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The radiative decay b→ sγ is examined in the Standard Model and

in nine classes of models which contain physics beyond the Standard

Model. The constraints which may be placed on these models from

the recent results of the CLEO Collaboration on both inclusive and

exclusive radiative B decays is summarized. Reasonable bounds are

found for the parameters in some cases.
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1 Introduction

The Standard Model (SM) of electroweak interactions is in complete agreement

with present experimental data.1 Nonetheless, it is believed to leave many ques-

tions unanswered, and this belief has resulted in numerous attempts to discover

a more fundamental underlying theory. The search for new physics is conducted

via a three-prong attack: (i) direct production of new particles at high energy

colliders, (ii) deviations from SM predictions in precision measurements, and (iii)

indirect observation of new physics in rare or forbidden processes. The first ap-

proach relies on a discovery via the direct production of exotic particles or obser-

vation of new reactions. The second and third techniques offer a complementary

strategy by searching for indirect effects of new physics in higher order processes.

In particular, the probing of loop induced couplings can provide a means of testing

the detailed structure of the SM at the level of radiative corrections where the

Glashow-Iliopoulos-Maiani2 (GIM) cancellations are important. This talk will

focus on the latter option, and will examine the radiative decay b→ sγ.

Radiative B decays are one of the best testing grounds of the SM due to recent

progress on both theoretical and experimental fronts. The CLEO Collaboration

has observed3 the exclusive decay B → K∗γ with a branching fraction of B(B →
K∗γ) = (4.5±1.5±0.9)×10−5 and has also placed an upper limit on the underlying

quark-level process of B(b→ sγ) < 5.4×10−4 at the 95% C.L. Using a conservative

value of the ratio of exclusive to inclusive decay rates based on lattice calculations,4

the observation of the exclusive process also implies the lower bound B(b→ sγ) >

0.65× 10−4 at 95% C.L. On the theoretical side, the reliability of the calculation

of the quark-level process b→ sγ is improving as partial calculations of the next-

to-leading logarithmic QCD corrections to the effective Hamiltonian now exist.5

These new results have inspired a large number of investigations of this decay in

various classes of models, which can be summarized by the following list:

• “Top Ten” Models Constrained by b→ sγ

1. Standard Model 6. Supersymmetry

2. Anomalous Top-Quark Couplings 7. Three-Higgs-Doublet Model

3. Anomalous Trilinear Gauge Couplings 8. Extended Technicolor

4. Fourth Generation 9. Leptoquarks

5. Two-Higgs-Doublet Models 10. Left-Right Symmetric Models



In what follows, I will summarize the contributions that b → sγ receives in each

of these models and the constraints placed on the model parameters by the CLEO

data.

2 Models

2.1 Standard Model

In the SM, the quark-level transition b→ sγ is mediated by W -boson and t-quark

exchange in an electromagnetic penguin diagram. The matrix element for this

process at the electroweak scale is governed by the σµνqν(1 + γ5) dipole operator.

The QCD corrections to this process are calculated6 via an operator product

expansion based on the effective Hamiltonian

Heff = −4GF√
2
V ∗tsVtb

8∑
i=1

ci(µ)Oi(µ) , (1)

which is then evolved from the electroweak scale down to µ = mb by the Renormal-

ization Group Equations. Here, Vij represents the relevant Cabibbo-Kobayashi-

Maskawa (CKM) factors. The Oi are a complete set of renormalized dimension

six operators involving light fields which govern b→ s transitions. They consist of

six four-quark operators, O1−6, the electromagnetic dipole operator, O7, and the

chromo-magnetic dipole operator, O8. The Wilson coefficients, ci, of the b → s

operators are evaluated perturbatively at the W scale where the matching con-

ditions are imposed and are evolved down to the renormalization scale µ. The

explicit expressions for c7,8(MW ) = G7,8(m
2
t/M

2
W ) can be found in the literature.7

The partial decay width is given by

Γ(b→ sγ) =
αG2

Fm
5
b

128π4
|V ∗tsVtbc7(mb)|2 . (2)

