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1 Introduction

Among the rare decays of B mesons, the recently observed radiative weak
decays B→ Xsγ [1], where Xs is a hadronic state with total strangeness S =
−1, have received much attention. As a loop-induced flavor-changing neutral
current (FCNC) process this decay is in particular sensitive to contributions
from physics beyond the Standard Model (SM).

Since the b quark mass is much larger than the QCD scale Λ, one assumes that
the inclusive decay rate is well described by the spectator model, where the b
quark undergoes a radiative decay. The transition amplitude for this process
is given by the matrix element of an effective magnetic moment operator. The
coefficient of this operator is obtained to lowest order [2] by integrating out
all heavy particles (t quark, W boson, . . . ), leaving one with an effective field
theory describing the transition b→ sγ on the parton level at the weak scale.
The QCD corrections to this coefficient1 have been calculated to leading
logarithmic accuracy in [4, 5, 6, 7, 8, 9] and are known to enhance the rate
within the SM by a factor of 2–4, depending on the masses of the b and of the
t quarks. This enhancement is, however, subject to large uncertainties due
to the inaccuracy of some input parameters like the strong coupling constant
αS, and due to the residual renormalization scale dependence which we will
not address in this work (for a recent discussion in the context of b→ sγ see
also [10, 11, 12]).

On the other hand, if the particles in the loop have vastly different masses,
one expects sizeable corrections to the Wilson coefficients already at the weak
scale. These contributions, which are usually considered as a next-to-leading
order effect, have been discussed in ref. [13] for the Standard Model where,
in the case of a top quark much heavier than the W, they were found to give
an additional enhancement on the order of 20%.

In the case of the Minimal Supersymmetric Standard Model (MSSM) [14],
the situation is even more complicated. First, due to the richer particle con-
tent, more diagrams contribute to the magnetic moment operators, and the
larger number of free parameters supply many potential additional sources
of flavor-changing neutral currents [15]. However, if one assumes further
that the MSSM is a low-energy effective theory from minimal supergrav-

1For a recent review and earlier work see e.g. ref. [3].
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ity [16] with radiative breaking of the electroweak symmetry, it is known
[17, 11, 18, 19, 20, 21, 22, 23, 24, 25] that, besides the SM contribution medi-
ated by the W, only the charged Higgs (H±) and the chargino (χ+

1,2) exchange
diagrams provide significant contributions. With the present experimental
lower limits on the supersymmetry (SUSY) spectrum the gluino contribution
is then small and the neutralino contribution is always negligible.2 The W
and the H± contributions always have the same sign in the MSSM, but the
chargino contribution can have either sign and may, for instance, cancel the
H± contribution or even dominate the amplitude (for small chargino masses
and large tanβ).

Since SUSY has to be broken, the mass splitting between the various particles
running in the loop can be very large, leading to additional important QCD
corrections. We advocate that, in a parameter space analysis in the MSSM,
one should not simply add up the contributions of all diagrams at the W
scale and use the renormalization group evolution to run down this sum to
the b scale, but rather consider the individual contributions separately. This
consideration is especially important for the chargino contribution, since the
lightest chargino can be significantly lighter than the W.

For the reasons mentioned above, we will ignore the contributions from di-
agrams with gluinos and neutralinos in the present work; they may easily
be included. Corrections of the type considered in this work will, however,
always be numerically unimportant.

Our strategy will be similar to the work by Cho and Grinstein [13]. Starting
from the full theory at sufficiently high scales, we will construct a series of
effective theories that are well suited for the description of the low-energy
physics of interest. We shall give all ingredients that are necessary to obtain
the leading QCD corrections to the b → sγ inclusive rate and discuss some
simple estimates for an MSSM scenario with the assumptions mentioned
above. However, a full parameter space analysis, which depends on the details
of the implementation of the soft SUSY breaking, is beyond the scope of the
present paper and will be discussed elsewhere.

2This assumption is supported by present experimental data on B → Xsγ as well as
the lack of evidence for large contributions beyond the SM to other FCNC processes, e.g.
K̄0K0 mixing and rare K decays. For a discussion of a scenario with a light gluino in the
mass range 2–5 GeV see [26] (and references quoted therein).
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This paper is organized as follows: In section 2 we briefly review the elements
of effective field theories needed for the present work. Section 3 explains in
detail the calculation for a type-II two-Higgs doublet model, which is con-
tained in the MSSM, while the contributions of SUSY particles are discussed
in section 4. Our results are presented in section 5, followed by the conclu-
sions.

2 Effective field theory and b→ sγ

The basic idea of effective field theories is by now well established, and many
excellent reviews have appeared in the literature [27, 28, 29, 30, 31]. Start-
ing from some underlying full theory, one integrates out the heavy degrees
of freedom, thereby producing a tower of non-renormalizable interactions
(with couplings proportional to inverse powers of the heavy particle mass)
that contain the virtual heavy particle effects. One then runs the resulting
effective field theory down to the appropriate scale of interest using the renor-
malization group. If additional heavy particle thresholds are crossed during
the renormalization group running, these particles will then be integrated
out. The major advantages of using an effective theory for the calculation of
low-energy observables are convenience, since calculations are usually simpler
than in the full theory, and the insight gained.

A nontrivial feature of the effective field theory framework is the automatic
summation of large logarithms that originate from perturbatively calculable
short-distance physics by the renormalization group. As explained in detail in
[31], the renormalization scale µ in a dimensional scheme (e.g., MS) serves to
separate short-distance from long-distance physics. The Appelquist–Carazzone
decoupling theorem [32] can be implemented properly by hand, in the MS
scheme, which is mass-independent, matching the effective theories below
and above thresholds. The advantage of having a mass-independent scheme
is that the renormalization group β functions do not explicitly depend on
the scale µ, while the validity of the decoupling theorem guarantees that
all intuitive reasoning based on a so-called physical renormalization scheme
remains true.

When the effective theory contains two heavy mass scales m1,m2 of compa-
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rable magnitude, it is usually a good approximation to integrate out both
particles at a common scale. On the other hand, if the ratio x ≡ (m1/m2)

2

is very small (i.e., x¿ 1), even if the coupling constant is small, the product
α ln x may become of order one, forcing the summation of all powers of this
product, while corrections to the sum are suppressed by powers of α or x.
Sometimes the situation is less favorable and lies somewhere in between, as
is the case for the SM with a heavy top quark [13] of, say, 175 GeV. For the
process b→ sγ, the most important correction is the QCD running between
the W and the b scale, whose size is (parametrically) given by

αS(mW) · ln(mW/mb)
2 ' 0.7 ,

while
αS(mW) · ln(mt/mW)2 ' (mW/mt)

2 ' 0.2

indicates that one might miss numerically important pieces if either of the
latter were neglected, compared to next-to-leading order corrections that are
of order αS ' 0.1.3 What one can achieve with reasonable effort is to take
into account the resummation of the leading terms in the limit of a heavy top
quark, and then simply add in the nonleading terms, thus neglecting terms
which are (up to logarithms) O(αs · (mW/mt)

2). At this stage, the scale
at which the nonleading terms are added is completely arbitrary, and can
only be determined by a calculation of the power corrections. The remaining
uncertainty is, however, less important than neglected next-to-leading order
corrections.

Let us now turn to the application to the b → sγ transition. The effective
Hamiltonian of interest may be written as a sum of ∆B = 1, ∆S = 1
operators:

Heff =
4GF√

2
KtbK

∗
ts

∑
i

Ci(µ)Oi(µ) . (1)

A suitable operator basis {Oi} will be given below.

In general the definition of the operators in (1) requires the specification of a
renormalization scheme. One derives renormalization group equations for the

3Of course a full calculation of the next-to-leading order corrections is necessary to re-
solve the well-known ambiguity in the choice of scales in leading-order calculations. How-
ever, this calculation would require the computation of three-loop anomalous dimensions
for the process under consideration.
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composite operators Oi(µ) and the coefficient functions Ci(µ) from the fact
that the effective Hamiltonian is independent of the renormalization scale.
The renormalization of a composite operator is formally defined in terms of
the divergent renormalization constants Zij, which relate renormalized and
bare operators:

Obare
i = Zij(µ)Oj(µ) (2)

Since the bare operators are µ independent, the renormalized operators de-
pend on the subtraction scale via the µ dependence of the Zij:

µ
d

dµ
Oi =

(
µ
d

dµ
Z−1
ij

)
Obare
j = −γikOk, (3)

where

γik = Z−1
ij µ

d

dµ
Zjk (4)

is the so-called anomalous dimension matrix.

