use of a supersymmetric regulator [24,6]. Use of ordinary
diagrams reveals that the power-counting criterion does not always require supersymmetric
cancellations, and one can see how to apply it to certain nonsupersymmetric calculations
as well. (At the end of the section we sketch how a superspace argument would proceed.)
The presence of trees attached to the loop does not change the power-counting of the loop
integrand; hence we amputate external trees in favor of taking legs off-shell, that is we
restrict our attention to the computation of the one-loop effective action.

If all external legs are gluons, we can write a compact determinantal formula for the
color-ordered (and color-stripped) effective action (one should think of this object as the
generating functional for the amputated color-ordered diagrams),

ΓSUSY = ln det−1/2
[1] [D2ηαβ − g(Σµν)αβFµν ] + ln det [0][D2] +

1
2

ln det 1/2
[1/2][D

2 − g

2
σµνF

µν ]

+ nm

(
1
2

ln det 1/2
[1/2][D

2 − g

2
σµνF

µν ] + ln det−1
[0] [D2]

)
,

(4.1)
where det [J] is the one-loop determinant for a particle of spin J in the loop. This for-
mula assumes two-component fields, the fermions being taken to be Majorana to allow a
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definition of the determinant; D is the covariant derivative, nm is the number of N = 1
chiral matter multiplets, 1

2σµν (Σµν) are the spin- 1
2 (spin-1) Lorentz generators, and we

have used the fact that the contribution of a Weyl fermion in a non-chiral theory is half
that of a Dirac fermion. The fermion determinant is written in a second-order form [20],
making the similarity of the fermion and gluon loop contributions clear. Note that the
gluon determinant contains Lorentz indices and the fermion determinant spinor indices,
and the effective action implicitly includes traces over these indices.

We now extract the m-point contribution by differentiatingm times with respect to the
background field, thereby expanding the logarithms in equation (4.1). It is convenient to
think of performing this expansion in two stages: first, expanding with respect to the field
strength Fµν , and only then expanding with respect to the background field. Expanding
the determinants,

ln det−1/2
[1] [D2ηαβ − g(Σµν)αβFµν ] = −2 ln det [0][D2] + · · · ,
1
2

ln det 1/2
[1/2][D

2 − g

2
σµνF

µν ] = + ln det [0][D2] + · · · ,
(4.2)

in the first stage of the expansion it is clear that terms with no F s cancel within each
supermultiplet. Furthermore, terms with a lone F also vanish, because the trace (over
Lorentz indices) of the accompanying Lorentz generator (σ or Σ) vanishes. Thus each term
must contain at least two F s. Whereas the terms generated by expanding D2 (A · ∂, etc.)
may have up to one power of the loop momentum per background field, F does not contain
any powers of the loop momentum, but rather only powers of external momenta. Thus
each insertion of F reduces by one the number of powers of loop momenta in the numerator
of the loop integrand, from a maximum of m to a maximum of m− 2. We conclude that
the effective action for external gluons, and hence the amplitudes whose external legs
are all gluons, satisfies the desired power-counting criterion in a supersymmetric theory.
(For amplitudes containing only external gluons, formula (7.2) of ref. [12] ensures that the
entire amplitude — subleading as well as leading-color terms — may be determined in this
fashion.)

Next consider one-particle irreducible graphs with multiple pairs of external fermion
lines. For each pair of external fermions there is one fermion line running along the loop.
Using the standard first-order formalism for the fermions, the interaction vertex for the
fermion line with a gauge boson or a scalar does not contain the loop momentum `µ, but
the rationalized Dirac propagator (∼ /̀/`2) contributes one power of the loop momentum
to the numerator. Thus each fermion line running along the loop leads to a reduction
of the maximum degree of the loop-momentum polynomial by one. Graphs with two or
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more pairs of external fermions automatically satisfy the power-counting criterion, without
requiring any supersymmetric cancellation.

Graphs with only one pair of external fermion lines require us to find a reduction of
the degree of the loop-momentum polynomial by one more unit. If there is also (at least)
one external scalar line, this can be achieved within a single diagram. For example, if the
scalar couples directly to the fermion line running around the loop, then there is a factor
of the form

/̀(a+ bγ5)(/̀− /ks) = (a− bγ5)`2 + O(`) , (4.3)

from the Yukawa coupling and adjacent propagators. We can use the factor of `2 to cancel
one of the propagators in the denominator of the m-point integral, thus converting it to
an (m− 1)-point integral with a loop polynomial of maximum degree m− 3 = (m− 1)− 2.
(One power is lost due to the external fermion pair, and one due to the `2 cancellation.)
The power-counting criterion is then satisfied. If the scalar does not couple directly to the
fermion line, then in the leading loop-momentum terms it is still possible to find a factor
of `2 to cancel against the propagator, again establishing the criterion.

If there are no external scalars, but just two external fermions and m − 2 gluons,
then supersymmetric cancellations are required. For example in the pure super-Yang-
Mills case with only gluinos and gluons, the graphs that cancel are shown in fig. 5. Since
the maximum degree of the loop momentum polynomial is m− 1 for each graph, we only
need to show that they cancel to leading order in `. It is straightforward to show this by
repeated use of the identity

/̀γµ/̀ = 2`µ/̀− γµ`2. (4.4)

The second term in (4.4) can be ignored by the cancelled-propagator argument used above,
while the first term has converted a gluon emission off a fermion line into the form of a
gluon emission off a scalar line, or off a gluon line. (In background-field gauge, the latter
two vertices have the same form to leading order in `.) In this way the two graphs where
the fermion line runs around the loop two different ways can be made to look identical at
leading order, apart from an overall minus sign, so that the sum cancels. This argument
breaks down if there are no external gluons, i.e. just a fermion propagator bubble, because
there is no second diagram to cancel against. However such a linear bubble is permitted
by the uniqueness result.
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1 1 2

(a) (b)

2

Figure 5. Two graphs with external fermions between which cancellations occur

in satisfying the power-counting criterion.

Finally there are the one-particle irreducible graphs with no external fermions, but
including (two or more) external scalars. For a fermion line running all the way around
the loop, the power-counting criterion is satisfied (with one exception) by virtue of equa-
tion (4.3) applied twice, which reduces a degree-m m-point integral to a degree m − 4
(m − 2)-point integral. The exception is for exactly two adjacent external scalars; in this
case a supersymmetric cancellation occurs against corresponding graphs with gluons and
scalars in the loop. The graphs with gluons and scalars in the loop can also be shown to
satisfy the criterion without invoking supersymmetry (with the same exception); however,
here a few graphs with four-point vertices must be added to the “parent diagram” with
only three-point vertices.

Supersymmetric cancellations of the type described above should be manifest in su-
perspace. For n-gluon amplitudes in an N = 4 supersymmetric theory, where only a
vector superfield V circulates in the loop, a superspace argument is straightforward to
construct [29,12]. With chiral superfields, the chiral constraints lead to large numbers of
supercovariant derivatives Dα and Dα̇ in the supergraphs, which should be removed by
D-algebra, because they correspond to high-degree loop-momentum polynomials. In brief,
the commutator [D2,D

2
] ∝ ∂2 can be used to cancel a propagator just as in the ordinary

diagram analysis performed above. Combining this fact with D-integration-by-parts, in
order to remove D’s on the loop in favor of D’s on external legs, one can drastically reduce
the degree of the loop-momentum polynomials, and it should be possible to verify the
power-counting criterion in this way too.

In conclusion we have shown that in a supersymmetric theory the “cut-constructible”
conditions may be met. We have avoided the use of elegant superspace arguments in order
to illustrate how components of non-supersymmetric amplitudes can satisfy the conditions
also.
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5. All-Multiplicity N = 1 Supersymmetric MHV Amplitudes

In this section we apply the unitarity result of the previous section to obtain explicit
formulas for “maximally helicity-violating” (MHV) gluon amplitudes in an N = 1 super-
symmetric gauge theory. Recall that, in the convention where all momenta are taken as
outgoing, supersymmetric all-gluon amplitudes where all the gluons, or all but one, have
identical helicities, vanish on account of a supersymmetry Ward identity [36],

ASUSY
n (1±, 2+, . . . , n+) = 0 . (5.1)

The MHV amplitudes — with two opposite-helicity gluons — are thus the simplest non-
vanishing amplitudes we can consider. We shall denote these MHV n-gluon amplitudes
by

Aij(1, 2, . . . , n) ≡ An;1(1+, . . . , i−, . . . , j−, . . . , n+) . (5.2)

The corresponding amplitudes with predominantly negative helicities may of course be
obtained by complex conjugation.

In previous work [12], we computed the amplitudes with this helicity configuration in
an N = 4 supersymmetric theory. In this section, we present the result for the N = 1
supersymmetric chiral matter multiplet contribution to the n-gluon MHV amplitudes.
The contribution to an n-gluon amplitude from any supersymmetric multiplet is a linear
combination of the N = 4 amplitude and N = 1 chiral multiplet contributions. For
example, using eq. (2.11), the amplitude in a pure N = 1 supersymmetric nonabelian
gauge theory (a theory with just the vector supermultiplet, containing a gluon and a
gluino) is given by the linear combination

AN=1 vector
n;1 (1, 2, . . . , n) = AN=4

n;1 (1, 2, . . . , n)− 3AN=1 chiral
n;1 (1, 2, . . . , n). (5.3)

As discussed in section 2, the contribution of an N = 1 supersymmetric chiral multiplet
contribution is also one of the three components of a QCD n-gluon amplitude. To ob-
tain the gluon scattering amplitude in QCD we need one further contribution, essentially
the contribution of an internal scalar loop; this remaining component contains rational
functions of the invariants that cannot be fixed by the cut techniques discussed in this
paper.