To obtain the branching fraction, the inclusive rate is scaled to that of the semi-

leptonic decay b→ X`ν. This procedure removes uncertainties in the calculation

due to an overall factor of m5
b which appears in both expressions, and reduces

the ambiguities involved with the imprecisely determined CKM factors. The re-

sult is then rescaled by the experimental value8 of B(b → X`ν) = 0.108. The

semi-leptonic rate is calculated incorporating both charm and non-charm modes,

and includes both phase space and QCD corrections.9 The calculation of c7(mb)



employs the partial next-to-leading log evolution equations from Ref. 5 for the

coefficients of the b → s transition operators in the effective Hamiltonian, the

O(αs) corrections due to gluon bremsstrahlung,10 corrections11 for mt > MW , a

running αQED evaluated at mb, and the 3-loop evolution of the running αs which

is fitted to the global value1 at the Z mass scale. The ratio of CKM elements in

the scaled decay rate, |VtbVts/Vcb|, is taken to be unity.

The prediction for the b→ sγ branching fraction as a function of the top-quark

mass in the SM is shown in Fig. 1a, taking µ = mb = 5 GeV. The solid curve

represents the rate with the inclusion of the partial next-to-leading log evolution

of the operator coefficients, while the dashed curve corresponds to the leading

log case. The effect of the known next-to-leading order terms is to decrease the

QCD enhancements of the rate by ∼ 15%. Figure 1b displays the dependency of

the branching fraction (for mt = 165 GeV) on the choice of the renormalization

scale for the Wilson coefficients. The uncertainty introduced by the choice of the

value of mc/mb in calculating B(b → X`ν) is also shown in this figure, where

the region between the curves corresponds to mc/mb = 0.316 ± 0.013. We see

that the b → sγ branching fraction increases by ∼ 20% as the renormalization

scale µ is varied from mb to mb/2. The overall variation in the SM prediction for

B(b→ sγ) due to the combined freedom of choice in µ and mc/mb can be as large

as 30−40%! Once the full next-to-leading order corrections have been computed,

this large dependence on the renormalization scale will diminish. For now, this

dependence represents an additional theoretical uncertainty.12 When determining

constraints on new physics from this decay, we choose values for these parameters

which yields the most conservative SM rate; for most of the models discussed

here µ is taken to be 5.0 GeV. Most of the parameter constraints presented here

are not very sensitive to the remaining uncertainties in the calculation of the

branching fraction arising from higher order QCD corrections, as B(b→ sγ) is a

steep function of the parameters in these cases.

2.2 Anomalous Top-Quark Couplings

The possibility of anomalous couplings between the top-quark and the gauge boson

sector has been examined in the literature.13 Future colliders such as the LHC and

NLC can probe these effective couplings down to the level of 10−18 − 10−19 e-cm,

but they rely on direct production of top-quark pairs, whereas b→ sγ provides the



opportunity to probe the properties of the top-quark before it is produced directly.

If the t-quark has large anomalous couplings to on-shell photons and gluons, the

resulting prediction14 for the b → sγ rate would conflict with experiment. The

most general form of the Lagrangian which describes the interaction between top-

quarks and on-shell photons (assuming operators of dimension-five or less, only)

is

Ltt̄γ = et̄
[
Qtγµ +

1

2mt
σµν(κγ + iκ̃γγ5)qν

]
tAµ + h.c. , (3)

where Qt is the electric charge of the t-quark, and κγ(κ̃γ) represents the anomalous

magnetic (electric) dipole moment. A similar expression is obtained for Ltt̄g. Note

that a non-vanishing value for κ̃γ would signal the presence of a CP-violating

amplitude. In practice, only the coefficients of the magnetic dipole and chromo-

magnetic dipole b→ s transition operators, O7 and O8 respectively, are modified

by the presence of these couplings. The coefficients of these operators at the W

scale can be written as

c7(MW ) = GSM
7 (m2

t/M
2
W ) + κγG1(m2

t/M
2
W ) + iκ̃γG2(m2

t/M
2
W ) , (4)

c8(MW ) = GSM
8 (m2

t/M
2
W ) + κgG1(m2

t/M
2
W ) + iκ̃gG2(m2

t/M
2
W ) .