The renormalization group equation for the Wilson coefficients Ci then reads:

µ
d

dµ
Ci(µ) =

∑
j

(
γT
)
ij
Cj(µ) . (5)

If QCD corrections are neglected, the solution to this differential equation
is straightforward. When QCD corrections are included, it is favorable to
eliminate the derivative with respect to the renormalization scale in favor of
a derivative with respect to the coupling constant:

β
dCi
dg3

=
∑
j

(
γT
)
ij
Cj (6)

Here (and in the following) g3 denotes the QCD coupling constant, and β =
µ(dg3/dµ) is the QCD beta function.

The most convenient way to calculate the anomalous dimension matrix γ is
to consider Green functions with insertions of composite operators. Denote
by Γ

(n)
Oi a renormalized n-point 1PI Green function with one insertion of the

operator Oi. The anomalous dimension γij that determines the mixing of Oi
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into Oj may then be simply read from the renormalization group equation

for Γ
(n)
Oi ,

γijΓ
(n)
Oj = −

(
µ
∂

∂µ
+ β

∂

∂g
+ γmm

∂

∂m
− nγext

)
Γ

(n)
Oi . (7)

Here γm = (µ/m)(dm/dµ), and nγext accounts for the wave-function anoma-
lous dimensions arising from radiative corrections to the external lines of the
Green functions.

We use dimensional regularization with minimal subtraction (MS), d = 4−2ε.
The SU(3)C × U(1)em covariant derivative then reads:

Dµ = ∂µ − iµεg3G
a
µX

a − iµεeAµQ . (8)

We use the background field Rξ gauge [33] throughout this work. The anoma-
lous dimensions of the fields in this case are given by:

γquark =
2

3

g2
3

8π2
, γsquark = −4

3

g2
3

8π2
, γgluon =

β

g3

,

γm = −4
g2
3

8π2
, γm̃ = −6

g2
3

8π2
, β = b

g3
3

8π2
. (9)

The coefficient appearing in the β-function has the value

b = −11

2
+

1

3
nf +

1

12
nq̃ + ng̃, (10)

where nf , nq̃ and ng̃ are the number of active quark flavors, squarks and
gluinos, respectively.

The solution to the differential equation (6) is given by

C(µ) = Tg

exp

g3(µ)∫
g3(µ0)

dg
γT (g)

β(g)

C(µ0), (11)

where Tg means an ordering in the coupling such that g increases from right
to left (for µ < µ0). Since our anomalous dimension matrices will be g2

3 times
a purely numerical matrix,

γ =
g2
3

8π2
γ̂ +O(g4

3) ,
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the g ordering is superfluous, and the g integration is trivial:

C(µ) = exp

[(
1

2b
ln

α3(µ)

α3(µ0)

)
γ̂T
]
C(µ0) . (12)

In all cases considered below, the operator basis of choice contains the follow-
ing set of operators involving only light degrees of freedom (that is, photons,
gluons, and light quarks with masses below mW):4

Dimension d+ 1:

O1
LR = − 1

16π2
mbs̄LD

2bR

O2
LR = µε

g3

16π2
mbs̄Lσ

µνXabR G
a
µν

O3
LR = µε

eQb

16π2
mbs̄Lσ

µνbR Fµν .

Dimension d+ 2:

P 1,A
L = − i

16π2
s̄LT

A
µνσD

µDνDσbL

P 2
L = µε

eQb

16π2
s̄Lγ

µbL ∂
νFµν

P 4
L = iµε

eQb

16π2
s̄Lγ

µγ5DνbL F̃µν . (13)

The tensors TAµνσ appearing in P 1,A
L , A = 1, . . . 4, are defined by:

T 1
µνσ = gµνγσ, T 2

µνσ = gµσγν ,

T 3
µνσ = gνσγµ, T 4

µνσ = −iεµνστγτγ5 . (14)

In order to apply the procedure outlined above to the MSSM case, we first
consider the extension of the calculation by Cho and Grinstein [13] to the case
of a type-II two-Higgs doublet model. Two cases already exist to consider,
namely that the charged Higgs can be either much lighter or much heavier
than the t quark. We shall explain in detail how the contributions induced
by the chargino loops add to this picture .

4Note that our normalization differs from ref. [13]. We have omitted their operator P 3
L ,

since the corresponding Wilson coefficients will always be zero, and none of the operators
under consideration will mix back into it.
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3 Two-Higgs doublet model

3.1 mt > mH±

If the top quark is heavier than the W and the charged Higgs, then the first
step is to integrate out the top quark at the scale µ = mt. This procedure
leads to an effective field theory for µ < mt without the t, but with new
vertices of dimension larger than four that contain the virtual t effects. For
the process under consideration we need, in addition to the operator basis
(13), further operators.

In general, in the range mt > µ > mW, one has to consider higher dimen-
sional operators that contain the Ws, the would-be Goldstone bosons φ±
and the charged Higgs field. By naive dimensional analysis, we expect that
higher dimensional operators are suppressed by inverse powers of the ratio
xtW ≡ (mt/mW)2. Since this ratio is not very large for phenomenologically
acceptable top quark masses, the effects of the higher dimensional operators
are not necessarily small, compared to the leading dimension 5 and dimen-
sion 6 operators. Also, the matching conditions at threshold in general are
combinations of rational functions and polynomials in xtW.

Nevertheless, we shall take the approach motivated in chapter two and keep
only the leading operators and the leading terms in the matching contribu-
tions. Although we are unable to calculate the power corrections, we shall
later add the subleading terms in 1/xtW, so that we get the same result in
the limit of neglecting strong corrections for µ > mW, as when all heavy
particles are integrated out simultaneously at the W scale.

The relevant part of the interaction Lagrangian in the charged current sector
reads

LCC =
g2√
2
W+
µ Ūγ

µKPLD + h.c. (15)

+
g2√
2mW

(
φ+Ū [MUKPL −KMDPR]D + h.c.

)
,

where U = (u, c, t) andD = (d, s, b) represent up-type and down-type quarks,
respectively; MU = diag(mu,mc,mt), MD = diag(md,ms,mb) are the quark
mass matrices; g2 = e/ sin θW is the gauge coupling of SU(2)W; PL,R are
projectors on the left- and right-handed components of the fermions; and K
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is the Kobayashi-Maskawa matrix. In the present work, we shall neglect the
masses of the quarks of the first two generations whenever appropriate.

From these expressions one can see that the leading terms for xtW À 1 come
from vertices that involve the charged would-be Goldstone bosons φ± and
the top quark, since they are proportional to the top quark mass. For this
reason, in the range mt > µ > mW, we shall need (analogous to the findings
in [13]) the following operators with external would-be Goldstone bosons in
addition to the operator basis (13):

QLR = µ2ε g2
3

16π2
mbφ+φ− s̄LbR

R1
L = iµ2ε g2

3

16π2
φ+φ− s̄LD/ bR

R2
L = iµ2ε g2

3

16π2
(Dµφ+)φ− s̄LγµbR (16)

R3
L = iµ2ε g2

3

16π2
φ+(Dµφ−)s̄LγµbR .

The inclusion of explicit factors g2
3 into these operators is motivated by the

Gilman-Wise trick [34], which allows all one-loop contributions to the anoma-
lous dimension matrices to be of O(g2

3), so that the diagonalization of these
matrices is scale independent. We will freely use this trick later on.

The interaction Lagrangian for the charged Higgs with the quarks reads:

LH±ff̄ ′ =
g2√
2mW

(
H+Ū [cot βMUKPL + tan βKMDPR]D + h.c.

)
, (17)

with tan β = v1/v2 being the ratio of the vacuum expectation values of
the Higgs fields that give rise to the masses of up- and down-type quarks,
respectively.

The interaction (17) has the same structure and quark-mass dependence of
the couplings as the interaction of the would-be Goldstone bosons φ± [see
(15)]. In the limit xtH ≡ (mt/mH±)2 À 1, keeping only the leading terms in
1/xtH, we are lead to the following operators with charged Higgs bosons we
have to add to our operator basis in the range mt > µ > mH± :

Q′LR = µ2ε g2
3

16π2
mbH

+H− s̄LbR

9



    

R1
L
′

= iµ2ε g2
3

16π2
H+H− s̄LD/ bR

R2
L
′

= iµ2ε g2
3

16π2
(DµH+)H− s̄LγµbR (18)

R3
L
′

= iµ2ε g2
3

16π2
H+(DµH−)s̄LγµbR .