Consider the cut in the channel t[m2−m1+1]
m1 ≡ (km1 + km1+1 + · · ·+ km2−1 + km2)2 for

the loop amplitude AN=1 chiral
n;1 (1, 2, . . . , n), depicted in fig. 6 and given by [37]

i

∫
dDLIPS(−`1, `2) Atree(−`1,m1, . . . ,m2, `2) Atree(−`2,m2 + 1, . . . ,m1 − 1, `1) ,

(5.4)
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where the integration is over D-dimensional Lorentz-invariant phase-space. The interme-
diate states with momenta `1 and `2 are fermions or scalars, the remaining external states
are gluons. The overall sign is unimportant, since it is a simple matter to fix the overall
sign in final expressions from the known universal ultraviolet and infrared singularities
[28]. Instead of evaluating the phase-space integrals we evaluate the off-shell integral∫

dD`1
(2π)D

Atree(−`1,m1, . . . ,m2, `2)
1
`22

Atree(−`2,m2 + 1, . . . ,m1 − 1, `1)
1
`21

∣∣∣∣
cut

. (5.5)

whose cut in this channel is (5.4). This replacement is valid only in this channel. In
evaluating this off-shell integral, we may substitute `21 = `22 = 0 in the numerator; terms
with `21 or `22 in the numerator do not produce a cut in this channel because the `21 or `22
cancels a cut propagator. We emphasize that the cuts are evaluated not for a lone diagram
at a time, but for the whole amplitude.

+ −

+ −

1m+ 

m2
+ 

2

1m

+/− −/+

−/++/− 

l1

l2

m2
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1m+ 

m2
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1m

l1

l2

−j

j −

+ +1)m

+ −1)

)
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)
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+1)

+ −1)

−i
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Figure 6. The cuts needed to obtain the MHV amplitudes.

In quoting final results for the amplitudes we do so in the dimensional reduction [24]
or ‘four-dimensional helicity’ [6] schemes (which for practical purposes are equivalent at
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one-loop). In these schemes, after using Passarino-Veltman reduction [30], the coefficients
of all integral functions do not depend on ε since all tensor and spinor manipulations
are performed in four dimensions. In reconstructing the full amplitudes from cuts we
therefore take the coefficients to be free of ε, and automatically obtain results in this
scheme. This scheme choice has the additional advantage of preserving supersymmetry,
which is necessary for the power-counting criterion to be satisfied. At the end of the
calculation, one can convert to more conventional schemes by accounting for the [ε]-scalars
as discussed near eq. (2.12).

There is one subtlety we must address. We perform the cut integration in 4 − 2ε
dimensions, yet the tree amplitudes on either side are evaluated in four dimensions. Since
the calculation contains divergences, one might worry that this O(ε) discrepancy in the
integrand might lead to errors in the final result. In fact, this is not the case, and in
performing the cut calculations through O(ε0) there is no need to track which momenta in
the numerator are four-dimensional and which are (4− 2ε)-dimensional. (Momenta in the
denominator must of course be (4− 2ε)-dimensional to regulate singularities.) Ultraviolet
and non-overlapping infrared singularities lead only to single poles in ε; in this case an O(ε)
error in the numerator of eq. (5.5) could only change the final result by a ‘polynomial’
at O(ε0). Such singularities thus do not affect the cuts. The case of overlapping soft
and collinear singularities is a bit more subtle, since here there is a double pole in ε,
and correspondingly there are ln(s)/ε-type terms. One might worry that these can ‘feed
down’ and affect the O(ε0) cuts. To see that this is not the case, one may employ the
same prescription for handling dimensional regularization with spinor helicity advocated
by Mahlon [38,4]. This prescription separates the integration in (5.5) as follows,∫

d4−2ε`

(2π)4−2ε
= − ε(4π)ε

Γ(1− ε)

∫
d4`

(2π)4

∫ ∞
0

d`2ε(`
2
ε)
−1−ε . (5.6)

A discrepancy caused by cavalier handling of `ε contributions leads to a discrepancy con-
taining an explicit `ε in the numerator. A lone power of `ε will lead to a vanishing inte-
gral, because all external momenta with which `ε can be contracted may be taken to be
four-dimensional. Integrals with two or more extra powers of `ε in the numerator have
only ultraviolet, not infrared, singularities (and can be interpreted as integrals in D > 4
[39]). Thus, the ‘error’ induced by incorrect `ε terms in the numerator is of the form
ε × (1/ε)× polynomial, which we can again neglect since we are extracting the cuts alone
to order ε0. (Errors in the spinor helicity manipulations due to a mismatch of dimensions
do introduce errors in the finite cut-free polynomials; explicit examples of this phenomenon
have been provided by Mahlon [4,5].)
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To evaluate the integral (5.5) we need explicit formulae for the tree amplitudes, prefer-
ably in a compact form. To obtain the N = 1 chiral multiplet contributions we need
formulae for tree amplitudes with two external fermions or scalars and up to n−2 external
gluons. For the helicity configuration (5.2) the necessary tree-level results exist. There are
two cases to consider, as shown in fig. 6. In the first case, the two negative helicities are on
the same side of the cut. Here the cut vanishes since there is no assignment of helicity for
the intermediate scalars or fermions where the tree on the right-side does not vanish. Tree
amplitudes with all positive-helicity gluons and two external fermions or scalars vanish by
helicity conservation if the two (outgoing) fermions or scalars have the same helicity, and
vanish by a supersymmetry Ward identity [36] if they have opposite helicity. (For complex
scalars the two ‘helicities’ mean particles and antiparticles respectively.) The second case,
where the two external negative helicities are on opposite sides of the cut, has two possible
intermediate helicity configurations as shown in fig. 6b. The tree amplitudes on either side
of the cut are the MHV amplitudes with two external fermions (Λ) or scalars (φ). These
can be obtained using the supersymmetry Ward identities [36]

Atree(Λ−1 , g
+
2 , . . . , g

−
j , . . . ,Λ

+
n ) =

〈j n〉
〈j 1〉 A

tree(g−1 , g
+
2 , . . . , g

−
j , . . . , g

+
n ),

Atree(φ−1 , g
+
2 , . . . , g

−
j , . . . , φ

+
n ) =

〈j n〉2

〈j 1〉2
Atree(g−1 , g

+
2 , . . . , g

−
j , . . . , g

+
n ),

(5.7)

where ‘. . .’ denotes positive-helicity gluons and the Parke-Taylor n-gluon MHV tree am-
plitudes [9,40] are

Atree
ij (1, 2, . . . , n) = i

〈i j〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 .
(5.8)

The result (5.8) is written in terms of spinor inner-products, 〈j l〉 = 〈j−|l+〉 = ū−(kj)u+(kl)
and [j l] = 〈j+|l−〉 = ū+(kj)u−(kl), where u±(k) is a massless Weyl spinor with momentum
k and chirality± [1,41]. We thus have explicit formulae for all the required tree amplitudes.

The evaluation of the cuts is similar to (although somewhat more complicated than)
the evaluation of the cuts for the N = 4 MHV amplitudes presented in ref. [12]. In
performing the calculation there is no need to track the overall sign, which is fixed by the
pole terms in ε. The off-shell integral reduces to a sum of scalar box and triangle integrals;
we shall not present the details of this reduction.

Let us consider first the special case where the two negative-helicity gluons are ad-
jacent. In this case the calculation leads to a result which does not contain box integral
functions and is particularly simple. For convenience we take the negative-helicity legs to
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be the first and second (i = 1 and j = 2), obtaining for the unrenormalized amplitude [13],

AN=1 chiral
1 2 (1, . . . , n) =

cΓ(µ2)εAtree
1 2 (1, . . . , n)
2

{(
K0(t[2]

2 ) + K0(t[2]
n )
)

− 1

t
[2]
1

n−1∑
m=4

L0

(
−t[m−2]

2 /(−t[m−1]
2 )

)
t
[m−1]
2

(
tr+[/k1/k2/km/qm,1]− tr+[/k1/k2/qm,1/km]

)}
(5.9)

where K0 and L0 are integral functions defined in appendix II,

qm,l =



l∑
i=m

ki, m ≤ l,

n∑
i=m

ki +
l∑
i=1

ki, m > l,

(5.10)

µ is the renormalization scale,

tr+[ρ] ≡ 1
2

tr[(1 + γ5)ρ] ; (5.11)

and cΓ was defined in equation (2.8).
The expression (5.9) has the correct cuts in all channels, as does the more general

expression (5.12) we present below. Since it is written in terms of the integral functions,
K0 and L0, the unitarity result of section 3 implies it is the complete answer including
all rational, cut-free parts. Note that the L0’s appearing in equation (5.9) do not form
an independent set, and therefore the result may be expressed in a number of seemingly
inequivalent ways. We have chosen the form in equation (5.9) in order to make the reflection
(anti-)symmetry of this color-ordered amplitude for n even (odd) manifest. We give a
schematic representation of this amplitude in fig. 7, where the coefficients cm are the ones
appearing in eq. (5.9). (As discussed in appendix II the function L0 can be regarded as
arising from a two mass triangle integral.)