The functions Gi are obtained by inserting the above couplings into the Feymann

diagrams in which the photon is emitted from the top-quark line, and extracting

the pure dipole-like terms after performing the loop integrations and are given

in Ref. 14. All other Lorentz structures vanish due to electromagnetic gauge

invariance and the fact that the photon is on-shell. When the resulting branching

fraction and the CLEO data are combined, the constraints shown in Fig. 2 are

obtained. In Fig. 2a, the 95% C.L. allowed region of the anomalous magnetic

dipole operator as a function of mt lies between the curves for the cases κg = 0

(solid curves) and κg = κγ (dashed curves). In Fig. 2b, the 95% C.L. allowed

region for the anomalous electric dipole moment lies beneath the curves. The

bounds on the chromo-dipole moments are found to be weak, since they only

enter the decay rate via operator mixing. For mt = 150 GeV, κγ is constrained to

lie in the range (−2.6 to 3.4)× 10−16 e-cm, and κ̃γ < 5.1× 10−16 e-cm.

The chiral structure of the top-bottom charged current is also probed by b→
sγ. It has been determined15 that consistency with the CLEO results restricts the

potential deviation from the v − a structure of the tbW coupling to be less than

a few percent.



2.3 Anomalous Trilinear Gauge Couplings

The trilinear gauge coupling of the photon to W+W− can also be tested by the b→
sγ process. Anomalous γWW vertices can be probed by looking for deviations

from the SM in tree-level processes such as e+e− → W+W− and pp̄ → Wγ, or

by their influence on loop order processes, for example the g − 2 of the muon.

In the latter case, cutoffs must be used in order to regulate the divergent loop

integrals and can introduce errors by attributing a physical significance to the

cutoff.16 However, some loop processes, such as b→ sγ, avoid this problem due to

cancellations provided by the GIM mechanism and hence yield cutoff independent

bounds on anomalous couplings. The CP-conserving interaction Lagrangian for

WWγ interactions is

LWWγ = i
(
W †
µνW

µAν −W †
µAνW

µν
)

+ iκγW
†
µWνA

µν + i
λγ
M2

W

W †
λµW

µ
ν A

νλ + h.c. ,

(5)

where Vµν = ∂µVν − ∂νVµ, and the two parameters κγ = 1 + ∆κγ and λγ take on

the values ∆κγ, λγ = 0 in the SM. In this case, only the coefficient of the magnetic

dipole b→ s transition operator O7 is modified by the presence of these additional

terms and can be written as

c7(MW ) = GSM
7 (m2

t/M
2
W ) + ∆κγA1(m

2
t/M

2
W ) + λγA2(m

2
t/M

2
W ) . (6)

The functions A1,2 are obtained in the same manner as described above for the

anomalous top-quark couplings and are given explicitly in Ref. 17. As both

of these parameters are varied, either large enhancements or suppressions over

the SM prediction for the b → sγ branching fraction can be obtained. When

one demands consistency with both the upper and lower CLEO bounds, a large

region of the ∆κγ−λγ parameter plane is excluded; this is displayed in Fig. 3 from

Rizzo17 for mt = 150 GeV. Here, the 95% C.L. bounds obtained from the lower

limit on B(b → sγ) correspond to the dashed curves, where the region between

the curves is excluded, while the constraints placed from the upper CLEO limit

correspond to the diagonal solid lines, with the allowed region lying in between the

lines. The allowed region in this parameter plane as determined from UA2 data18

from the reaction pp→ Wγ is also displayed in this figure and corresponds to the

region between the two almost horizontal lines. Combining these constraints, an

overall allowed region is obtained and is represented by the two shaded areas in

this figure. We see that a sizable area of the parameter space is ruled out! Note



that the SM point in the ∆κγ − λγ plane (labeled by ‘S’) lies in the center of one

of the allowed regions.

2.4 Fourth Generation

The implications of a fourth generation of quarks on the process b → sγ have

been previously19 examined. The possibility of a fourth family of fermions was

a popular20 potential extension to the SM before LEP/SLC data1 precluded the

existence of a light fourth neutrino. However, one should keep in mind that a

fourth generation is consistent with the LEP/SLC data as long as the fourth

neutrino is heavy, i.e., mν4
>∼MZ/2, and that such a heavy fourth neutrino could

mediate21 a see-saw type mechanism thus generating a small mass for νe,µ,τ .