3.1.1 Matching at µ = mt

For µ > mt, our effective theory is a fully renormalizable theory, which still
contains all particles and interactions, so that in this case all coefficients of
our effective Hamiltonian are zero:

Ci(µ = m+
t ) = 0 for all i . (19)

When we cross the t threshold from above, i.e., when we integrate out the
top quark at µ = mt, we obtain the following changes to the coefficients
of the effective Hamiltonian, as a result of the interactions of the would-be
Goldstone bosons from matching the three-point functions Γbsγ and Γbsg [13]
[(here ∆Ci = Ci(m

−
t )− Ci(m+

t ))]:

∆(φ,W )CO1
LR

= −1

2

∆(φ,W )CO2
LR

=
Qb

Qt

∆(φ,W )CO3
LR

= −1

2

∆(φ,W )CP 1,1
L

= ∆(φ,W )CP 1,3
L

=
11

18

∆(φ,W )CP 1,2
L

= −8

9

∆(φ,W )CP 1,4
L

= −Qb∆(φ,W )CP 4
L

=
1

2

∆(φ,W )CP 2
L

=
3

4Qb

∆(φ,W )CQLR
= −16π2

g2
3

∆(φ,W )CR1
L

= ∆(φ,W )CR2
L

=
16π2

g2
3

∆(φ,W )CR3
L

= 0 . (20)
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Similarly, there are contributions from the interactions with the charged
Higgs bosons:5

∆(H)CO1
LR

=
1

2

∆(H)CO2
LR

=
Qb

Qt

∆(H)CO3
LR

=
1

2

∆(H)CP 1,1
L

= ∆(H)CP 1,3
L

=
11

18
cot2 β

∆(H)CP 1,2
L

= −8

9
cot2 β

∆(H)CP 1,4
L

= −Qb∆(H)CP 4
L

=
1

2
cot2 β

∆(H)CP 2
L

=
3

4Qb

cot2 β

∆(H)CQ′LR
=

16π2

g2
3

∆(H)CR1
L
′ = ∆(H)CR2

L
′ =

16π2

g2
3

cot2 β

∆(H)CR3
L
′ = 0 . (21)

At this point it is worthwhile to note that had we not matched at the scale
µ = mt but at a different scale (or used a different subtraction scheme), we
would have found logarithmic contributions in the matching corrections to
the coefficient of P 2

L :

∆(φ,W )CP 2
L

=
1

Qb

[
3

4
+

1

6
ln
µ2

m2
t

]
, ∆(H)CP 2

L
=

1

Qb

[
3

4
+

1

6
ln
µ2

m2
t

]
cot2 β .

(22)
These logarithms that vanish for µ = mt are regenerated at lower scales by
the renormalization group for the effective theory below mt. It is therefore
not surprising that they are present in the full expressions for this coefficient
given in the appendix, when both particles in a loop are integrated out at the
same scale; in the full expressions it appears as an unsuppressed logarithm
of the mass ratio of the particles in the loop.

5We prefer to keep the contributions from each interaction separate, for there are
different cases below.
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3.1.2 Running below mt

The anomalous dimension matrices for the mixing of the operators Oi and
Pi have already been given in ref. [13]. For completeness, we quote the result
obtained in this work.

First, the operators Q and R, with would-be Goldstone boson fields, mix into
the operators without (O, P ):

γ̂ =



OLR P 1,A
L P 2

L P 4
L

QLR 0 0 0 0
R1

L 0 0 0 0
R2

L 0 0 1/6Qb 0
R3

L 0 0 −1/6Qb 0

 . (23)

Note that this mixing back is of order O(g2
3) due to our choice of the co-

efficients in front of the operators Q, R, and not due to “proper” QCD
corrections.

For the QCD-induced entries in the anomalous dimension matrix, one has

γ̂ =



O1
LR O2

LR O3
LR P 1,1

L P 1,2
L P 1,3

L P 1,4
L P 2

L P 4
L

O1
LR

20
3

1 −2 0 0 0 0 0 0
O2

LR −8 2
3

4
3

0 0 0 0 0 0
O3

LR 0 0 16
3

0 0 0 0 0 0

P 1,1
L 6 2 −1 2

3
2 −2 −2 0 0

P 1,2
L 4 3

2
0 −113

36
137
18

−113
36

−4
3

9
4

0

P 1,3
L 2 1 1 −2 2 2

3
−2 0 0

P 1,4
L 0 1

2
2 −113

36
89
18

−113
36

4
3

9
4

0
P 2

L 0 0 0 0 0 0 0 0 0
P 4

L 0 0 4
3

0 0 0 0 0 0



. (24)

Similarly, the mixing among the operators with would-be Goldstone boson
fields is known to be:

γ̂ =


QLR R1

L R2
L R3

L

QLR −2b 0 0 0
R1

L 0 −2b 0 0
R2

L 0 0 −2b 0
R3

L 0 0 0 −2b

 . (25)
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Obviously, the same mixing matrices are found when one considers mixing of
the operators with charged Higgs fields, i.e., when one replaces QLR → Q′LR,
Ri

L → Ri
L
′ in eqs. (23) and (25).

3.1.3 Matching at µ = mH± and µ = mW

In the process of scaling down, when we encounter the charged Higgs or W
threshold, we have to integrate out the H± or W and would-be Goldstone
bosons, respectively. Due to decoupling that has to take place below thresh-
old, we remove the operators Q′ and R′ from our operator basis for µ < mH±

and Q and R for µ < mW. Again we obtain the finite changes of the coeffi-
cients of the operators O and P by matching Green functions calculated in
the theories above and below threshold.

Since we neglect small terms proportional to mu or mc, we find no non-
vanishing contribution from the matching of the effective theories above and
below µ = mH± , i.e., our Wilson coefficients are continuous:

Ci(m
+
H±) = Ci(m

−
H±) . (26)

Matching the effective theories above and below µ = mW, we find the fol-
lowing changes in the coefficients of the effective Hamiltonian (here ∆C =
C(m−W)− C(m+

W)):

∆(φ,W )CO1
LR

= ∆(φ,W )CO2
LR

= ∆(φ,W )CO3
LR

= 0

∆(φ,W )CP 1,1
L

= ∆(φ,W )CP 1,3
L

=
2

9

∆(φ,W )CP 1,2
L

= −7

9
∆(φ,W )CP 1,4

L
= 1

∆(φ,W )CP 2
L

=
1

2Qb

∆(φ,W )CP 4
L

= − 3

Qb

. (27)

Again, had we matched at a different scale µ 6= mW, we would have found
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different matching contributions for some of the coefficients:

∆(φ,W )CP 1,1
L

= ∆(φ,W )CP 1,3
L

=
2

9
+

2

3
ln

µ2

m2
W

∆(φ,W )CP 1,2
L

= −7

9
− 4

3
ln

µ2

m2
W

∆(φ,W )CP 2
L

=
1

Qb

(
1

2
+

2

3
ln

µ2

m2
W

)
. (28)

But the coefficients of lnµ2 are just the coefficients of those logarithms in
eq. (77) that give the leading (divergent) contribution to the Ci in the limit of
small quark masses. These logarithms are regenerated by the renormalization
group running in the low-energy effective theory valid at scales µ < mW and
therefore need not be discussed here any further.

We are now use free to add subleading terms in 1/xtW, 1/xtH to the coeffi-
cients Ci. In order to see how this is accomplished, let us for the moment
neglect the proper QCD corrections, so that we have to take into account
only the entries in the anomalous dimension matrix given in (23). Solving
the renormalization group equations (5), we find that only one coefficient
runs below mt,

CP 2
L
(µ) = CP 2

L
(mt) +

(
1

6Qb

+
1

6Qb

cot2 β

)
log

µ2

m2
t

, (29)

where the first term in parentheses is due to the mixing of R2
L into P 2

L , and
the second due to R2

L
′. We see that the renormalization group reproduces

the logarithmic terms already discussed in eq. (22), which would have been
there had we done the matching at a different scale.

The subleading contributions are found by taking the standard one-loop re-
sult from integrating out both particles in the loop at the same scale (see ap-
pendix) and subtracting the leading contributions that we found from match-
ing contributions (20,21) and running without QCD (29). We refer to this
procedure for obtaining the subleading terms in the rest of the present work.

Let us for the moment assume that mH± > mW. When we integrate out
the charged Higgs at µ = mH± , we obtain the subleading contributions from
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(21,29,78):

∆′(H)CO1
LR

= xtHF4(xtH)− 1

2

∆′(H)CO2
LR

=
Qb

Qt

∆′(H)CO3
LR

=
xtH

2
(F3(xtH) + F4(xtH))− 1

2

∆′(H)CP 1,1
L

= ∆′(H)CP 1,3
L

=
(
xtH

3
(2F2(xtH) + F3(xtH) + 2F4(xtH))− 11

18

)
cot2 β

∆′(H)CP 1,2
L

=
(

2xtH

3
(F2(xtH)− F3(xtH)− 2F4(xtH)) +

8

9

)
cot2 β

∆′(H)CP 1,4
L

= −Qb∆
′
(H)CP 4

L
=
(
xtHF4(xtH)− 1

2

)
cot2 β (30)

∆′(H)CP 2
L

=
1

Qb

(
xtH

(
1

2
F3(xtH) + F4(xtH)

)
− 3

4
− ln xtH

6(xtH − 1)

)
cot2 β .