L0

)

m

1 2

A
tree

2

�X
m

c
m

Figure 7. Schematic representation of the N = 1 chiral amplitude with legs 1 and

2 negative helicities and the rest positive helicities. For the boundary terms (m = 3, n),
L0 reduces to K0.
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The general case in which the two negative-helicity legs need not be adjacent yields a
more complicated expression. Choose the first leg to be a negative-helicity leg (i = 1) and
label the second negative-helicity leg by j; the color-ordered amplitude is then

AN=1 chiral
1j (1, . . . , n) =

cΓ(µ2)εAtree
1j (1, . . . , n)
2

×
{ j−1∑
m1=2

n∑
m2=j+1

bjm1,m2
M0

(
t
[m2−m1]
m1+1 , t[m2−m1]

m1
; t[m2−m1−1]
m1+1 , t

[n+m1−m2−1]
m2+1

)

+
∑

2≤m<j

∑
a∈Ĉm

cjm,a
L0((−t[a−m]

m+1 )/(−t[a−m+1]
m ))

t
[a−m+1]
m

+
∑

j<m≤n

∑
a∈Cm

cjm,a
L0((−t[m−a]

a+1 )/(−t[m−a−1]
a+1 ))

t
[m−a−1]
a+1

+
cj2,n

t
[2]
1

K0(t[2]
1 ) +

cjn,1

t
[2]
n

K0(t[2]
n ) +

cjj+1,j−1

t
[2]
j

K0(t[2]
j ) +

cjj−1,j

t
[2]
j−1

K0(t[2]
j−1)

}
(5.12)

where the various integral functions are defined in appendix II and

bjm1,m2
= −2

tr+[/k1/kj/km1/km2 ] tr+[/k1/kj/km2/km1 ]
[(k1 + kj)2]2 [(km1 + km2 )2]2

= 2
〈1m1〉 〈1m2〉 〈j m1〉 〈j m2〉

〈1 j〉2〈m1m2〉2
,

(5.13)

cjm,a =
(tr+[/k1/kj/km/qm,a]− tr+[/k1/kj/qm,a/km])

[(k1 + kj)2]2

(
tr+[/km/ka+1/kj/k1]

(km + ka+1)2
− tr+[/km/ka/kj/k1]

(km + ka)2

)
,

=
(tr+[/k1/kj/km/qm,a]− tr+[/k1/kj/qm,a/km])

[(k1 + kj)2]2
〈m 1〉 [1 j] 〈j m〉 Sm(a, a + 1) ,

(5.14)

Sk(i, j) =
〈i j〉

〈i k〉 〈k j〉 , (5.15)

Cm =


{1, 2, . . . , j − 2}, m = j + 1,

{1, 2, . . . , j − 1}, j + 1 < m < n,

{2, . . . , j − 1}, m = n,

Ĉm =


{j, j + 1, . . . , n− 1}, m = 2,

{j, j + 1, . . . , n}, 2 < m < j − 1,

{j + 1, j + 2, . . . , n}, m = j − 1.
(5.16)

The reader may verify that equation (5.12) reduces to equation (5.9) for j = 2. These
equations agree for n = 5 with previously published results [8]; note that in equations (5.9)
and (5.12), we have effectively combined Vn and Fn/Atree

n .
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We may observe that
cj2,n

t
[2]
1

+
cjn,1

t
[2]
n

= 1 ,

cjj+1,j−1

t[2]
j

+
cjj−1,j

t[2]
j−1

= 1 ,

(5.17)

and that as a result, equation (5.12) has the correct 1/ε singularity since the pole terms,
contained in the K0 functions, are

cΓ
Atree

1j (1, . . . , n)
2

(
cj2,n

t[2]
1

+
cjn,1

t[2]
n

+
cjj+1,j−1

t[2]
j

+
cjj−1,j

t[2]
j−1

)
1
ε

= cΓ
1
ε
Atree
ij (1, . . . , n) .

(5.18)

The amplitude may be described in terms of a set of (D = 6) scalar two-mass box integrals
and linear two mass triangle integrals (plus the boundary terms of single mass integrals)
shown schematically in fig. 8. In appendix III, we check the collinear limits of these
expressions (indeed, equation (5.9) was first constructed from a knowledge of these limits).
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Figure 8. Schematic representation of the general N = 1 chiral loop amplitude

with two negative helicity external legs.

6. N = 4 Supersymmetric Non-MHV Six-Gluon Amplitudes

We calculated theN = 4 supersymmetric MHV one-loop n-gluon amplitudesAN=4
jk (1, . . . , n)

in a previous paper [12]. They are proportional to the tree amplitude,

AN=4
jk (1, . . . , n) = cΓ ×Atree

jk (1, . . . , n)× V gn (t[r]i ) , (6.1)
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where the “universal”, cyclically symmetric function V gn is independent of the locations j, k
of the negative helicities, and contains no spinor inner products, but only the momentum
invariants t[r]i . (For the N = 4 four-point amplitude this simple structure was first observed
by Green, Schwarz and Brink, who obtained the amplitude as the low-energy limit of a
superstring amplitude [42].) One might wonder whether the non-MHV N = 4 supersym-
metric amplitudes also have this structure. Non-MHV helicity configurations first appear
in six-point amplitudes, for which there are three distinct configurations, (+ + + − −−),
(+ + − + −−), and (+− + − +−). In this section we calculate these three N = 4 super-
symmetric six-gluon amplitudes from their unitarity cuts. We will find that the structure
of non-MHV amplitudes is more elaborate than that in eq. (6.1).

From our previous work [12] we know that N = 4 amplitudes can be expressed as
linear combinations of scalar box integrals only. It will turn out that the coefficient of each
box integral in each of the three non-MHV helicity configurations can be obtained (using
various symmetries) from the cut in the t123 channel [tijl = (ki + kj + kl)

2] of the first
configuration, AN=4

6;1 (1+, 2+, 3+, 4−, 5−, 6−). We thus begin by evaluating this cut.

6.1 The t123 cut of AN=4
6;1 (1+, 2+, 3+, 4−, 5−, 6−)

Using the supersymmetry Ward identities at tree-level, it is easy to see that only the
gluon loop contributes to this cut, and in fact the cut is given by a product of two five-
point, pure-glue, MHV tree amplitudes. However, unlike the cuts in MHV loop amplitudes
evaluated in ref. [12] and in section 5, in this case one of the MHV amplitudes is complex
conjugated, since it is for the helicity configuration (+ + − −−) instead of (−− + + +).
Thus the t123 cut is given by the cut hexagon integral

C123 ≡ i

∫
dDLIPS(−`1, `2) Atree

5 ((−`1)−, 1+, 2+, 3+, `−2 ) Atree
5 ((−`2)+, 4−, 5−, 6−, `+1 )

= − i

〈1 2〉 〈2 3〉 [4 5] [5 6]

∫
dDLIPS(−`1, `2)

〈`1 `2〉3[`1 `2]3

〈`1 1〉 〈3 `2〉 [`2 4] [6 `1]

= − i(t123)3

〈1 2〉 〈2 3〉 [4 5] [5 6]

∫
dDLIPS(−`1, `2)

[3 `2] 〈`2 4〉 [1 `1] 〈`1 6〉
(`1 − k1)2(`2 + k3)2(`2 − k4)2(`1 + k6)2

,

(6.2)
using 〈`1 `2〉 [`1 `2] = (`1 − `2)2 = t123. (We suppress an overall factor of µ2ε.)

There are several ways to reduce this cut hexagon integral to a linear combination of
cut scalar box integrals. We choose to Feynman parametrize the integral, letting

`1 = q + a2k1 + a3(k1 + k2) + a4(k1 + k2 + k3)− a5(k5 + k6)− a6k6 ,

`2 = `1 − k1 − k2 − k3 ,
(6.3)
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with
∑6
i=1 ai = 1. The numerator polynomial in eq. (6.2) becomes, after a little spinor

simplification,

[3 `2] 〈`2 4〉 [1 `1] 〈`1 6〉
→ 〈3+|γµ|4+〉〈1+|γν|6+〉 qµqν

+ linear term in qµ

+
(

[3 5] 〈5 4〉 a6 + ([3 5] 〈5 4〉+ [3 6] 〈6 4〉)a1 − [3 2] 〈2 4〉 a2

)
×
(

[1 2] 〈2 6〉a3 + ([1 2] 〈2 6〉+ [1 3] 〈3 6〉)a4 − [1 5] 〈5 6〉 a5

)
.

(6.4)

Now we can employ formula (VII.8) of ref. [39], for n = 6, to express the two-parameter
(“reduced”) hexagon integrals arising from the third term in (6.4), Î6[aiaj ], in terms of
scalar hexagon and pentagon integrals in 6− 2ε dimensions, ÎD=6−2ε

6 and ÎD=6−2ε (`)
5 , and

the desired scalar box integrals, Î(`,p)
4 ,

Î6[aiaj ] =
ηij∆̂6 + 2εγiγj

2N6∆̂6

ÎD=6−2ε
6

+
2ε

4N2
6

6∑
`=1

[
ηi`γj + ηj`γi −

ηi`ηj`γ`
η``

− γiγjγ`

∆̂6

]
Î
D=6−2ε (`)
5

+
1

4N2
6

6∑
`,p=1

[
ηipηj`η`` − ηi`ηj`η`p

η``

]
Î

(`,p)
4 .

(6.5)

The definitions of the reduced integrals În and the kinematical quantities ∆̂6, γi, ηij and
N6 appearing in eq. (6.5) are given in ref. [39]. The index ` on the “daughter” integral
Î
D=6−2ε (`)
5 means that the propagator between external legs (`− 1) (mod 6) and ` should

be omitted; that propagator and the one between (p−1) (mod 6) and p should be omitted
for Î(`,p)

4 . (In this formula, four-dimensional external kinematics should be taken only at
the very end of the calculation, or one encounters unphysical singularities; this point is
discussed in ref. [39].)