In the case of four families there is an additional contribution to b→ sγ from

the virtual exchange of the fourth generation up quark t′. The Wilson coefficients

of the dipole operators are given by

c7,8(MW ) = G7,8(m2
t/M

2
W ) +

V ∗t′sVt′b
V ∗tsVtb

G7,8(m
2
t′/M

2
W ) , (7)

in the limit of vanishing up and charm quark masses. Vij represents the 4x4 CKM

matrix which now contains 9 parameters; 6 angles and 3 phases. We recall here

that the CKM coefficient corresponding to the t-quark contribution, i.e., V ∗tsVtb, is

factorized in the effective Hamiltonian as shown in Eqn. (1). In order to determine

the allowed ranges of the nine parameters in the full 4x4 CKM matrix we demand

consistency22 with (i) unitarity and the determination of the CKM matrix elements

extracted from charged current measurements, (ii) the ratio |Vub|/|Vcb|, (iii) ε, (iv)

B0 − B̄0 mixing. 108 sets of the nine CKM mixing parameters are generated via

Monte Carlo and subjected to the constraints (i)-(iv) for mt = 130−200 GeV and

mt′ = 200 − 400 GeV. The surviving sets of CKM parameters are then used to

calculate the range of B(b → sγ) in the four generation standard model. This

branching fraction is displayed in Fig. 4 as a function of mt where the vertical

lines represent the allowed fourth generation range as mt′ is varied in the above

region, and the solid curve corresponds to the three generation value. We see

that once the restrictions (i)-(iv) above are applied, the four generation b → sγ

branching fraction is essentially (except for smaller values of mt) within the range

allowed by CLEO.



2.5 Two-Higgs-Doublet Models

Next we turn to two-Higgs-doublet models (2HDM), where we examine two dis-

tinct models which naturally avoid tree-level flavor changing neutral currents. In

Model I, one doublet (φ2) generates masses for all fermions and the other doublet

(φ1) decouples from the fermion sector. In the second model (Model II) φ2 gives

mass to the up-type quarks, while the down-type quarks and charged leptons re-

ceive their mass from φ1. Each doublet obtains a vacuum expectation value (vev)

vi, subject to the constraint that v2
1 + v2

2 = v2, where v is the usual vev present in

the SM. The charged Higgs boson interactions with the quark sector are governed

by the Lagrangian

L =
g

2
√

2MW

H±
[
VijmuiAuūi(1− γ5)dj + VijmdjAdūi(1 + γ5)dj

]
+ h.c. , (8)

where g is the usual SU(2) coupling constant and Vij represents the appropriate

CKM element. In model I, Au = cot β and Ad = − cotβ, while in model II,

Au = cotβ and Ad = tan β, where tan β ≡ v2/v1 is the ratio of vevs. In both

models, the H± contributes to b → sγ via virtual exchange together with the

top-quark, and the dipole b → s operators O7,8 receive contributions from this

exchange. At the W scale the coefficients of these operators take the generic form

c7,8(MW ) = G7,8(m
2
t/M

2
W ) +

1

3 tan2 β
G7,8(m2

t/m
2
H±) + λF7,8(m

2
t/m

2
H±) , (9)

where λ = −1/ tan β, +1 in Model I and II, respectively. The analytic form of

the functions F7,8 can be found in Ref. 23. Since the H± contributions all scale

as cot2 β in Model I, enhancements to the SM decay rate only occurs for small

values of tan β. The relative minus sign between the two H± contributions in

this model also gives a destructive interference for some values of the parameters.

Consistency with the CLEO lower and upper limits excludes24 the shaded regions

in the mH±−tan β parameter plane presented in Fig. 5a, assuming mt = 150 GeV.

Here, the shaded region on the left results from the CLEO upper bound and the

shaded slice in the middle is from the lower limit. In Model II, large enhancements

also appear for small values of tan β, but more importantly, B(b→ sγ) is always

larger than that of the SM, independent of the value of tanβ. This is due to the

+ tan β scaling of the F7,8 term in Eq. (9). In this case the CLEO upper bound

excludes24,25 the region to the left and beneath the curves shown in Fig. 5b for

the various values of mt as indicated. In this case, the bounds are quite sensitive12



to the uncertainties arising from the higher order QCD corrections. We note that

the H± couplings present in Model II are of the type present in Supersymmetry.

However, the limits obtained in supersymmetric theories also depend on the size

of the other super-particle contributions to b→ sγ and are generally much more

complex26 as discussed below.