The functions Fi(x) are given in appendix A. One may easily verify that
the terms on the r.h.s. are of order O(1/xtH), indicating that they are truly
subleading. Especially there is no (leading) logarithmic dependence of the
matching contributions to CP 2

L
on the mass ratio xtH, since all such depen-

dencies must come from the renormalization group.

As mentioned in section two, the choice of scale for the subleading contribu-
tions is ambiguous. This ambiguity can only be resolved by computing the
power corrections, which fortunately differ from our treatment by a next-to-
leading contribution. We shall define our procedure by assuming that setting
the scale equal to the mass of the lightest particle in the loop is a suitable
choice.

After scaling down from µ = mH± and adding in the leading matching con-
tributions at µ = mW, we will also consider the subleading contributions.
Analogous to the previous case we find:

∆′(φ,W )CO1
LR

= −xtWF4(xtW) +
1

2

∆′(φ,W )CO2
LR

=
Qb

Qt

∆′(φ,W )CO3
LR

= −xtW

2

(
F3(xtW) + F4(xtW) +

1

2

)
∆′(φ,W )CP 1,1

L
= ∆′(φ,W )CP 1,3

L

15



    

=
xtW + 2

3
(2F2(xtW) + F3(xtW) + 2F4(xtW))− 11

18

∆′(φ,W )CP 1,2
L

=
2(xtW + 2)

3
(F2(xtW)− F3(xtW)− 2F4(xtW)) +

8

9

∆′(φ,W )CP 1,4
L

= (xtW − 2)F4(xtW)− 1

2

∆′(φ,W )CP 2
L

=
1

Qb

(
(xtW + 2)

(
1

2
F3(xtW) + F4(xtW)

)
− ln xtW

2(x− 1)
− 3

4

)

∆′(φ,W )CP 4
L

=
1

Qb

(
7

2
− 2xtHF3(xtH)− 5xtHF4(xtH)

)
. (31)

3.1.4 Reduction by equations of motion

In order to use the results from previous calculations for the running between
the W and the b scale, we have to match our operator basis to the operator
basis employed there. To this end, we use the equations of motions, as in ref.
[13]. For the effective Hamiltonian just below the W scale, one then finds:

Heff =
4GF√

2
KtbK

∗
ts

∑
i

Ci(m
−
W)Oi(m

−
W) (32)

EOM→ 4GF√
2
KtbK

∗
ts

[(
−1

2
CO1

LR
+ CO2

LR
− 1

2
CP 1,1

L
− 1

4
CP 1,2

L
+

1

4
CP 1,4

L

)
O2

LR

+
(
−1

2
CO1

LR
+ CO3

LR
− 1

2
CP 1,1

L
− 1

4
CP 1,2

L
+

1

4
CP 1,4

L
− 1

4
CP 4

L

)
O3

LR

]
+

g2
3

16π2
(four-fermion operators) .

Since we are only interested in the leading contributions from the QCD cor-
rections caused by a large mass splitting, we may drop the contributions to
the four-fermion operators in (32) as these are suppressed by a factor g2

3/16π2

and therefore nonleading.

The standard four-fermion operators (b̄LγµsL)(q̄Lγ
µqL), q = u, c (with the

appropriate CKM mixing coefficients) resulting from integrating out the W
have to be added to this expression. The Wilson coefficients obtained this
way at the W scale may then be used as input for the renormalization group
running down to the b scale [6, 9, 12].
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3.2 mH± > mt

If the charged Higgs is heavier than the top quark, the picture becomes more
involved. As we run down from large scales, we first encounter the threshold
of the charged Higgs. Therefore, as a first step, we integrate out the charged
Higgs. In the same way as in the previous case, we shall now be mainly
concerned with the leading contributions in the limit xtH ¿ 1.

In the range mH± > µ > mt, after integrating out the charged Higgs, we
have to deal with four-fermion operators of dimension 6 that involve a b,
an s, and a quark-anti-quark pair. Besides the operators (13), our operator
basis contains:

S1 = (s̄αLγµb
α
L)(t̄βRγ

µtβR)

S2 = (s̄αLγµb
β
L)(t̄βRγ

µtαR)

S3 = (s̄αLγµb
α
L)
∑
q

(
q̄βLγ

µqβL
)

S4 = (s̄αLγµb
β
L)
∑
q

(
q̄βLγ

µqαL
)

S5 = (s̄αLγµb
α
L)
∑
q

(
q̄βRγ

µqβR
)

S6 = (s̄αLγµb
β
L)
∑
q

(
q̄βRγ

µqαR
)

S7 = µ2ε g2
3

16π2

mb

mt

(s̄αLt
β
R)(t̄βLb

α
R)

S8 = µ2ε g2
3

16π2

mb

mt

(s̄αLt
α
R)(t̄βLb

β
R)

S9 =
1

4
µ2ε g2

3

16π2

mb

mt

(s̄αLσµνt
β
R)(t̄βLσ

µνbαR)

S10 =
1

4
µ2ε g2

3

16π2

mb

mt

(s̄αLσµνt
α
R)(t̄βLσ

µνbβR) . (33)

Here α and β are color indices of the quarks, and the sums run over all active
flavors. Again, the inclusion of the additional factors g2

3 is motivated by the
Gilman-Wise trick [34], as are the factors mb/mt to keep the anomalous di-
mension matrices mass independent. The different normalization of S1 . . . S6

and S7 . . . S10 will be explained below.
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Integrating out the charged Higgs at µ = mH± , we find at leading order in
xtH ≡ (mt/mH±)2:

CO1
LR

=
1

2
xtH

CO2
LR

=
Qb

Qt

CO3
LR

= −1

2
xtH

CP 1,1
L

= CP 1,3
L

= −1

9
xtH · cot2 β

CP 1,2
L

=
7

18
xtH · cot2 β

CP 1,4
L

= −QbCP 4
L

=
1

2
xtH · cot2 β

CP 2
L

=
1

Qb

(
−1

4
xtH

)
cot2 β

CS2 = −1

2
xtH cot2 β

CS8 =
16π2

g2
3

xtH

CSi = 0, i = 1, 3 . . . 7, 9, 10 . (34)

Let us start again with the mixing back of the operators S into the operators
O and P . Because of the chirality structure of the operators, we find two
different situations at one loop. The operators S1, . . . S6 appear to have a
zeroth order mixing (g0

3) at one loop into the operators P .

γ(0) =



P 1,1
L P 1,2

L P 1,3
L P 1,4

L P 2
L P 4

L

S1 0 0 0 0 2Qt

Qb
0

S2
2
3

−4
3

2
3

0 2
3Qb

0

S3
4
3

−8
3

4
3

0 2
Qb

∑
qQq 0

S4
2nf
3

−4nf
3

2nf
3

0 2
3

(
6 + 1

Qb

∑
qQq − nf

)
0

S5 0 0 0 0 2
Qb

∑
qQq 0

S6
2nf
3

−4nf
3

2nf
3

0 2
3

(
1
Qb

∑
qQq − nf

)
0


. (35)

However, by inspecting the equations of motion (32) one sees that the back
mixing vanishes at this order; therefore we may simply drop this contribution.

18



   

As is well known, one has to consider this mixing at two-loop order. The
anomalous dimension matrix can be derived from eq. (25) of ref. [9], and
reads in our normalization

γ̂ =



O2
LR O3

LR

S1 −3
2

0
S2 −119

54
224
27

S3
70
27

+ 3
2
nf

232
27

S4 3 + 35
27
nf

8
27
nf + 4n̄f

S5 −7
3
− 3

2
nf −16

3

S6 −2− 119
54
nf

8
27
nf − 4n̄f


. (36)

Here nf = nu+nd is the number of active flavors, and n̄f = nd+(Qu/Qd)nu.

On the other hand, the mixing of S7 . . . S10 into the operators O does not
vanish at one loop:

γ̂ =



O1
LR O2

LR O3
LR

S7 0 0 −3
2
Qt

Qb

S8 0 −1
2
−1

2
Qt

Qb

S9 0 0 3
2
Qt

Qb

S10 0 1
2

1
2
Qt

Qb

 . (37)

Again one may verify that these entries of the ADM are consistent with the
lnµ dependence of the matching contributions (34).

Let us now turn to the mixing among the four-fermion operators. Since
the considered operators are all of dimension d + 2, and because the QCD
interactions preserve chirality, the operators S1,...,6 and the operators S7,...,10

will mix only among themselves, respectively.