The first two terms on the right-hand side of eq. (6.5) can be dropped: the first term
cancels (to O(ε)) against a (6−2ε)-dimensional hexagon integral from integrating the first
term in (6.4); the second term is O(ε). Combining eqs. (6.4) and (6.5), the cut hexagon
integral is expressed in terms of scalar box integrals I(`,p)

4 as,

C123 =
i

(4π)2−ε
Im

t123 > 0

[
c(2,3) I

(2,3)
4 + c(5,6) I

(5,6)
4

+ c(2,5) I
(2,5)
4 + c(3,6) I

(3,6)
4 + c(2,6) I

(2,6)
4 + c(3,5) I

(3,5)
4

]
,

(6.6)

27



where the box coefficients are

c(`,p) =
(t123)3

〈1 2〉 〈2 3〉 [4 5] [5 6]
×

6∑
i,j=1

vi (M(`,p))ij wj (6.7)

with
(M(`,p))ij ≡

α`αp
4N2

6

[
ηipηj`η`` − ηi`ηj`η`p

η``
+ (`↔ p)

]
(6.8)

and
vi ≡

(
([3 5] 〈5 4〉+ [3 6] 〈6 4〉)α1,− [3 2] 〈2 4〉α2, 0, 0, 0, [3 5] 〈5 4〉α6

)
,

wj ≡
(
0, 0, [1 2] 〈2 6〉α3, ([1 2] 〈2 6〉+ [1 3] 〈3 6〉)α4,− [1 5] 〈5 6〉α5, 0

)
.

(6.9)

(The kinematical quantities αi are also defined in ref. [39].) Of the 6·5/2 = 15 box integrals
I

(`,p)
4 , only the six appearing in eq. (6.6) have cuts in the t123 channel.

It is convenient to rewrite eq. (6.6) in terms of the scalar box F functions defined in
equation (I.19) of Appendix I,

C123 = −2 i cΓ
Im

t123 > 0

[
c(2,3)

s45s56
F 1m

6:1 +
c(5,6)

s12s23
F 1m

6:4

+
c(2,5)

t612t123 − s12s45
F 2m e

6:2;1 +
c(3,6)

t123t234 − s23s56
F 2m e

6:2;2

+
c(2,6)

s34t123
F 2mh

6:2;5 +
c(3,5)

s61t123
F 2m h

6:2;2

]
.

(6.10)

Upon simplifying the rather messy form (6.7) for the quantities c(`,p), we find that the
coefficients of the “easy-two-mass” box functions F 2m e

6:2;1 , F 2m e
6:2;2 vanish, and the others are

all equal:

C123 = cΓB0 ×
Im

t123 > 0
[
F 1m

6:1 + F 1m
6:4 + F 2mh

6:2;2 + F 2mh
6:2;5

]
. (6.11)

where the coefficient B0 is defined as

B0 ≡ −2 i
c(2,3)

s45s56
, (6.12)

and is given by

B0 = i
([1 2] 〈2 4〉+ [1 3] 〈3 4〉) ([3 1] 〈1 6〉+ [3 2] 〈2 6〉) (t123)3

〈1 2〉 〈2 3〉 [4 5] [5 6] (t123t345 − s12s45) (t123t234 − s23s56)
. (6.13)

In deriving this expression, we used the vanishing of the Gram determinant for any sub-
system of five vectors, after integral reductions.
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Recall the form of the (+ + + − −−) tree amplitude from refs. [18,41],

Atree
6 (1+, 2+, 3+, 4−, 5−, 6−) = i

[
β2

t234s23s34s56s61
+

γ2

t345s34s45s61s12
+

βγt123

s12s23s34s45s56s61

]
,

β ≡ [2 3] 〈5 6〉 ([1 2] 〈2 4〉+ [1 3] 〈3 4〉) ,
γ ≡ [1 2] 〈4 5〉 ([3 1] 〈1 6〉+ [3 2] 〈2 6〉) .

(6.14)
The coefficient B0 is related to the third term in this expression: their ratio is a real
quantity, and can be written without complex spinor products, as a simple rational function
in si,i+1 and ti,i+1,i+2.

Having simplified the coefficient B0, we turn to the linear combination of box functions
appearing in eq. (6.11). Denoting this combination by W (1)

6 , and its cyclic permutations
by W (i)

6 , we have explicitly,

W
(i)
6 ≡ F 1m

6:i + F 1m
6:i+3 + F 2mh

6:2;i+1 + F 2mh
6:2;i+4

= − 1
2ε2

6∑
j=1

(
µ2

−sj,j+1

)ε
− ln

(
−ti,i+1,i+2

−si,i+1

)
ln
(
−ti,i+1,i+2

−si+1,i+2

)
− ln

(
−ti,i+1,i+2

−si+3,i+4

)
ln
(
−ti,i+1,i+2

−si+4,i+5

)
+ ln

(
−ti,i+1,i+2

−si+2,i+3

)
ln
(
−ti,i+1,i+2

−si+5,i

)
+

1
2

ln
(
−si,i+1

−si+3,i+4

)
ln
(
−si+1,i+2

−si+4,i+5

)
+

1
2

ln
(
−si−1,i

−si,i+1

)
ln
(
−si+1,i+2

−si+2,i+3

)
+

1
2

ln
(
−si+2,i+3

−si+3,i+4

)
ln
(
−si+4,i+5

−si+5,i

)
+

π2

3
.

(6.15)
It is amusing that all dilogarithms cancel out of W (i)

6 . Also note that W (i)
6 is invariant

under a cyclic permutation by three units; hence there are only three independent objects,
W

(1)
6 , W (2)

6 , and W (3)
6 .

6.2 Remaining ti,i+1,i+2 cuts of AN=4
6;1 (1+, 2+, 3+, 4−, 5−, 6−), and the full amplitude

Fortunately, no other integrals have to be performed explicitly to get the other two
(++ +−−−) ti,i+1,i+2 cuts, nor for the ti,i+1,i+2 cuts of the other two non-MHV six-gluon
amplitudes. They can all be related to the cut C123 defined in equation (6.2), and thereby
to B0 given in equation (6.13).

First consider the t234 cut of AN=4
6;1 (1+, 2+, 3+, 4−, 5−, 6−). There are two contri-

butions to this cut, one where the intermediate helicities are the same, so only gluons
contribute, and one where the helicities of the intermediate states are opposite, so one
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sums over the entire N = 4 multiplet. The first contribution is given by

C
(a)
234 ≡ i

∫
dDLIPS(−`1, `2) Atree

5 ((−`1)−, 2+, 3+, 4−, `−2 ) Atree
5 ((−`2)+, 5−, 6−, 1+, `+1 )

= − i([2 3] 〈5 6〉)4

t234 [2 3] [3 4] 〈5 6〉 〈6 1〉

∫
dDLIPS(−`1, `2)

1
[`1 2] [4 `2] 〈`2 5〉 〈1 `1〉

=
(

[2 3] 〈5 6〉
t234

)4

× [C†123]|j→j+1 ,

(6.16)
where † means complex conjugating spinor products, 〈i j〉 ↔ [j i] (without complex conju-

gating factors of i), and where the subscript j → j+1 means applying a cyclic permutation
of the six momenta ki, {1, 2, 3, 4, 5, 6} → {2, 3, 4, 5, 6, 1}.

The second contribution is given in terms of the contribution of scalar intermediate
states, multiplied by a correction factor ρ̃2 similar to that used in evaluating N = 4 MHV
cuts [12],

ρ̃2 ≡
(

[1 `1] 〈`1 4〉
[1 `2] 〈`2 4〉

)2

− 4
(

[1 `1] 〈`1 4〉
[1 `2] 〈`2 4〉

)
+ 6− 4

(
[1 `1] 〈`1 4〉
[1 `2] 〈`2 4〉

)−1

+
(

[1 `1] 〈`1 4〉
[1 `2] 〈`2 4〉

)−2

=

(
〈1+|(6`1− 6`2)|4+〉

)4
〈`1 4〉2〈`2 4〉2[`1 1]2[`2 1]2

=

(
〈1+|(6k2+ 6k3)|4+〉

)4
〈`1 4〉2〈`2 4〉2[`1 1]2[`2 1]2

,

(6.17)

C
(b)
234 ≡ i

∫
dDLIPS(−`1, `2) Atree

5 ((−`1), 2+, 3+, 4−, `2) Atree
5 ((−`2), 5−, 6−, 1+, `1)× ρ̃2

= −
i
(
〈1+|(6k2+ 6k3)|4+〉

)4
t234 〈2 3〉 〈3 4〉 [5 6] [6 1]

∫
dDLIPS(−`1, `2)

1
〈`1 2〉 〈4 `2〉 [`2 5] [1 `1]

=
(
〈1+|(6k2+ 6k3)|4+〉

t234

)4

× [C123]|j→j+1 ,

(6.18)
where the legs carrying momenta `1 and `2 are intermediate scalars.

Adding up these two contributions, and noticing that the remaining t345 cut is related
by a reflection symmetry, we can now write down the full amplitude:

AN=4
6;1 (1+, 2+, 3+, 4−, 5−, 6−) = cΓ

[
B1 W

(1)
6 +B2 W

(2)
6 +B3W

(3)
6

]
, (6.19)
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where

B1 = B0 ,

B2 =
(
〈1+|(6k2+ 6k3)|4+〉

t234

)4

B0|j→j+1 +
(

[2 3] 〈5 6〉
t234

)4

B†0|j→j+1 ,

B3 =
(
〈3+|(6k1+ 6k2)|6+〉

t345

)4

B0|j→j−1 +
(

[1 2] 〈4 5〉
t345

)4

B†0|j→j−1 .

