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Abstract: 

Lattice changes in the PEP-II high energy ring have made 
the concept of driving four cavities with a single klystron an 
attractive option. This paper examines the topology from a RF 
feedback point of view. Sources of error are identified and their 
magnitudes are estimated. The effect on the performance of the 
longitudinal impedance reducing feedback loops is calculated 
using control theory and Mathematics. 

1. INTRODUCTION 

The original topology for the PEP-II high energy ring 
(HER) RF stations was based on driving two cavities with a sin- 
gle 1.2 MW klystron. Several RF feedback loops were planned 
to control longitudinal coupled-bunch oscillations driven by the 
interaction of the beam with the accelerating mode of each RF 

ca&y[l][2]. There was concern that errors involving splitting 
the power from the klystron, cavity manufacturing tolerances, 
cavity tuning errors, and probe calibrations would degrade the 

performance of the RF feedback loops. A study was made for 
the relatively simple case of two cavities per klystron to place 
limits on the magnitude of the sources of error[3]. 

The new lattice changed the beam loading parameters such 
that one klystron could now supply power for four cavities. This 
‘change was attractive from a cost point-of-view since the num- 
ber of RF stations and circulators would be reduced. It was de- 
cided to take a more careful look at the impact on the RF 
feedback loop performance. 

2. SIMPLIFIED ANALYSIS 

Using the topology defined by the schematic in figure 1, a 
feedback analysis was performed. Using Mason’s gain rule [4] 

c 

i- 

, 

and Mathematics to perform the cumbersome algebra, an 
expression for the closed loop impedance seen by the beam 
was derived (equation 1). 

4Zc(l+GZc[2A.y+A2(AZ)y-A(AZ)2y+A2$+A(AZ)y3) 

1 +GZc[l+A(AZ) +2Ay+ (AZ)y+A2(AZ)y+A2?+A(AZ)+] 

Equation 1. Impedance seen by the beam based on figure 1. 

Errors introduced in a two-way splitter or combiner are rep- 
resented by A and y respectively. If we estimate that the max- 
imum expected errors in combining the four cavity probe 
signals as 0.5 dB in amplitude and 5.0 degrees in phase we can 
calculate the corresponding value for y as listed in table 1. 

Specification 

0.5 dB imbalance 

Corresponding y 

0.0144 

5 degree error 0.0218 

worst case 0.0218 

Table 1: Calculation of y based on estimated combining errors 

In equation 1, all error terms are negligible when compared 
to 1 except for the denominator term GZc2Ay . For a loop gain of 
100 we can specify this term to be <cl and specify a limit on A : 

‘A’<c ,2&l 
1 A) << 0.229 

Equation 2. Derived limit on splitting error term 

If we allow the magnitude of A to be l/5 of 0.229 (cor- 
responding to a +-20% impedance variation) the tolerance 
for each 3 dB splitter is 0.8 dB or 5.2 degrees if the error is 
purely amplitude or phase. 

0.5(1-A2) 

0.5 ( 1 - A2) 

0.5(1 -A)2 

*Work supported by Department of Energy, contract 
DE-AC03-76SF00515 

Fig. 1. Block diagram used to derive cavity closed loop transfer func- 
tion seen by the beam (equation 1). 
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3. A MORE COMPLETE CAVITY MODEL 

Cavity impedances were next defined in terms of parame- 
ters which will vary as a function of manufacturing and oper- 
ational tolerances. If one assume the cavity R/Q to be a 
fundamental constant while allowing for variations in unloaded 
Q, coupling coefficient and center frequency, the expression for 
cavity impedance is (equation 3): 

~(oc+Aw)s 
z, = Y 

(ac+W 
s2+ Qo(l +AQo) s+ Wc+W2 

l+P(l+AP> 

Equation 3. Expression for cavity impedance with errors 

The derivation proceeds to determine what effect the cavity 
variations would have on cavity reflected power. Differences in 
reflected power from each cavity lead to variations in transmit- 
ted power just as encountered by errors in the splitting network. 
If we model the cavity coupling factor to represent a transform- 
er We can chose the turns ratio, N, to provide a perfect match be- 
tween the source impedance Z, and the cavity at a given beam 
current (figure 2). The expression for N is equation 4. 

l:N 

Fig. 2. Using a transformer to model the cavity coupling network 

ZcI s=jo (%Qo 
. N2 = 

zap = = &3)Z, 

Equation 4. Expression for the transformer ratio 

If we assume that the transformer ratio is fixed based on 
non-perturbed Z, and the load Z, is perturbed, Zi, becomes 
(equation 5): 