The one-loop mixing among the S1 . . . S6 is well known [34]:

γ̂ =



S1 S2 S3 S4 S5 S6

S1 1 −3 0 0 0 0
S2 0 −8 −1

9
1
3

−1
9

1
3

S3 0 0 −11
9

11
3

−2
9

2
3

S4 0 0 3− nf
9

nf
3
− 1 −nf

9

nf
3

S5 0 0 0 0 1 −3
S6 0 0 −nf

9

nf
3

−nf
9

nf
3
− 8


. (38)

19



    

For the mixing of S7 . . . S10 we find:

γ̂ =


S7 S8 S9 S10

S7 1− 2b −3 −7
3

−1
S8 0 −8− 2b −2 2

3

S9 −7 −3 −19
3
− 2b 0

S10 −6 2 0 8
3
− 2b

 . (39)

Since the operators OLR are dimension d + 1, there is no mixing back into
S1,...,10.

Note that with our chosen normalization of the operators as given in (33) all
relevant mixing occurs at order g2

3, and all entries in the anomalous dimension
matrix are dimensionless.

After running down to µ = mt, we integrate out the t quark. The operators
S1, S2, S7,...,10 are removed, since they do not contribute to the matching;
for the operators S3,...,6 the t quark is excluded from the sum, because it is
inactive for µ < mt. Again we will take into account the subleading terms
in xtH according to the general prescription given in section 3.1.3. Then we
will continue as in the case for the Standard Model with a heavy top, except
that the coefficients Ci(m

+
t ) are now nonvanishing.

4 Supersymmetric contributions

4.1 Flavor-changing chargino interactions

Let us denote by W̃±, H̃−1 and H̃+
2 (analogous to [14]) the superpartners of

the W and the charged components of the Higgs fields, respectively. Define
the two component spinors ψ±j by

ψ+
j =

(
−iW̃+, H̃+

2

)
, ψ−j =

(
−iW̃−, H̃−1

)
, j = 1, 2 . (40)

The mass term for the W-inos and higgsinos then takes the following form:

LM = −ψ−Mψ+ + h.c. , (41)
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where the mass matrix is given by

M =
(

M2

√
2mW sin β√

2mW cos β µh

)
, (42)

where M2 is the soft SUSY breaking mass term for the W-inos at the weak
scale, and µh is the renormalized Higgs mixing parameter.

This mass matrix may be diagonalized with the help of the two unitary
matrices U, V such that

U∗MV † =Mχ = diag(m̃1, m̃2) (43)

is a diagonal matrix with nonnegative entries. The corresponding charged
mass-eigenstate 4-spinors are the charginos

χ+
i =

(
Vijψ

+
j

U∗ijψ̄
−
j

)
. (44)

We shall find it more convenient to rewrite the interactions of the charginos
by their charge conjugates

χ−i ≡
(
χ+
i

)c
= C(χ̄+

i )T =
(
Uijψ

−
j

V ∗ijψ̄
+
j

)
, (45)

so that when we refer to charginos below, we mean the χ−i given in (45).

Let us apply these definitions to the interactions of the charged gauginos
and higgsinos and convert to 4-spinor notation. Ignoring for the moment the
mixing of quarks and of squarks and concentrating on the terms involving b
quarks, the relevant Lagrangian for chargino-quark-squark interactions reads:

Lχbt̃ = −g2V
∗
i1t̃
†
L(χ̄iPLb) + g2λtV

∗
i2t̃
†
R(χ̄iPLb) + g2λbUi2t̃

†
L(χ̄iPRb) + h.c. , (46)

and the couplings λq are proportional to the Yukawa couplings:

λt =
mt√

2mW sin β
, λb =

mb√
2mW cos β

. (47)

A similar expression is found for the interactions of the charginos with the
quarks and squarks of the second family. In this case one can neglect the
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terms proportional to λc, λs, which originate in the coupling of the higgsino
components of the charginos to the quark and squark fields.

Since the Yukawa couplings of the matter fields to the Higgs fields are not
flavor diagonal in a weak interaction basis, we have to take into account the
mixing among quarks and among squarks. Let us denote by q̃lL,R as in ref.
[17] the squark current eigenstates (where q = u, d, and l = 1, 2, 3 is the
generation label), and q̃a (a = 1, . . . , 6) the corresponding mass eigenstates
with masses m̃a. We define the 6× 3 squark mixing matrices ΓQL,R by

q̃L,R = Γ†QL,Rq̃ . (48)

The relevant chargino interactions involving down-type quarks may then be
written as

Lχdũ = −g2

∑
j,a,l

[
ũ†a χ̄j

(
GjalPL −HjalPR

)
dl
]
+ h.c. , (49)

where

Gjal = V ∗j1Γ
al
UL − V ∗j2(ΓURΛUK)al

Hjal = Uj2(ΓULΛD)al . (50)

Here ΛU = MU/(
√

2mW sin β) and ΛD = MD/(
√

2mW cos β) are proportional
to the Yukawa coupling matrices for up- and down-type quarks, respectively.
Note that we neglect the masses of the light quarks, and therefore set the
Yukawa couplings of the light quarks to zero.

Since we are interested in the b → sγ transition, we find it convenient to
define

Gjal =
Gjal

Ktl

for l = b, s; Hjab =
Hjab

Ktb

. (51)

Unitarity of the mixing (48) implies that

6∑
a=1

ΓaiQL,RΓ∗akQL,R = δik ,
6∑

a=1

ΓaiQL,RΓ∗akQR,L = 0 , (52)

and therefore

6∑
a=1

G∗jasGjab = λ2
t |Vj2|2 ,

6∑
a=1

G∗jasHjab = 0 . (53)
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After having described our conventions, let us now turn to the evaluation of
the QCD correction. As the squarks and the charginos can have large mass
splittings, the procedure of matching and running becomes more involved
but still remains straightforward. We will give all ingredients, but the precise
procedure will depend on the details of the spectrum.

4.2 Operators from heavy squarks

If we encounter the threshold of an up-type squark ũa in the process of
running down, we will integrate it out. This generates effective four-fermion
operators made out of the quarks b, s, and the active charginos χj. We
extend our operator basis by the following operators (no sum over j):

W 1,j
LR = µ2ε g2

3

16π2

mb

m̃j

(s̄LbR)(χ̄jLχ
j
R)

W 2,j
LR =

1

4
µ2ε g2

3

16π2

mb

m̃j

(s̄Lσ
µνbR)(χ̄jLσµνχ

j
R)

W j
L = µ2ε g2

3

16π2
(s̄Lγ

µbL)(χ̄jRγµχ
j
R) . (54)

The matching contributions at µ = m̃a for m̃a À m̃j are:

∆(ũa)CO1
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃a

)2

· (−1)

∆(ũa)CO2
LR

= 0

∆(ũa)CO3
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃a

)2

· (−1)

Qb

∆(ũa)CP 1,1
L

= ∆(ũa)CP 1,3
L

= G∗jasGjab ·
(
mW

m̃a

)2

·
(

5

18

)
∆(ũa)CP 1,2

L
= G∗jasGjab ·

(
mW

m̃a

)2

·
(
−2

9

)
∆(ũa)CP 1,4

L
= 0

∆(ũa)CP 2
L

= G∗jasGjab ·
(
mW

m̃a

)2

· 1

2Qb

∆(ũa)CP 4
L

= G∗jasGjab ·
(
mW

m̃a

)2

· 1

Qb
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∆(ũa)CW 1,j
LR

= ∆(ũa)CW 2,j
LR

= G∗jasHjab · 16π2

g2
3

m̃j

mb

(
mW

m̃a

)2

∆(ũa)CW j
L

= G∗jasGjab · 16π2

g2
3

(
mW

m̃a

)2

· (−1) . (55)

The mixing back of these operators into the O’s and P ’s is found to be:

γ̂ =


O1,2

LR O3
LR P 1,A

L P 2
L P 4

L

W 1,j
LR 0 0 0 0 0

W 2,j
LR 0 −1/Qb 0 0 0

W j
L 0 0 0 −2/3Qb 0

 . (56)

Since the charginos carry no color charge, the renormalization of these oper-
ators is particularly simple,

γ̂ =


W 1,j

LR W 2,j
LR W j

L

W 1,j
LR −2b 0 0

W 2,j
LR 0 16

3
− 2b 0

W j
L 0 0 −2b

 , (57)

and there is no mixing of the O and P operators back into these.

If we cross the threshold of chargino χj at µ = m̃j, the operators W j will be
removed; they do not give any matching contribution to leading order.

4.3 Operators from heavy charginos

Let us now consider the case that we encounter the threshold of chargino χj
at µ = m̃j. If there are still active up-type squarks ũa, we have to extend
our operator basis by the two-quark two-squark operators (no sum over a):

Dimension d+ 1:
Q̃1,a

LR = mb ũ
†β
a ũ

α
a s̄

α
Lb
β
R

Q̃2,a
LR = mb ũ

†β
a ũ

β
a s̄

α
Lb
α
R .