(6.20)

There are several consistency checks one may apply to equation (6.19). The pole terms
in ε represent infrared divergences, which should have a universal form, proportional to
the corresponding tree amplitude [15,28],

AN=4
6;1 (1, 2, 3, 4, 5, 6)|singular = cΓ

− 1
ε2

6∑
j=1

(
µ2

−sj,j+1

)εAtree
6 (1, 2, 3, 4, 5, 6) . (6.21)

This behavior for the result (6.19) can be verified using the explicit form (6.15) for W (i)
6 ,

and the relation

B1 +B2 +B3 = 2Atree
6 (1+, 2+, 3+, 4−, 5−, 6−) , (6.22)

which we have verified numerically; this verifies the overall sign in eq. (6.19). In addition,
we have checked numerically that the result in eq. (6.19) is equal to that given by a direct
calculation using the string-based methods of ref. [6].

In appendix III, we verify that these amplitudes have the expected behavior in the
limit that two neighboring (in the sense of color-ordering) momenta become collinear,
thereby isolating a two-particle singular invariant (si,i+1 → 0). One might also wonder
how loop amplitudes factorize in multi-particle channels, i.e. as t[r]i → 0 for r > 2. It is
easy to see from the supersymmetry Ward identities that supersymmetric MHV amplitudes
cannot have multi-particle poles, so the first amplitudes for which this question arises are in
fact non-MHV supersymmetric amplitudes (and also the non-supersymmetric amplitudes
A

[0]
n;1(1−, 2+, . . . , n+) constructed by Mahlon [5], which we will not study here). In the

(+ + + − − −) amplitude, one expects and finds poles in the three-particle channels,
t234 → 0 and t345 → 0. However, naive factorization does not hold in these limits, due to
the presence in W

(i)
6 of logarithms of kinematic invariants which get caught “across” the

pole. For example, as t234 → 0, the invariants s12, s45, t123 and t345 each have at least
one argument on each side of the pole, i.e. at least one argument belonging to {k2, k3, k4}
and one to {k5, k6, k1}. This lack of naive factorization is present even at the level of
the universal singular terms which come from soft virtual gluon exchange. One might
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suspect that naive factorization holds for the N = 1 chiral contribution and for the scalar
contribution, since these contributions do not have virtual gluons. We have examined the
three-particle poles of the (+ + + − −−) N = 1 chiral contribution, calculated from its
cuts, and have found that a simple factorization does hold there.

6.3 The remaining N = 4 non-MHV amplitudes

The analysis for the remaining two N = 4 supersymmetric non-MHV six-gluon am-
plitudes is identical to that presented for (+ + + − −−), so we merely quote the results,
in terms of the function B0 given in eq. (6.13):

AN=4
6;1 (1+, 2+, 3−, 4+, 5−, 6−) = cΓ

[
D1 W

(1)
6 +D2 W

(2)
6 +D3 W

(3)
6

]
, (6.23)

where

D1 =
(
〈4+|(6k1+ 6k2)|3+〉

t123

)4

B0 +
(

[1 2] 〈5 6〉
t123

)4

B†0 ,

D2 =
(
〈1+|(6k2+ 6k4)|3+〉

t234

)4

B0|j→j+1 +
(

[2 4] 〈5 6〉
t234

)4

B†0|j→j+1 ,

D3 =
(
〈4+|(6k1+ 6k2)|6+〉

t345

)4

B0|j→j−1 +
(

[1 2] 〈3 5〉
t345

)4

B†0|j→j−1 ,

(6.24)

and

AN=4
6;1 (1+, 2−, 3+, 4−, 5+, 6−) = cΓ

[
G1 W

(1)
6 +G2W

(2)
6 +G3W

(3)
6

]
, (6.25)

where

G1 =
(
〈5+|(6k4+ 6k6)|2+〉

t123

)4

B0 +
(

[1 3] 〈4 6〉
t123

)4

B†0 ,

G2 =
(
〈3+|(6k2+ 6k4)|6+〉

t234

)4

B†0|j→j+1 +
(

[5 1] 〈2 4〉
t234

)4

B0|j→j+1 ,

G3 =
(
〈1+|(6k6+ 6k2)|4+〉

t345

)4

B†0|j→j−1 +
(

[3 5] 〈6 2〉
t345

)4

B0|j→j−1 .

(6.26)

We have checked (numerically) the relations required for the pole terms in ε to be
correctly given by (6.21):

D1 +D2 +D3 = 2Atree
6 (1+, 2+, 3−, 4+, 5−, 6−) ,

G1 +G2 +G3 = 2Atree
6 (1+, 2−, 3+, 4−, 5+, 6−) .

(6.27)

We have taken the tree amplitudes from refs. [18,41].
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7. Non-Supersymmetric Theories.

The cut uniqueness result may also be applied to non-supersymmetric amplitudes, al-
lowing one to trade harder calculations for easier ones. The supersymmetric decomposition
of the n-gluon amplitudes in eq. (2.11) provides one such example. Instead of comput-
ing QCD amplitudes with gluons and quarks in the loop we compute amplitudes with an
N = 4 multiplet, N = 1 chiral multiplet and scalar in the loop. The supersymmetric
amplitudes are cut-constructible, leaving the easier-to-compute scalar loop contribution to
be obtained by other means (see below).

One can apply the same technique to amplitudes with external fermions. Consider
the color-ordered partial amplitudes with two massless external quarks and n− 2 external
gluons. An example of a one-particle irreducible diagram contributing to such an ampli-
tude is depicted in fig. 9a. Such an m-point graph has a loop-momentum polynomial of
maximum degree m− 1, as discussed in section 4. If one adds to this diagram an identical
diagram but with the gluon replaced by a scalar (depicted in fig.9b), suitably adjusts the
scalar-fermion Yukawa coupling, and works in background-field Feynman gauge [22], then
the leading loop-momentum terms cancel. (From the γ-matrix algebra the diagram with
a gluon in the loop has a minus sign relative to the case of a scalar in the loop.) Thus
the sum is cut-constructible, and so (after calculating the cuts for the sum) one can again
replace a more difficult calculation with a gluon in the loop by a simpler calculation with
a scalar in the loop.

(b)(a)

Figure 9. Diagrams with identical leading loop momentum behavior; the wavy

lines are gluons, the straight lines are fermions and the dashed lines are scalars.

Amplitudes with four or more external fermions can be treated similarly. Indeed,
from section 4 we know that the only diagrams requiring cancellation of the leading loop-
momentum behavior are those where fermions are “pinched off” onto external trees, such
that the one-particle irreducible part of the diagram has either zero or two external fermion
lines.
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Although the scalar loop contribution to n-gluon amplitudes is not cut-constructible
(since the m-point loop integrals contain m powers of loop momentum) we can still fix all
terms containing cuts. As an explicit example, by following the same procedure as for the
N = 1 chiral multiplet, we obtain the scalar loop contribution for two negative helicity
adjacent legs (i = 1 and j = 2),

A
[0]
1 2(1, . . . , n) =

1
3
AN=1 chiral

1 2 (1, . . . , n)

− cΓA
tree
1 2 (1, . . . , n)

3
1

(t[2]
1 )3

n−1∑
m=4

L2

(
−t[m−2]

2 /(−t[m−1]
2 )

)
(t[m−1]

2 )3

×
(

(tr+[/k1/k2/km/qm,1])2 tr+[/k1/k2/qm,1/km]− tr+[/k1/k2/km/qm,1] (tr+[/k1/k2/qm,1/km])2
)

+ polynomials.
(7.1)

Although the cut analysis is quite similar to the N = 1 chiral case, here we cannot conclude
that there are no missing polynomial (rational function) terms. Indeed, the known five-
gluon amplitude with a scalar in the loop [8] contains polynomials not reproduced by
this formula. Furthermore, if we ignore missing polynomials, this formula has incorrect
factorization properties; in particular, there should be poles in multi-particle channels
(t[r]i ∼ 0 for r ≥ 3), which are lacking from the non-polynomial terms in (7.1). The
appearance of multi-particle poles significantly complicates the structure of the polynomial
terms, but these pieces should still be amenable to recursive [4,5] or collinear bootstrap
[11,12] techniques.

8. Conclusions

In a previous paper we demonstrated that N = 4 super-Yang-Mills amplitudes are
constructible solely from their cuts and we explicitly computed n-point one-loop amplitudes
with maximal helicity violation. In this paper we extended the ‘cut-constructibility’ to
include all massless amplitudes which satisfy a power-counting criterion. In particular,
N = 1 supersymmetric gauge theory amplitudes satisfy this criterion, when using string-
based [6,7] or background field diagrams [22,20]. Once the power-counting criterion has
been checked, the one-loop amplitudes can be obtained directly from tree amplitudes using
the cuts.

It is convenient to calculate cuts in terms of the imaginary parts of one-loop integrals
that would have been encountered in a direct calculation. This makes it straightforward to
write down an analytic expression with the correct cuts in all channels, avoiding the need
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to perform dispersion integrals to reconstruct the full amplitude. Once this expression
is written in terms of the integral functions appearing in a direct calculation, it is fixed
uniquely so long as the power-counting criterion is satisfied.

Using this method, we calculated all maximally helicity-violating one-loop n-gluon
amplitudes in N = 1 super-QCD as well as the N = 4 six-gluon helicity amplitudes
for all helicity configurations that were not presented in ref. [12]. The N = 4 and N = 1
amplitudes form two of three components of a QCD n-gluon amplitude [8,14], with the third
component the scalar loop contribution. The scalar loop contributions contain polynomial
pieces which must be obtained by other means, such as string-based [7], collinear [11], or
recursive [4,5] techniques. The replacement of more difficult calculations with easier ones
can also be carried out for amplitudes with external fermions.