2.6 Supersymmetry

In the supersymmetric standard model flavor mixing is also present in the squark

sector and hence flavor changing neutral current processes are sensitive to the

masses and mixings of the super-partners. For example, K0 − K̄0 mixing has

been shown to place27 stringent constraints on the level of degeneracy for the first

two generations of squarks (if one assumes CKM-like mixing). One should also

be reminded, of course, that magnetic moment transition operators, including

b→ sγ, vanish in the exact supersymmetric limit.28

There are five classes of contributions to b → sγ in supersymmetric theories;

the virtual exchange of (i) the up-type quarks and the W boson in the SM, (ii)

the up-type quarks and the H± of Model II above, (iii) the up-type squarks and

charginos, χ̃±i , (iv) the down-type squarks and neutralinos, χ̃0
i , and (v) the down-

type squarks and gluinos, g̃. As discussed above the contributions from (i) and (ii)

are large and interfere constructively. It has been shown26,29 that contributions

(iv) and (v) are usually small in the minimal supersymmetric model and are not

competitive with those induced by W boson and H± exchange. However, the

chargino contributions (iii) can be large, and for some range of the parameter

space can cancel the H± contributions to give a value of B(b → sγ) at or even

below the SM prediction.

Several recent analyses of the chargino contributions have appeared in the

literature.28,29 The size and relative sign of these contributions depend on the

parameters present in the chargino mass matrix and on those responsible for the

masses and mixings of the squark sector. Assuming unification at a high energy

scale, we take these parameters to be the common soft-breaking gaugino mass

mλ, the universal scalar mass m0, the supersymmetric higgsino mass parameter

µ, the universal trilinear soft-breaking scalar term in the superpotential A, tan β,

as well as mt. Here we will consider the case where the up and charm squark

masses are degenerate, and will examine the effects of the possibly large stop-



squark mass splitting due to the potentially sizeable off-diagonal terms in the

stop mass matrix. The chargino-squark contributions to the Wilson coefficients

for the b→ s transition dipole operators are given by28,29

cχ̃
±

7,8(MW ) '
2∑
j=1

M
2
W

m̃2
χ±j

|Vj1|2G7,8

 m̃2

m̃2
χ±j

− MWUj2Vj1

m̃χ±j

√
2 cos β

H7,8

 m̃2

m̃2
χ±j


+

2∑
k=1

−M2
W

m̃2
χ±j

∣∣∣∣∣Vj1Tk1 −
mtVj2Tk2

MW

√
2 sinβ

∣∣∣∣∣
2

G7,8

 m̃2
tk

m̃2
χ±j

 (10)

+
MWUj2Tk1

m̃χ±j

√
2 cos β

(
Vj1Tk1 −

mtVj2Tk2

MW

√
2 sin β

)
H7,8

 m̃2

m̃2
χ±j



 ,

where m̃χ±j
represents the chargino masses, m̃ the up and charm squark masses,

m̃tk the stop-squark masses, Uij and Vij are the unitary matrices which diagonal-

ize the chargino mass matrix, and Tkl diagonalizes the stop-squark mass matrix.

These all are calculable in terms of the supersymmetry parameters listed above.

The functions H7,8 are given in Refs. 26,28,29. Contours of B(b→ sγ), including

the SM, H±, and χ̃± contributions, are displayed in Fig. 6 from Garisto and

Ng29 in the mλ − µ parameter plane for four values of A = ±1,±2 and taking

m0 = 100 GeV, mt = 140 GeV, and tan β = 10. It is immediately clear from the

figure, that regions of parameter space do exist where B(b → sγ)SUSY is at or

below the SM value and is consistent with the CLEO bounds. It is found that

the stop-squark and chargino contributions have a large destructive interfere with

the SM and H± contributions when t̃1 is light (i.e., when there is a large stop

mass splitting), tan β is large, and Aµ < 0. However, if all the up-type squarks

are degenerate, the chargino contributions exactly cancel due to a SUSY-GIM

mechanism. In this case, the H± mass is constrained to be large as shown in the

previous section.