Dimension d+ 2:
R̃1,a

L = iũ†βa ũ
α
a (s̄LD/ bL)αβ

R̃2,a
L = iũ†βa (Dµũa)

α s̄αLγµb
β
L
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R̃3,a
L = i(Dµũa)

†βũαa s̄
α
Lγµb

β
L

R̃4,a
L = iũ†βa ũ

β
a Tr (s̄LD/ bL)

R̃5,a
L = iũ†βa (Dµũa)

β s̄αLγµb
α
L

R̃6,a
L = i(Dµũa)

†βũβa s̄
α
Lγµb

α
L . (58)

For a running over each active up-type squark we find the following leading
matching contributions at µ = m̃j for m̃j À m̃a:

∆(χj)CO1
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃j

)2

· (−1)

∆(χj)CO2
LR

= 0

∆(χj)CO3
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃j

)2

· 1

Qb

∆(χj)CP 1,1
L

= ∆(χj)CP 1,3
L

= G∗jasGjab ·
(
mW

m̃j

)2

·
(
− 5

18

)

∆(χj)CP 1,2
L

= G∗jasGjab ·
(
mW

m̃j

)2

·
(

11

9

)
∆(χj)CP 1,4

L
= 0

∆(χj)CP 2
L

= G∗jasGjab ·
(
mW

m̃j

)2

·
(
−3

2

)
1

Qb

∆(χj)CP 4
L

= G∗jasGjab ·
(
mW

m̃j

)2

· 1

Qb

∆(χj)CQ̃1,a
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃j

)2

· (−2)

∆(χj)CR̃1,a
L

= ∆(χj)CR̃2,a
L

= G∗jasGjab ·
(
mW

m̃j

)2

· 2

∆(χj)CQ̃2,a
LR

= ∆(χj)CR̃n,aL
= 0 n = 3, 4, 5, 6 . (59)
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A straightforward calculation for the back-mixing at one-loop order (but
order α0

3 in our chosen normalization) gives

γ(0) =



OLR P 1,1
L P 1,2

L P 1,3
L P 1,4

L P 2
L P 4

L

Q̃1,a
LR 0 0 0 0 0 0 0

Q̃2,a
LR 0 0 0 0 0 0 0

R̃1,a
L 0 0 0 0 0 0 0

R̃2,a
L 0 1

6
−1

3
1
6

0 1
6Qb

0

R̃3,a
L 0 −1

6
1
3

−1
6

0 − 1
6Qb

0

R̃4,a
L 0 0 0 0 0 0 0

R̃5,a
L 0 0 0 0 0 1

2
Qt

Qb
0

R̃6,a
L 0 0 0 0 0 −1

2
Qt

Qb
0


. (60)

Again one sees that, similarly to the case of the four-quark operators, the
mixing into the magnetic moment operators vanishes after applying the equa-
tions of motion. Therefore we have to consider this mixing at two-loop order.

5-94 7690A1

Figure 1: Feynman diagrams contributing to the mixing of the two-quark
two-squark operators (58) into the operator O3

LR. A full square denotes
insertion of a two-quark two-squark operator, while an open square denotes
a one-loop counterterm. Diagrams related by reflection to the ones above are
not shown.

The actual two-loop calculation for mixing the two-quark two-squark opera-
tors (58) into the magnetic moment operators is performed analogously to the
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corresponding calculation for insertions of four-quark operators (see e.g. [4]).
In figure 1 we show the relevant diagrams and one-loop counterterms con-
tributing to mixing of the two-quark two-squark operators into the operator
O3

LR. As we prefer to work off-shell, we have to consider only 1-PI diagrams.
The main advantage is a simplification of the extraction of the divergent
parts of interest by focussing on the coefficients of the tensor structures that
are defined by our basis (13).

5-94 7690A02

Figure 2: Feynman diagrams whose contribution to the mixing vanishes after
application of the equations of motion.

Using the equations of motion (32) greatly reduces the computational effort,
similar to the corresponding calculations with insertions of four-fermion op-
erators. Figure 2 shows typical diagrams that do not contribute because their
sum can be shown to be proportional to (γµq

2− qµq/), and therefore need not
be calculated.
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5-94 7690A3

Figure 3: Additional Feynman diagrams that contribute to the mixing of the
two-quark two-squark operators into the operator O2

LR.

In the case of mixing into O2
LR, we have to consider the additional diagrams

and counterterms shown in figure 3 due to the non-Abelian interactions of
the gluons.

We obtained the following mixing coefficients (N = 3):

γ̂ =



O2
LR O3

LR

Q̃1,a
LR

N2−2
8N

Qt

Qb

N2−1
4N

Q̃2,a
LR

1
4

0

R̃1,a
L

N2−2
8N

Qt

Qb

N2−1
4N

R̃2,a
L −N2−2

16N
− N2+2

72N

(
−1

4
Qt

Qb
+ 1

18

)
N2−1
2N

R̃3,a
L −N2−2

16N
+ N2+2

72N

(
−1

4
Qt

Qb
− 1

18

)
N2−1
2N

R̃4,a
L

1
4

0

R̃5,a
L −1

8
0

R̃6,a
L −1

8
0


. (61)

In addition we need the mixing among the two-quark two-squark operators,
where the squarks are of the same kind,

γ̂ =



Q̃1,a
LR Q̃2,a

LR R̃1,a
L R̃2,a

L R̃3,a
L R̃4,a

L R̃5,a
L R̃6,a

L

Q̃1,a
LR

1
2

−3
2

0 0 0 0 0 0

Q̃2,a
LR 0 −4 0 0 0 0 0 0

R̃1,a
L

9
2

−3
2
−4 0 0 0 0 0

R̃2,a
L −1

2
3
2

0 −25
6

1
6

0 13
18

−13
18

R̃3,a
L −4 0 0 1

6
−25

6
0 −13

18
13
18

R̃4,a
L 0 0 0 0 0 −4 0 0

R̃5,a
L

3
2

−1
2

0 0 0 0 −2 −2

R̃6,a
L −3

2
1
2

0 0 0 0 −2 −2


. (62)
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and for different types of squarks (a 6= b):

γ̂ =

( R̃2,b
L R̃3,b

L R̃5,b
L R̃6,b

L

R̃2,a
L

1
12

− 1
12
− 1

36
1
36

R̃3,a
L − 1

12
1
12

1
36

− 1
36

)
. (63)

In addition we find a mixing of some of the two-quark two-squark operators
into four-fermion operators:

γ̂ =

( S3 S4 S5 S6

R̃2,a
L − 1

36
1
12

− 1
36

1
12

R̃3,a
L

1
36

− 1
12

1
36

− 1
12

)
. (64)

If there are squarks lighter than the top quark, we also have to take into
account the mixing of the four-fermion operators (33) into the operators R̃:

γ̂ =



R̃2,a
L R̃3,a

L R̃5,a
L R̃6,a

L

S1 0 0 0 0
S2

1
3

−1
3
−1

9
1
9

S3
2
3

−2
3
−2

9
2
9

S4
nf
3

−nf
3
−nf

9

nf
9

S5 0 0 0 0
S6

nf
3

−nf
3
−nf

9

nf
9


. (65)

In principle there is also a QCD-induced mixing into operators with two
quarks and two down-type squarks, which we also would have to include if
we were considering the contributions induced by gluinos and neutralinos.
In most scenarios, the mass splitting of down-type squarks is much smaller
than for up-type squarks. For the supersymmetric contributions to be nu-
merically relevant the lightest squark (which is usually the lightest stop)
must be significantly lighter than the other squarks. As has been argued in
the introduction, contributions from these operators are strongly suppressed,
and inclusion of these operators into the mixing would lead to only a minor
effect compared to other neglected corrections. Furthermore, all Wilson co-
efficients that contribute to mixing via (63,64) are proportional to cot2 β and
therefore suppressed in the large-tan β limit.

Again, if we cross the threshold µ = m̃a of squark ũa, the matching contri-
bution vanishes to leading order, and the operators Õa and R̃a are simply
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removed. We will also add the corresponding subleading contributions each
time a pair (a, j) of squarks and charginos has been integrated out, i.e. at
µ = min(m̃a, m̃j).

5 Results and Discussions

As the full anomalous dimension matrix is quite large and changes its struc-
ture every time we cross a threshold, it would be a major effort to diagonalize
the anomalous dimension matrix in every step. It is much simpler to directly
evaluate the solution (12) of the RGE numerically. Before we proceed, let us
comment on some simplifications that result from the use of the equations
of motion, since we are eventually only interested in the coefficient of the
magnetic moment operators at the b scale.