Gauge theory loop calculations are difficult to perform because of the algebraic com-
plexity which in most cases disappears near the end of a calculation, with relatively simple
final results. By fusing together tree amplitudes we are utilizing simplifications already
performed at tree level. When applicable, the technique presented here is remarkably sim-
ple relative to conventional techniques, as there is no explosion in the size of intermediate
expressions. We expect this method to have wide applications and to be useful in the
continuing effort to calculate the gauge theory loop amplitudes required by experiment.
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Appendix I. Integrals

In this appendix, we list the integral functions which occur, after performing a Passarino-
Veltman reduction, in explicit calculations of amplitudes satisfying the power-counting cri-
terion given in section 3, namely that all m-point integrals (m > 2) contain at most m− 2
powers of the loop momentum in the numerator of the integrand, and that all two-point in-
tegrals contain at most a single power of the loop momentum. (That is, loop integrals with
m or m− 1 powers of the loop momentum are excluded for m > 2, as is the tensor bubble
integral.) We consider only purely massless processes; thus while the integral functions
appearing may have off-shell external legs (which we shall refer to as massive legs, since
K2 6= 0), internal legs are strictly massless. As discussed in Section 2, a Passarino-Veltman
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reduction may be used to re-express any integral satisfying the power-counting criterion
(and thus any amplitude all of whose loop integrals satisfy the criterion), in terms of
(a) scalar boxes, triangles and bubbles; and,
(b) triangles with one or two external massive (off-shell) legs and with a single power

of loop momentum in the numerator, and bubbles with a single power of the loop
momentum in the numerator.

However, as we shall see the integrals in category (b) are all linear combinations (with
coefficients taken to be rational functions of the momentum invariants) of integrals in
category (a).

I.1 Bubble Integrals

The bubble integral is defined by

I2[P (pµ)] = −i (4π)2−ε
∫

d4−2εp

(2π)4−2ε

P (pµ)
p2(p −K)2

, (I.1)

where P (pµ) is a polynomial in the loop momentum pµ and K =
∑i+r−1
l=i kl is the total

momentum flowing out of one side, r being the number of external legs clustered on one
side of the bubble starting at leg i, as depicted in fig. 3. It is straightforward to evaluate
the integrals of this type belonging to the cut-constructible class (scalar and vector),

I2:r;i ≡ I2[1] =
rΓ

ε(1− 2ε)
(−t[r]i )−ε

= rΓ
(1
ε
− ln(−t[r]i ) + 2

)
+O(ε) ,

I2[pµ] =
Kµ

2
I2:r;i ,

(I.2)

where rΓ was defined in equation (2.8). Observe that the two terms not containing log-
arithms are linked to the logarithm before the expansion in ε; furthermore, one cannot
cancel the logarithms in any linear combination of the scalar and vector integrals without
also cancelling the cut-free parts. For the degenerate case with r = 1, the standard pre-
scription in dimensional regularization is to take I2 to vanish for massless external legs;
this is interpreted as a cancellation of ultra-violet and infrared divergences [43].

I.2 Triangle Integrals

The triangle integrals are defined by

I3[P (pµ)] = i (4π)2−ε
∫

d4−2εp

(2π)4−2ε

P (pµ)
p2 (p−K1)2 (p+K3)2 , (I.3)
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where P (pµ) is again a polynomial of the loop momentum and the external momentum
arguments K1...3 in equation (I.3) are sums of external momenta ki that are the arguments
of the n-point amplitude. There are three types of scalar triangle integrals that can appear
in an n-point calculation depending on how many legs are massive (off-shell), as depicted
in fig. 2.

The one-mass triangle in fig. 2a depends only on the momentum invariant of the
massive leg, t[n−2]

i+2 = t
[2]
i ,

I1m
3;i =

rΓ
ε2

(−t[2]
i )−1−ε . (I.4)

This integral does not contain any finite polynomials in the region t[2]
i < 0.

The next integral function shown in fig. 2b is the two-mass triangle integral,

I2m
3:r;i(−t

[r]
i ,−t

[n−r−1]
i+r ) =

rΓ
ε2

(−t[r]i )−ε − (−t[n−r−1]
i+r )−ε

(−t[r]i )− (−t[n−r−1]
i+r )

. (I.5)

Note that the functions in eqs. (I.4) and (I.5) are linear combinations of the set of functions

G(−t[r]i ) =
(−t[r]i )−ε

ε2
. (I.6)

Conversely, the functions G(−t[r]i ) can also be written as linear combinations of the one
and two-mass triangle scalar integrals. For example,

(t[2]
i − t

[n−3]
i+2 )

I2m
3:2;i

rΓ
− t[2]

i

I1m
3;i

rΓ
= G(−t[n−3]

i+2 ) = G(−t[3]
i−1) . (I.7)

The final scalar triangle is the three-mass integral function depicted in fig. 2c. The
evaluation of this integral is more involved, and can be obtained from refs. [44,39]

I3m
3:r,r′;i =

i√
∆3

3∑
j=1

[
Li2

(
−
(

1 + iδj
1− iδj

))
− Li2

(
−
(

1− iδj
1 + iδj

))]
+ O(ε), (I.8)

where

δ1 =
t
[r]
i − t

[r′]
i+r − t

[n−r−r′]
i+r+r′√

∆3

,

δ2 =
−t[r]i + t

[r′]
i+r − t

[n−r−r′ ]
i+r+r′√

∆3

,

δ3 =
−t[r]i − t

[r′]
i+r + t[n−r−r

′ ]
i+r+r′√

∆3

,

(I.9)
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and

∆3 ≡ −(t[r]i )2 − (t[r
′]

i+r)
2 − (t[n−r−r

′ ]
i+r+r′ )2 + 2t[r]i t

[r′ ]
i+r + 2t[r

′]
i+rt

[n−r−r′]
i+r+r′ + 2t[n−r−r

′ ]
i+r+r′ t

[r]
i . (I.10)

There are three different ways of labeling any three-mass triangle I3m
3:r,r′;i = I3m

3:r′,n−r−r′ ;i+r =
I3m
3:n−r−r′ ,r;i+r+r′ ; we only need to keep the distinct cases.

We must also consider the single and double mass triangles that have a single power
of the loop momenta in their numerator. The single mass case with the same kinematics
as in fig. 2 gives,

I1m
3;i [pµ] = rΓK

µ
1

(−t[2]
i )−1−ε

ε2(1− 2ε)
− rΓ(Kµ

1 +Kµ
2 )

(−t[2]
i )−1−ε

ε(1 − 2ε)
, (I.11)

where K1 = ki, K2 = ki+1 and K3 = ki+2 + · · ·+ ki+n−1. The second term is proportional
to I2:2;i (defined in eq. (I.2)). Since

1
ε2(1− 2ε)

=
1
ε2

+
2

ε(1 − 2ε)
, (I.12)

the first term is a linear combination of I2(t[2]
i ) ≡ I2:2;i and I1m

3 (t[2]
i ) ≡ I1m

3;i . Hence I1m
3;i [pµ]

can be excluded from the set of integral functions. The two-mass linear triangle is

I2m
3:r;i[p

µ] = rΓK
µ
1

(−t[r]i )−ε − (−t[n−r−1]
i+r )−ε

ε(1 − 2ε)(t[r]i − t
[n−r−1]
i+r )

− rΓ(Kµ
1 +Kµ

2 )
{
t
[r]
i ((−t[r]i )−ε − (−t[n−r−1]

i+r )−ε)

ε2(1− 2ε)(t[r]i − t
[n−r−1]
i+r )2

+
(−t[n−r−1]

i+r )−ε

ε(1 − 2ε)(t[r]i − t
[n−r−1]
i+r )

}
,

(I.13)
where K1 = ki + · · ·+ ki+r−1, K2 = ki+r + · · ·+ ki+n−2, and K3 = ki+n−1. By the same
reasoning this is also a linear combination of the scalar integrals.

Finally, we can simplify the three-mass linear triangle using equation (42) of ref. [45]
since none of the coefficients are singular in this case, and the three-mass linear triangle
can also be re-expressed as a sum of scalar triangle and bubble integrals.

I.3 Box Integrals

The scalar box integrals considered here have vanishing internal masses, but may have
from zero to four nonvanishing external masses. Again by external masses we mean off-
shell legs with K2 6= 0. These integrals are defined and given in ref. [39] (the four-mass
box was computed by Denner, Nierste, and Scharf [46]) and are shown in fig. 1 and in
fig. 4(a).
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The scalar box integral is

I4 = −i (4π)2−ε
∫

d4−2εp

(2π)4−2ε

1
p2 (p−K1)2 (p−K1 −K2)2 (p+K4)2 . (I.14)

The external momentum argumentsK1...4 in equation (I.14) are sums of external momenta
ki that are the arguments of the n-point amplitude.

The no-mass box is depicted in fig. 4(a) and is through O(ε0)

I0m
4 [1] = rΓ

1
st

{
2
ε2

[
(−s)−ε + (−t)−ε

]
− ln2

(
−s
−t

)
− π2

}
, (I.15)

where s = (k1 +k2)2 and t = (k2 +k3)2 are the usual Mandelstam variables. This function
appears only in four-point amplitudes with massless particles. In the proof, presented in
Section 3, that the cuts uniquely determine the amplitude, this box appears only as a
special case.