PC1 +P)Zo oc+Ao)s 

zi, = 

$1 Q. 
WC + Aa) 

s2+ Qo(l +AQo> s+ (mc+AW2 

L l+P(l+AlN 1 

Equation 5. Input impedance for a cavity with errors 

For simplicity equation 4 is evaluated at s = jot with 
Ao = o . The reflection coefficient I can be calculated from the 
defining expression shown in equation 6: 

‘in - ‘0 
I-=- 

‘in + ‘0 

Equation 6. Definition of reflection coefficient 

For a load impedance with reflection coefficient I, the 
power delivered to the load is (equation 7): 

P load = Pi,(1-Ir12) 

Equation 7. Expression for power delivered to a load with reflections 

Based on equation 7, one can derive the expression for an 
insertion loss factor associated with power being reflected from 
the cavity. For our application, an expression for the variation in 
insertion loss from a cavity with no errors was developed. Equa- 
tion 8 lists this new term which was added to each cavity in the 
model to evaluate the effect of cavity errors. 

IL 
*Lnormalized = - = 

(1+P)3(1+P(1+AP)) (l+AQ) 
ILideal (1+p(2+p+Ap+AQ+pAQ))2 

Equation 8. Normalized insertion loss term 

Plotting this function (figure 3) assuming a p of 4 and nom- 
inal values for (R/Q) and Q0 reveals that this term can introduce 

errors as large as the splitter/combiner errors. The new term was 
added and the closed loop impedance error was evaluated using 
the previous value for y while setting A = 0.03 (figure 4). Re- 
sults show that the closed loop impedance varies 30% in the 
worst case, which was considered acceptable. 

Delta beta 

Fig. 3. Plot of normalized insertion loss vs. cavity parameters @=4) 

Delta beta 

Fig. 4. Error in closed loop impedance for 4 cavities with errors 
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4. EFFECT OF CAVITY TUNING ERRORS 

In order to determine the impact of cavity tuning errors on 
the insertion loss term, we follow the development of the com- 
plete cavity model but mistune the cavity and examine the re- 
sulting change in the insertion loss. The insertion loss varies 
only +/- .25 dH over the entire bandwidth of the cavity. Normal 
tuning errors would keep the cavity tuned well. within this 
range. So for small tuning errors the deviation of the insertion 
loss is negligible. Recall that the nominal p value is 4, therefore 
the system starts out with a fair amount of reflected power and 
the cavity tune deviations do not contribute a significant in- 
crease. 

5. FULL ANALYSIS 

Using Mathematics it is feasible to perform a full closed 
loop analysis of four cavities driven by a single klystron com- 
plete with both direct RF and equalized dual comb filter feed- 
back loops. The expressions become too complicated to print 
out, but plotting the driving impedance for each mode is an easy 
ways to evaluate loop performance. The following analysis in- 
cludes 350 ns of group delay consistent with expected values for 
transmission delay and klystron group delay. Phase margins 
were limited to 45 degrees throughout the analysis. 

The procedure was to start with the model previously de- 

veloped (figure 1) and add transfer functions for the direct RF 
feedback loop and the equalized dual peaked comb filter. The 
closed loop cavity impedance was then evaluated at the fre- 
.quencies of the synchrotron sidebands corresponding to the first 
20 longitudinal coupled-bunch modes. Driving impedances for 
each mode were then tabulated. The result for a system without 
errors is plotted below (figure 5). Positive terms represent un- 
stable modes whose magnitudes must be kept below the 4 Wz 
limit set by the power limitation of the bunch-by-bunch feed- 

back system [5]. 
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Fig. 5. Driving impedances (per cavity) for system without errors 

Next the system errors were introduced to determine the ef- 
fect on the driving impedances (figure 6). At first the plots look 
very similar but recall that the non-negligible error term GZc2Ay 

is only large where the loop gain is high, within the bandwidth 
of the cavities. If we plot the difference in the closed loop im- 
pedances (figure 7) the effect is indeed evident. 
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Fig. 6. Driving impedances (per cavity) for system with errors 
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Fig. 7. Deviation in driving impedance - system with & without errors 

6. CONCLUSION 

Deviations in power splitting to the cavities, feedback sig- 

nal recombining, and cavity parameters are taken into account. 
Using worst-case cavity parameter deviations it is shown that 
the closed-loop cavity transfer function is kept within 28% of an 
error free system. This is slightly above the guideline set by 
Pedersen [3]. It should be pointed out that the system would un- 
likely be built in such a way as to have worst-case error paths. 
By matching cavities, tuning waveguide lengths, and using a 
fully adjustable combiner network, system errors can be limited 
to an acceptable level. 
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