First we note that the operators QLR and R1
L (and in the case of mH± <

mt their primed counterparts) which appear in intermediate stages of the
calculations turn out to be superfluous, as they do not give any contribution
in the process of matching, nor do they mix into any other operator. Second,
although the coefficient of P 2

L does get matching contributions and many
operators mix into it, it can be ignored, since it vanishes after applying the
equations of motion. Third, the operators R2

L and R3
L mix only into P 2

L ,
which vanishes by equations of motion, and may therefore be omitted from
the beginning. Extending this reasoning to R2

L
′
, R3

L
′
, W 1,j

LR , W j
L and R̃4,a

L

shows that they may also be disregarded.

Next, one may convince oneself that the apparent zeroth-order mixing of
some operators [see eqs. (35), (60)] vanishes after application of the equations
of motion, so all mixing occurs at order (g2

3/8π
2), as promised.

Let us first rediscuss the effect of the QCD corrections to the Standard Model
contribution. For the contribution from the W-t loop there is a QCD enhance-
ment of the coefficients Ceff

O2
LR

(mW) and Ceff
O3

LR
(mW) of the order of 10–18%

and 15–22% for mt = 130 . . . 250 GeV, respectively, which after scaling down
to µ = mb and including the contribution from the four-fermion operators
leads to an additional enhancement of the decay rate within the SM of the
order of 12–23% [13], compared to the case when both t and W are integrated
out at µ = mW. This large correction, which seems to compare quite well
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with the naive estimate given in the introduction, is a confirmation that a
full next-to-leading order calculation is quite important.

The magnitude of this effect may be understood by solving the renormaliza-
tion group equation for the leading terms. After application of the equations
of motion, their contribution turns out to be quite simple:

Ceff
O2

LR
(mW)

∣∣∣
SM

= − 5

24

(
α3(mt)

α3(mW)

)14/23

+
1

3
+ (subleading)

Ceff
O3

LR
(mW)

∣∣∣
SM

=
5

3

(
α3(mt)

α3(mW)

)14/23

− 8

3
+ (subleading) (66)

Equation (66) leads to positive corrections essentially because the effective
matching contributions at µ = mt (20) and at µ = mW (27) have opposite
signs (which is a remnant of the GIM mechanism), and therefore lead to
coefficients of opposite signs but comparable magnitude of the first two terms
on the right-hand sides of (66). It has long been known [34] that the QCD
corrections tend to soften the GIM-cancellations between different up-type
quarks if they are nearly degenerate; but there remains a finite enhancement
even for a heavy top quark (i.e., mt À mW), as can be explicitly seen from
these expressions. Note that (66) gives only the leading terms, with the
subleading terms being suppressed by only a factor of (mW/mt)

2.

Next let us turn to the contribution from the loop with a charged Higgs.
For this case we have solved the renormalization group equation numerically,
using as input parameters:

mb = 4.5 GeV, mt = 175 GeV,

mW = 80.22 GeV, α3(mZ) = 0.123 .

The resulting correction

δH± =
Ceff
O3

LR
(mb)

Ceff,naive
O3

LR
(mb)

∣∣∣∣∣∣
H±

− 1 , (67)

to the naive result, obtained by integrating out t and H± simultaneously at
the W scale, is shown in figure 4 for mW < mH± < 750 GeV and tanβ =
1.5, 2, 3, and 10. At sufficiently large tanβ (i.e. tanβ > 3), the correction
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Figure 4: Correction (67) to the coefficient of O3
LR(mb) from a loop with

t quark and charged Higgs with leading QCD corrections from large mass
splitting to the case when both particles are integrated out at µ = mW. The
mass of the t quark is assumed to be 175 GeV. The dotted, long-dashed,
dashed and solid line correspond to tan β = 1.5, 2, 3, and 10, respectively.

turns out to be essentially independent of tanβ. This is quite understandable
since the tan β-dependent pieces are actually proportional to cot2 β.

For a light charged Higgs, i.e., mH± < mt, there appears to be a further
reduction of this contribution compared to the naive result. Indeed, in the
limit of large tanβ, and assuming there is no light squark or gluino with mass
below mt, one finds the following simple analytical result for the charged
Higgs contribution, valid for mb < µ < mt:

Ceff
O2

LR
(µ)

∣∣∣
H±

=
1

4

(
α3(mt)

α3(µ)

)14/23

+ (subl.) +O(cot2 β) (68)

Ceff
O3

LR
(µ)

∣∣∣
H±

=
3

4

(
α3(mt)

α3(µ)

)16/23

− 2

(
α3(mt)

α3(µ)

)14/23

+ (subl.) +O(cot2 β) .

Hence no enhancement occurs as in the case of the SM contribution; on the
contrary, the leading coefficients get suppressed as they are run down from
the mt, compared to the subleading terms that (according to our discussion
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in section 3.1.3) get only suppressed by the evolution from µ = mH± down
to µ = mb. The additional QCD corrections are then essentially due to the
running from µ = mt to µ = mH± for sufficiently small mH± . Note that our
corrections are counted relative to the case when both particles in the loop
are integrated out at the common scale µ = mW, which is obtained from
(68) by substituting α3(mt) → α3(mW). Thus, for mH± < mt, integrating
out t and H± at the t scale appears to give a more accurate result than at
µ = mH± or µ = mW.

On the other hand, for mH± > mt we found only a minor suppression of a
few percents, which is essentially the result of a partial cancellation of the en-
hancement coming from the scaling betweenmH± andmt (due to one negative
eigenvalue of the submatrix (39) for the mixing of four-fermion operators),
and of a reduction from the scaling between mt to mW. Unfortunately, we
were unable to obtain a simple analytical solution for this case.

In the case of the chargino contribution, things are more complicated, since
one has to consider in general the dependence of the amplitude as a func-
tion of several parameters, namely the mass spectrum and the mixing angles
for the charginos and the up-type squarks. However, it turns out that the
essential features may already be studied for the case of sufficiently large
tan β, which is in the center of recent interest [11, 18, 20, 23, 24, 25]. In this
case, the parameter λb (47) may become of the same order of magnitude as
the parameter λt. Assuming furthermore that mixing in the squark sector is
essentially the same as in the quark sector, which is quite natural in super-
gravity models where the soft SUSY-breaking is characterized by a common
scalar mass at some unification scale, the quantities G and H, as defined in
(51), are then necessarily of the same order of magnitude, the terms propor-
tional to the ratio m̃j/mb will dominate the amplitude, and the corrections
become tan β-independent.

In this particular limit, one can find an analytical result for the leading
terms. For the case of the chargino being much lighter than the squark, the
coefficients read:

Ceff
O2

LR
(µ)

∣∣∣
χ

= C̃ · 1
2
e14t/3 + (subl.) +O(cot2 β)

Ceff
O3

LR
(µ)

∣∣∣
χ

= C̃ ·
[
−4e14t/3 + e16t/3

(
15

2
+

4π

2bQb

(
1

α3(µ)
− 1

α3(m̃a)

))]
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+ (subl.) +O(cot2 β) (69)

where

C̃ = G∗jasHjab · m̃j

mb

(
mW

m̃a

)2

, t =
1

2b
ln

(
α3(µ)

α3(m̃a)

)
,

while for the other case of a squark much lighter than a chargino, we get:

Ceff
O2

LR
(µ)

∣∣∣
q̃

= C̃ ·
[

99

260
e14t/3 +

1

10
et/2 +

1

52
e−4t

]
+ (subl.) +O(cot2 β)

Ceff
O3

LR
(µ)

∣∣∣
q̃

= C̃ ·
[
−198

65
e14t/3 +

495

406
e16t/3 − 96

145
et/2 − 1

91
e−4t

]
+ (subl.) +O(cot2 β) (70)

where now

C̃ = G∗jasHjab · m
2
W

m̃jmb

, t =
1

2b
ln

(
α3(µ)

α3(m̃j)

)
.

At first sight the terms proportional to 1/α3 in (69) might be embarrassing,
but a closer look shows that their difference is (to leading order) just some
number times ln(µ/m̃a) and therefore finite in the limit α3 → 0.

Unfortunately, the interpretation of these expressions is aggravated in both
limiting cases since the number of free parameters in the general model is
quite large, and due to eqs. (53) one has a supersymmetric version of the GIM
mechanism, which leads to a partial cancellation of the leading terms under
consideration. Therefore it is difficult to estimate the actual corrections due
to the mass splitting between charginos and squarks by using (69) or (70).

Some features of these expressions may still be studied under the following
assumptions:

• the squarks of the first two generations are degenerate with mass m̃u,

• the mixing in the squark sector is the same as in the quark sector (i.e.,
the gluino-quark-squark couplings are flavor diagonal even in the mass
eigenstate basis), and

• the mass matrix for the stop is given (in the (tL, tR) basis) by

M2
t̃ =

(
m̃2
tL

m̃2
tLR

m̃2
tLR

m̃2
tR

)
. (71)
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This mass matrix is diagonalized by a unitary matrix T ,

TM2
t̃ T
−1 =

(
m̃2
t1

0
0 m̃2

t2

)
. (72)

In this scenario, the quantities (51) take a particularly simple form:

Gjal ' Vj1Ta1 − λtVj2Ta2 for l = b, s; a = t̃1,2

Hjab ' λbUj2Ta1 (73)

while the sum over the squarks of the first two generations is determined by
(53).