With the labeling of legs shown in fig. 1 (that is, expressing the functions in terms of
the invariants t[r]i of the n-point amplitude), the scalar box integrals I4 expanded through
order O(ε0) for the different cases reduce to

I1m
4:i =

−2rΓ
t
[2]
i−3t

[2]
i−2

{
− 1
ε2

[
(−t[2]

i−3)−ε + (−t[2]
i−2)−ε − (−t[n−3]

i )−ε
]

+ Li2

(
1− t

[n−3]
i

t
[2]
i−3

)
+ Li2

(
1− t

[n−3]
i

t
[2]
i−2

)
+

1
2

ln2

(
t
[2]
i−3

t
[2]
i−2

)
+

π2

6

}
,

(I.16a)

I2me
4:r;i =

−2rΓ
t
[r+1]
i−1 t

[r+1]
i − t[r]i t

[n−r−2]
i+r+1

{
− 1
ε2

[
(−t[r+1]

i−1 )−ε + (−t[r+1]
i )−ε − (−t[r]i )−ε − (−t[n−r−2]

i+r+1 )−ε
]

+ Li2

(
1− t

[r]
i

t
[r+1]
i−1

)
+ Li2

(
1− t

[r]
i

t
[r+1]
i

)
+ Li2

(
1−

t
[n−r−2]
i+r+1

t
[r+1]
i−1

)

+ Li2

(
1−

t
[n−r−2]
i+r+1

t
[r+1]
i

)
− Li2

(
1−

t
[r]
i t

[n−r−2]
i+r+1

t
[r+1]
i−1 t

[r+1]
i

)
+

1
2

ln2

(
t
[r+1]
i−1

t
[r+1]
i

)}
,

(I.16b)

I2mh
4:r;i =

−2rΓ
t
[2]
i−2t

[r+1]
i−1

{
− 1
ε2

[
(−t[2]

i−2)−ε + (−t[r+1]
i−1 )−ε − (−t[r]i )−ε − (−t[n−r−2]

i+r )−ε
]

− 1
2ε2

(−t[r]i )−ε(−t[n−r−2]
i+r )−ε

(−t[2]
i−2)−ε

+
1
2

ln2

(
t
[2]
i−2

t
[r+1]
i−1

)

+ Li2

(
1− t

[r]
i

t
[r+1]
i−1

)
+ Li2

(
1−

t
[n−r−2]
i+r

t
[r+1]
i−1

)}
,

(I.16c)
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I3m
4:r,r′ ,i =

−2rΓ
t
[r+1]
i−1 t

[r+r′ ]
i − t[r]i t

[n−r−r′−1]
i+r+r′

{
− 1
ε2

[
(−t[r+1]

i−1 )−ε + (−t[r+r
′]

i )−ε − (−t[r]i )−ε − (−t[r
′]

i+r)
−ε − (−t[n−r−r

′−1]
i+r+r′ )−ε

]
− 1

2ε2
(−t[r]i )−ε(−t[r

′]
i+r)

−ε

(−t[r+r
′ ]

i )−ε
− 1

2ε2
(−t[r

′]
i+r)

−ε(−t[n−r−r
′−1]

i+r+r′ )−ε

(−t[r+1]
i−1 )−ε

+
1
2

ln2

(
t
[r+1]
i−1

t
[r+r′ ]
i

)

+ Li2

(
1− t

[r]
i

t
[r+1]
i−1

)
+ Li2

(
1−

t
[n−r−r′−1]
i+r+r′

t
[r+r′]
i

)
− Li2

(
1−

t
[r]
i t

[n−r−r′−1]
i+r+r′

t
[r+1]
i−1 t

[r+r′]
i

)}
,

(I.16d)

I4m
4:r,r′,r′′,i =

−rΓ
t
[r+r′]
i t

[r′+r′′]
i+r ρ

{
−Li2

(
1
2
(1− λ1 + λ2 + ρ)

)
+ Li2

(
1
2
(1− λ1 + λ2 − ρ)

)
− Li2

(
− 1

2λ1
(1− λ1 − λ2 − ρ)

)
+ Li2

(
− 1

2λ1
(1− λ1 − λ2 + ρ)

)
− 1

2
ln
(
λ1

λ2
2

)
ln
(

1 + λ1 − λ2 + ρ

1 + λ1 − λ2 − ρ

)}
,

(I.16e)
where

ρ ≡
√

1− 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2 , (I.17)

and

λ1 =
t
[r]
i t

[r′′ ]
i+r+r′

t
[r+r′]
i t

[r′+r′′]
i+r

, λ2 =
t
[r′]
i+r t

[n−r−r′−r′′ ]
i+r+r′+r′′

t
[r+r′]
i t

[r′+r′′]
i+r

. (I.18)

There are different ways of labeling I4m
4:r,r′,r′′,i and I2me

4:r;i; once again we need only keep the
distinct cases.

For the explicit six-point amplitudes presented in section 6, it is convenient to define
scalar box functions F in which prefactors have been removed from the scalar box integrals
I4:

I1m
4:i = −2rΓ

F 1m
n:i

t
[2]
i−3t

[2]
i−2

, (I.19a)

I2me
4:r;i = −2rΓ

F 2m e
n:r;i

t
[r+1]
i−1 t

[r+1]
i − t[r]i t

[n−r−2]
i+r+1

, (I.19b)

I2mh
4:r;i = −2rΓ

F 2mh
n:r;i

t
[2]
i−2t

[r+1]
i−1

, (I.19c)

I3m
4:r,r′,i = −2rΓ

F 3m
n:r,r′;i

t
[r+1]
i−1 t

[r+r′]
i − t[r]i t

[n−r−r′−1]
i+r+r′

, (I.19d)

I4m
4:r,r′,r′′,i = −2

F 4m
n:r,r′,r′′;i

t
[r+r′]
i t

[r′+r′′]
i+r ρ

. (I.19e)
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Appendix II. Functions Used in the N = 1 Supersymmetric Amplitudes

Here we define the functions appearing in the N = 1 supersymmetric MHV am-
plitudes. In addition to the definitions we demonstrate that these functions, with the
appropriate arguments, are linear combinations of the integral functions of Appendix I.

K0(s) =
(
−ln(−s) + 2 +

1
ε

)
+O(ε) =

1
ε(1− 2ε)

(−s)−ε ,

L0(r) =
ln(r)
1− r ,

M0(s1, s2;m2
1,m

2
2) = Li2

(
1− m2

1m
2
2

s1s2

)
− Li2

(
1− m2

1

s1

)
− Li2

(
1− m2

1

s2

)
− Li2

(
1− m2

2

s1

)
− Li2

(
1− m2

2

s2

)
− 1

2
ln2
(s1

s2

)
.

(II.1)
The function K0(s) is simply proportional to the scalar bubble function

K0(t[r]i ) =
I2:r;i

rΓ
. (II.2)

In the amplitudes it is the combination

L0

(
(−t[r]i )/(−t[r+1]

i )
)

t
[r+1]
i

(II.3)

which appears. This has several representations; it can be expressed as a linear combination
of bubble functions,

L0

(
(−t[r]i )/(−t[r+1]

i )
)

t[r+1]
i

= − ln(−t[r]i )− ln(−t[r+1]
i )

t[r+1]
i − t[r]i

=
1

t
[r+1]
i − t[r]i

(
I2:r;i − I2:r+1;i

)
.

(II.4)

Secondly it is a Feynman parameter integral, for a two mass triangle integral,

L0

(
(−t[r]i )/(−t[r+1]

i )
)

t
[r+1]
i

=
1
rΓ
I2m
3:r,i[a2] (II.5)

where t[r]i and t
[n−r−1]
i+r = t

[r+1]
i are the momentum invariants of the massive legs and a2

is the Feynman parameter for the leg between the two massive external legs. We mention
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this represention as it arises naturally when one carries out the calculation of the N = 1
chiral multiplet amplitude in a manner analogous to the N = 4 calculation in ref. [12].

The M0 is a linear combination of the scalar ‘easy two-mass’ box integral (with the
masses on diagonally opposite legs) and certain triangle integrals. As discussed in Ap-
pendix I the function

G(s) ≡ 1
ε2

(−s)−ε (II.6)

is a linear combination of integral functions. Using this function we have

M0(t[r+1]
i−1 , t[r+1]

i ; t[r]i , t
[n−r−2]
i+r+1 ) =

t
[r+1]
i−1 t

[r+1]
i − t[r]i t

[n−r−2]
i+r+1

2rΓ
I2me
4:r;i

+G(t[r]i ) +G(t[n−r−2]
i+r+1 )−G(t[r+1]

i−1 )−G(t[r+1]
i ) .

(II.7)

It is in fact precisely the combination that yields the D = 6 ‘easy two-mass’ box integral [45]
multiplied by its denominator and a constant factor. The D = 6 box integrals arise here
from the reduction of box integrals with insertions of loop momentum polynomials to scalar
box integrals and triangle integrals. It provides a slightly preferable representation to the
D = 4 box integral because it is manifestly free of soft divergences, as should be the case
for contributions of internal N = 1 matter supermultiplets. (Only internal gluons can give
rise to soft divergences.)

In the case r = n − 3 the two mass box reduces to a single mass box, because the
momentum invariant giving rise to the mass of the second massive leg is zero, t[n−r−2]

i+r+1 = 0.
This corresponds to setting one of the last two arguments of M0 to zero whence,

M0(s1, s2;m2
1, 0) = −Li2

(
1− m2

1

s1

)
− Li2

(
1− m2

1

s2

)
− 1

2
ln2
(s1

s2

)
− π2

6
, (II.8)

so that

M0(t[n−2]
i−1 , t

[n−2]
i ; t[n−3]

i , 0) =
t
[n−2]
i t

[n−2]
i−1

2rΓ
I1m
4:i

+G(t[r]i )−G(t[r+1]
i−1 )−G(t[r+1]

i ) ,

(II.9)

and the function corresponds to a single mass box integral, plus G functions with various
arguments.