2.7 Three-Higgs-Doublet Models

New CP violating phases are present in models with three or more scalar dou-

blets. These phases appear in charged scalar exchange and can influence CP

asymmetries in neutral B decays, even if the Yukawa couplings obey natural fla-

vor conservation.30 For example, in a three-Higgs-Doublet model (3HDM) one

can avoid tree-level flavor changing neutral currents by requiring that a different



doublet generate a mass for the up-type quarks, the down-type quarks, and the

charged leptons, respectively. In this case, the interaction Lagrangian between

the quark sector and the two physical charged Higgs bosons is written as31

L =
g

2MW

∑
i=1,2

H+
i Ū [YiMuVCKM (1− γ5) +XiMdVCKM (1 + γ5)]D + h.c. , (11)

where X and Y are complex coupling constants that arise from the diagonalization

of the charged scalar mixing matrix and obey the relation

∑
i=1,2

XiY
∗
i = 1 . (12)

Both H±1 and H±2 contribute to b → sγ and the Wilson coefficients c7,8 at the

matching scale MW now become

c7,8(MW ) = G7,8(m2
t/M

2
W ) +

∑
i=1,2

[
|Yi|2

3
G7,8(m2

t/m
2
H±i

) +XiY
∗
i F7,8(m

2
t/m

2
H±i

)

]
,

(13)

with the analytic expressions for the functions F7,8 being the same as in the two-

Higgs-Doublet case.23 The XiY ∗i term signals the existence of a relative phase

in the b → sγ amplitude. When evolved down to the b-quark scale, the contri-

butions proportional to Im (XiY ∗i ) do not interfere with the remaining terms in

c7,8(MW ) and do not mix with the 4-quark operators. Hence these terms only

appear quadratically in the expression for the b→ sγ rate. A conservative upper

limit can be placed on the value of |Im (XY ∗)| (where Im (XY ∗) = Im (X1Y ∗1 ) =

−Im (X2Y ∗2 ) as given in Eqn. (12) above) by letting the imaginary contribution

alone saturate the CLEO upper bound. These constraints are displayed in Fig.

7 as a function of the lightest charged Higgs mass mH±1
for various values of the

heavier charged Higgs mass mH±2
, subject to the restraint mH±1

< mH±2
. The

bottom solid curve corresponds to the case where the contribution of the second

charged Higgs H±2 is neglected. We see that the constraints depend very strongly

on the value of mH±2
and that the bounds disappear when mH±1

' mH±2
due to an

exact cancellation between the two H±i contributions.

2.8 Extended Technicolor

The decay b → sγ has been investigated within the framework of various classes

of Extended Technicolor (ETC) models in Ref. 32. These contributions were



found to be either comparable or suppressed relative to those of the SM, since

gauge invariance implies that the photon vertex is corrected only at higher order

in these models. We note that the Z-boson couplings are modified at leading

order in these theories and that large rates for the decays B → µµ and b → sµµ

can be obtained.32,33 The effective Lagrangian for ETC gauge boson exchange in

these scenarios can be written as

L =
1

f2
(ψ̄iLγµTL)(ŪRγ

µujR)Y ij
u +

1

f2
(ψ̄iLγµTL)(D̄Rγ

µdjR)Y ij
d + h.c. , (14)

where TL is a techni-doublet with the right-handed techni-partners UR and DR,

ψL represents the left-handed quark doublets with uR and dR being the right-

handed partners, the matrices Y ij
u,d parameterize the symmetry breaking, and i, j

are generation indices.

The first class of models considered in Ref. 32 is that of “traditional” ETC,

which contains the minimal set of interactions necessary to generate the third

generation quark masses. In this case the ETC gauge boson spectrum is highly

non-degenerate and the quark mass matrices are approximately given by

Mu,d ∼
4πv3

f2
Yu,d . (15)

Working in the basis where Y 33
u is normalized to unity, gives the relation f2 ∼

4πv3/mt. The dominant contribution to b → sγ occurs when the ETC gauge

boson is exchanged between purely left-handed doublets and when the photon

is emitted from the technifermion line. This results in the magnetic moment

operator
mt

4πv

mbVts
(4πv)2

b̄Rσ
µνsL

e

2
fµν . (16)

Comparing this to the corresponding quantity in the SM (i.e., c7(MW )O7) shows32

that the ETC contribution is suppressed with respect to the SM by a factor of

mt/[4πvG7(m2
t/M

2
W )].

The second class of models considered in this reference are those which incor-

porate a techni-GIM mechanism which provide a GIM-like suppression of flavor

changing neutral currents due to a restricted form of flavor symmetry breaking.