Let us for the moment neglect the mixing between t̃L and t̃R, and consider
the case m̃2

tLR
= 0, T = 1. Evaluating the first line of (69) to lowest order,

we find for the contribution of a light chargino and after summing over the
different squarks:

Ceff
O2

LR
(m̃j) =

1

2
λbUj2Vj1

m̃j

mb

m2
W

m̃2
u

(
m̃2
j

m̃2
u

) 14
3
α̂3
( m̃2

u

m̃2
tL

)1+ 14
3
α̂3

− 1


+ O(α̂2

3) + (subl.) +O(cot2 β) (74)

with the abbreviation

α̂3 =
α3(m̃j)

4π
.

Similar, although rather lengthy expressions are obtained if the mixing be-
tween t̃L and t̃R is taken into account, and analogous results are found for
the other coefficients in (69) and (70). As has already been pointed out in
[23], the sign of the product Uj2Vj1 depends on the sign of µh, so that this
leading contribution for large tanβ can have either sign.

A closer look at (74) shows two counteracting effects: a reduction of the
leading coefficient due to QCD running from m̃u down to m̃j, while the term
in square brackets shows an enhancement due to a QCD-softening of the GIM
cancellation, independent on whether m̃tL is larger or smaller than m̃u. The
actual size of the corrections depends of course on the mass splitting between
the squarks as well as on the splitting between the mass of the chargino and
the squarks; since squarks can be an order of magnitude heavier than the
lightest chargino, we estimate this coefficient to be of the order of

14

3

α3(m̃j)

4π
×
(

ln
m̃u

m̃j

, ln
m̃u

m̃t

)
<∼ 15% .
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Similar results are found when analyzing the other expressions, so in general
we will expect corrections up to O(15%) with either sign. An exceptional
situation occurs when, due to these super-GIM cancellations, the lowest-
order contribution to O3

LR is accidentally lower than the contribution to O2
LR

by orders of magnitude, since the above reasoning did not take into account
the mixing of O2

LR into O3
LR for scales below the heavy thresholds. In this

case a sensible answer is obtained only when using the full expressions.

6 Conclusions

We have extended the calculation of the leading QCD corrections for the
inclusive b → sγ decay to the MSSM in the framework of effective field
theories. It was shown that proper treatment of the high-energy scale at
which the particles in the loop are integrated out is important, as well as how
to calculate the QCD corrections between if the masses of the particles in the
loop are vastly different. To this end, we have calculated the leading order
anomalous dimension matrices for the operators for the various scenarios that
are relevant to this process in the MSSM.

We found that, while the SM contribution to the Wilson coefficients at the
weak scale is enhanced in the limit of a heavy top quark by about 15–20%,
the contribution from a loop with a charged Higgs is actually slightly reduced
by a few percents. The result for the contribution from the chargino loops
depends strongly on the mass spectrum of the squarks and the charginos as
well as on the mixing angles. Typically, one expects corrections up to the
order of 15% with either sign, which is less than the enhancement of the SM
contribution.

Given a range of values for the inclusive decay, if one applies the above
results to a parameter space analysis for a particular SUSY model, one will
essentially find a relaxation of the bounds on the mass of the charged Higgs,
especially in the region of large tanβ. The impact of the modification of the
QCD corrections for the chargino loop contribution is not seen so easily, but
we expect a smooth deformation of contours in analyses like [11, 25], with
the strongest effect in those regions where the lowest order contribution to
the coefficient CO3

LR
is small although the chargino is relatively light.

36



   

Finally we would like to point out that for the inclusive decay rate, even after
taking into account the real gluon emission and virtual corrections below the
b scale [35], the leading order prediction remains uncertain by about 25% due
to the residual scale dependence alone [10, 12]. Once a full next-to-leading
order calculation is available for the SM, it may be combined with the above
results to obtain predictions in the MSSM with comparable precision.
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A Wilson coefficients at one loop

We quote here the results for the Wilson coefficients at one-loop order when
both particles in the loop are integrated out at a common scale. These results
will be used for the determination of subleading terms. They also provide
an important cross-check for the leading terms obtained by the calculation
in the effective theory, as well as for some of the entries in the anomalous
dimension matrix.

It is convenient to use the following functions that appear in the evaluation
of the coefficients of the basis operators:

F1(x) =
x2 − 5x− 2

12(x− 1)3
+

x ln x

2(x− 1)4

F2(x) =
2x2 + 5x− 1

12(x− 1)3
− x2 ln x

2(x− 1)4
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F3(x) =
x− 3

2(x− 1)2
+

ln x

(x− 1)3

F4(x) =
x+ 1

2(x− 1)2
− x ln x

(x− 1)3
. (75)

These functions are identical with those given in the appendix of ref. [17].
Some of their properties are:

F1

(
1

x

)
= xF2(x), F2

(
1

x

)
= xF1(x), F4

(
1

x

)
= xF4(x)

F1(x) + F2(x) =
1

2
F4(x) =

1

4
− 1

2
xF3(x)

xF1(x) + F2(x) =
1

12

F3

(
1

x

)
= −x (F3(x) + 2F4(x)) +

x ln x

x− 1
. (76)

A.1 Standard Model loop contributions

Integrating out the W, the charged would-be Goldstone bosons and an up-
type quark simultaneously, we obtain the one-loop expression of the Wilson
coefficients of the effective Hamiltonian (1):

CO1
LR

= −xF4(x)

CO2
LR

=
Qb

Qt

CO3
LR

= −x
2

(F3(x) + F4(x))

CP 1,1
L

= CP 1,3
L

=
1

3
(x+ 2) (2F2(x) + F3(x) + 2F4(x))

CP 1,2
L

=
2

3
(x+ 2) (F2(x)− F3(x)− 2F4(x))

CP 1,4
L

= (x− 2)F4(x) (77)

CP 2
L

=
1

Qb

(x+ 2)

(
1

2
F3(x) + F4(x)−

ln(x)

6(x− 1)

)

CP 4
L

=
1

Qb

(3− 2xF3(x)− 5xF4(x)) .

Here x = (mq/mW)2. Note that for large x all coefficient functions are
bounded, except for CP 2

L
, which grows logarithmically with x. For small x,
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CP 1,1
L

, CP 1,2
L

, CP 1,3
L

and CP 2
L

diverge logarithmically.

A.2 Charged Higgs loop contributions

Integrating out the charged Higgs and an up-type quark simultaneously, the
corresponding expressions are (y = (mq/mH±)2):

CO1
LR

= yF4(y)

CO2
LR

=
Qb

Qt

CO3
LR

=
y

2
(F3(y) + F4(y))

CP 1,1
L

= CP 1,3
L

=
1

3
y (2F2(y) + F3(y) + 2F4(y)) cot2 β

CP 1,2
L

=
2

3
y (F2(y)− F3(y)− 2F4(y)) cot2 β

CP 1,4
L

= −QbCP 4
L

= yF4(y) cot2 β (78)

CP 2
L

=
1

Qb

y

(
1

2
F3(y) + F4(y)−

ln(y)

6(y − 1)

)
cot2 β .

A.3 Chargino loop contributions

Finally we give the expressions for integrating out a chargino and an up-
type squark. Setting z = (m̃j/m̃a)

2, where mj and ma represent the mass
of the chargino χj and of the up-type squark ũa respectively, and using the
couplings defined in eq. (51), one finds

CO1
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃a

)2

· (−2)F4(z)

CO2
LR

= 0

CO3
LR

= G∗jasHjab · m̃j

mb

(
mW

m̃a

)2

· 1

Qb

(F3(z) + F4(z))

CP 1,1
L

= CP 1,3
L

= G∗jasGjab ·
(
mW

m̃a

)2

· 1
3

[
4F2(z) +

1

z
F3

(
1

z

)]
CP 1,2

L
= G∗jasGjab ·

(
mW

m̃a

)2

· 2
3

[
2F2(z)−

1

z
F3

(
1

z

)]
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CP 1,4
L

= 0 (79)

CP 2
L

= G∗jasGjab ·
(
mW

m̃a

)2

·
(
− 2

Qb

)(
1

2
F3(z) + F4(z)−

ln(z)

6(z − 1)

)

CP 4
L

= G∗jasGjab ·
(
mW

m̃a

)2

·
(

2

Qb

)
F4(z) .

After application of the equations of motion, these expressions are consistent
with the corresponding expressions in [17].
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