As we have expressed the functions K0, L0 and M0 in terms of the set of integral
functions, any cut constructible amplitude which is written in terms of these functions and
has the correct cuts, automatically has the correct polynomial terms.
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Appendix III. Collinear Limits

In this appendix, we verify that the N = 1 MHV n-point amplitudes and (one of) the
N = 4 non-MHV six-point amplitudes have the expected collinear limits. In general, one
expects [11,12] the collinear limits of the leading-color one-loop partial amplitudes to have
the following form,

Aloop
n;1

a‖b−→
∑
λ=±

(
Splittree

−λ (aλa , bλb)Aloop
n−1;1(. . . (a+ b)λ . . .)

+ Splitloop
−λ (aλa , bλb)Atree

n−1(. . . (a+ b)λ . . .)
)
,

(III.1)

where Splittree and Splitloop are universal tree and loop “splitting amplitudes”, given in
the appendix of ref. [12], and the two collinear legs are adjacent in the color ordering.

The N = 1 chiral multiplet contribution to the loop splitting amplitudes for glu-
ons vanishes, while in an N = 4 supersymmetric theory, the loop splitting function is
proportional to the tree splitting function,

Splitloop
−λ (aλa , bλb) = cΓ × Splittree

−λ (aλa , bλb)× rSUSY
S (z, sab), (III.2)

where sab = (ka + kb)2, and

rSUSY
S (z, s) = − 1

ε2

(
µ2

z(1− z)(−s)

)ε
+ 2 ln z ln(1− z)− π2

6
(III.3)

is independent of the helicities.

III.1 N = 1 MHV Collinear Limits

We begin with the N = 1 MHV amplitudes appearing in eq. (5.12). In all collinear
limits the net loop splitting amplitude for an N = 1 chiral multiplet vanishes, so that
defining

V N=1 chiral
n =

AN=1 chiral
1j (1, . . . , n)
cΓAtree

1j (1, . . . , n)
, (III.4)

the expected behavior of Vn in the collinear limits is simply

V N=1 chiral
n → V N=1chiral

n−1 . (III.5)

Denote the collinear legs by c and c + 1, and the momentum fraction within the fused
momentum kP by z (so that kc = zkP and kc+1 = (1 − z)kP ). Then relabel the fused leg
P → c, and shift the labels of legs c+ 2, c+ 3, . . . , n down by one, in order to recover the
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standard labeling 1, 2, . . . , n − 1 for (n − 1)-point kinematics. For 2 < j < n, so that the
two negative helicities are not adjacent, and using the reflection symmetry of the N = 1
MHV amplitudes, we need only consider two cases, 1 < c, c+ 1 < j and c = 1.

In the case 1 < c, c+ 1 < j, we note that

bjc,m2
→ bjc,m2−1, bjc+1,m2

→ bjc,m2−1 , (III.6)

and also that

M0

(
t
[m2−c]
c+1 , t[m2−c]

c ; t[m2−c−1]
c+1 , t

[n+c−m2−1]
m2+1

)
+ M0

(
t
[m2−c−1]
c+2 , t

[m2−c−1]
c+1 ; t[m2−c−2]

c+2 , t
[n+c−m2]
m2+1

)
→ M0

(
t
[m2−c−1]
c+1 , t[m2−c−1]

c ; t[m2−c−2]
c+1 , t[n+c−m2−1]

m2

)
,

(III.7)
where the ts on the right-hand side refer to the daughter kinematics. Other M0s reduce
trivially to corresponding ones for the daughter kinematics. As a result, the M0 terms
satisfy equation (III.5) on their own. Furthermore,

cjm,c → 0 ,

cjm,c+1 → cjm,c ,

cjc,a → zcjc,a−1 ,

cjc+1,a → (1 − z)cjc,a−1 ,

(III.8)

all other coefficients reducing in a trivial manner to the corresponding ones for the reduced
kinematics. For the generic case 2 < c < j − 2, the pair of L0s whose coefficients are cjc,a
and cjc+1,a combine to produce the appropriate L0 for Vn−1,

z
L0

(
t
[a−c]
c+1

/
t
[a−c+1]
c

)
t
[a−c+1]
c

+ (1− z)
L0

(
t
[a−c−1]
c+2

/
t
[a−c]
c+1

)
t
[a−c]
c+1

→
L0

(
t
[a−c−1]
c+1

/
t
[a−c]
c

)
t
[a−c]
c

. (III.9)

The remaining L0s as well as the K0s reduce trivially to those appearing in Vn−1. In the
boundary cases c = 2 and c+ 1 = j − 1, an L0 combines with a K0 to produce the desired
K0. In the case c = 2, for example, there is no cjc,n term in the double sum; instead,

cj3,n

L0

(
t
[n−3]
4

/
t
[n−2]
3

)
t
[n−2]
3

+
cj2,n

t
[2]
1

K0

(
t[2]
1

)
→

cj2,n−1

t
[2]
1

K0

(
t[2]
1

)
. (III.10)

In the second case, c = 1. Here, bjc+1,m2
and cjc+1,a (as well as cjm,c) vanish in the

collinear limit, while again cjm,c+1 → cjm,c, so that all terms except the cj3,n, cj2,n, cjn,2, and
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cjn,1 terms reduce trivially to the corresponding terms in Vn−1. For the remaining terms,
note that

cj3,n → cj2,n−1 ,
cj2,n

t
[2]
1

→ 1 , cjn,2 → cjn−1,1 , cjn,1 → 0 . (III.11)

Combining these equations with equation (5.17), we can see that the singular ln(−t[2]
1 ) =

ln(−P 2) terms of the collinear limit cancel; furthermore, the remaining parts of the L0

functions in the cj3,n and cjn,2 terms reproduce the K0 functions with cj2,n−1 and cjn−1,1

coefficients respectively.
Finally we examine the collinear limit 1 ‖ 2 in the amplitude A12 with adjacent

negative-helicity gluons. In this case all four of the terms on the right-hand-side of (III.1)
vanish due to the supersymmetry Ward identity (5.1), so the limit should be nonsingular,
and it is so, by virtue of the factors of 〈1 2〉 in the tree amplitude. This completes the
explicit verification of the collinear limits of the N = 1 MHV amplitudes.

III.2 N = 4 Non-MHV Collinear Limits

Verification of the behavior (III.1) for the six-point non-MHV N = 4 amplitudes
hinges on the collinear behavior of the coefficient B0 and the functions W (i)

6 . When two
like-helicity gluons become collinear, B0 has a singularity. For example, in the limit 5 ‖ 6
(with k5 + k6 = kP ),

B0
5‖6−→ Splittree

+ (5−, 6−)×Atree
5 (1+, 2+, 3+, 4−, P−) ,

B†0
5‖6−→ Splittree

− (5+, 6+)×Atree
5 (1−, 2−, 3−, 4+, P+) ,

(III.12)

where

Splittree
+ (5−, 6−) = − 1√

z(1− z) [5 6]
, Splittree

− (5+, 6+) =
1√

z(1 − z) 〈5 6〉
.

(III.13)
The singular behavior of B0 in the limits 1 ‖ 2, 2 ‖ 3 and 4 ‖ 5 is related to eq. (III.12)
by symmetries. In the limit that two opposite-helicity gluons become collinear (3 ‖ 4 or
6 ‖ 1), B0 is nonsingular. The only result needed regarding the W (i)

6 is that the sum of
two of the three W (i)

6 ’s has a simple collinear limit in two of the six collinear channels:

W
(3)
6 + W

(1)
6

s→0−→ V g5 + rSUSY
S (z, s), s = s45, s12,

W
(1)
6 + W

(2)
6

s→0−→ V g5 + rSUSY
S (z, s), s = s23, s56,

W
(2)
6 + W (3)

6
s→0−→ V g5 + rSUSY

S (z, s), s = s34, s61,

(III.14)
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where V g5 is the universal, cyclicly symmetric function appearing in the N = 4 supersym-
metric five-gluon amplitudes,

V g5 =
5∑
i=1

− 1
ε2

( µ2

−si,i+1

)ε
+

5∑
i=1

ln
(
−si,i+1

−si+1,i+2

)
ln
(
−si+2,i+3

−si−2,i−1

)
+

5
6
π2 , (III.15)

which should be evaluated in the appropriate five-point kinematics.
Up to symmetries, there are only two inequivalent collinear limits for the (+++−−−)

amplitude, say 5− ‖ 6− and 6− ‖ 1+. Here we will check the latter limit, which is more
intricate in that both helicities of the intermediate gluon P enter. In the limit 6 ‖ 1, B0 is
nonsingular. The singular behavior of B2 is

B2
6‖1−→
(

(1− z)1/2 [P 5] 〈5 4〉
s5P

)4 [
Splittree

+ (5−, 6−)×Atree
5 (1+, 2+, 3+, 4−, P−)

]∣∣
j→j+1

+
(
z1/2 [2 3] 〈5P 〉

s5P

)4 [
Splittree

− (5+, 6+)×Atree
5 (1−, 2−, 3−, 4+, P+)

]∣∣
j→j+1

= (1 − z)2 Splittree
+ (6−, 1−)× 〈4 5〉4

〈5P 〉4
Atree

5 (2+, 3+, 4+, 5−, P−)

+ z2 Splittree
− (6+, 1+)× [2 3]4

[5P ]4
Atree

5 (2−, 3−, 4−, 5+, P+)

= Splittree
− (6−, 1+)×Atree

5 (2+, 3+, 4−, 5−, P+)

+ Splittree
+ (6−, 1+)×Atree

5 (2+, 3+, 4−, 5−, P−).
(III.16)

Using symmetries, the singular behavior of B3 is identical to (III.16). Using eq. (III.16),
the third line of (III.14), and the form (6.1) of the (MHV) five-gluon amplitudes, the
expected behavior (III.1) for 6 ‖ 1 is verified.
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