The ETC scale becomes f2 = m2
ETC/g

2
ETC, where mETC(gETC) represents the

mass (coupling) of the nearly degenerate ETC gauge bosons. Here, the domi-

nant contribution to b → sγ results when the photon is attached to the ETC



gauge boson line. Assuming Y 23
u ∼ Vts, the effective magnetic moment operator

is estimated32 to be
ξ4mbVts
4m2

ETC

b̄RσµνsL
e

6
F µν , (17)

with ξ4 being a model dependent parameter. This contribution is expected32 to

yield a rate for b→ sγ which is within 10% of that in the SM.

2.9 Leptoquarks

Leptoquarks are color triplet particles which couple to a lepton-quark pair and

are naturally present in many theories beyond the SM which relate leptons and

quarks at a more fundamental level. They appear in technicolor theories, models

with quark-lepton substructure, horizontal symmetries, and grand unified theories

based on the gauge groups SU(5), SO(10), and E6. In all these scenarios lepto-

quarks carry both baryon and lepton number but their other quantum numbers,

i.e., spin, weak isospin, and electric charge, vary between the different models.

The scalar and vector leptoquark interaction Lagrangians34,35 which are renormal-

izable, baryon and lepton number conserving, and consistent with the symmetries

of SU(3)C × SU(2)L × U(1)Y are given by

LS = (λLS0 q̄
c
Liτ2`L + λRS0 ū

c
ReR)S†0 + λRS̃0

d̄cReRS̃
†
0 + (λLS1/2

ūR`L (18)

+λRS1/2
q̄Liτ2eR)S†1/2 + λLS̃1/2

d̄R`LS̃
†
1/2 + λLS1 q̄

c
Liτ2~τ`L · ~S†1 + h.c. ,

LV = (λLV0 q̄Lγµ`L + λRV0 d̄RγµeR)V µ†
0 + λRṼ0

ūRγµeRṼ
µ†

0 + (λLV1/2
d̄cRγµ`L

+λRV1/2
q̄cLγµeR)V µ†

1/2 + λLṼ1/2
ūcRγµ`LṼ

µ†
1/2 + λLV1 q̄Lγµ~τ`L · ~V

µ†
1 + h.c. .

Here the subscripts 0, 1/2, and 1 represent the SU(2) singlet, doublet, and triplet

leptoquarks, respectively, the λ’s are a priori unknown Yukawa coupling con-

stants, the L(R) index on the coupling reflects the chirality of the lepton, and the

generation indices have been suppressed.

Leptoquarks can contribute to b→ sγ by the virtual exchange of a charged lep-

ton and a leptoquark in a penguin diagram. These diagrams have been calculated

in Ref. 35, where the leptoquark contributions to c8(MW ) have been neglected.

Using the approximation that the leptoquark contributions to the b→ sγ ampli-

tude must be smaller than that for the SM, Davidson et al.35 derive the following

bounds on the relevant combinations of the Yukawa coupling constants for scalar



leptoquarks,

λ`bLλ
`s
L , λ

`b
Rλ

`s
R <

3× 10−2

Q` + 1
2
QLQ

(
mLQ

100 GeV

)2

, (19)

where ` is a charged lepton of any generation, and Q`(QLQ) are the electric charges

of the exchanged lepton (leptoquark). Similarly, for non-gauge vector leptoquarks,

λ`bLλ
`s
L , λ

`b
Rλ

`s
R <

2× 10−2

2Q` + 5
2
QLQ

(
mLQ

100 GeV

)2

. (20)

We note that other B decays, such as B → `−`(
′)+, can provide stronger con-

straints35 on these leptoquark couplings.

2.10 Left-Right Symmetric Models

The last scenario of new physics that we will consider is the Left-Right Symmetric

Model (LRM)36 which is based on the extended gauge group SU(2)L× SU(2)R×
U(1). Such theories have been popular for many years, as both a possible gener-

alization of the SM and in the context of grand unified theories such as SO(10)

and E6. One prediction of these models is the existence of a heavy, charged, right-

handed gauge boson W±
R , which in principal mixes with the SM W±

L via a mixing

angle φ to form the mass eigenstates W±
1,2. This mixing angle is constrained37

by data in polarized µ decay (in the case of light right-handed neutrinos) and

from universality requirements to be |φ| <∼ 0.05. The exchange of a W±
R within a

penguin diagram, in analogy with the SM W±
L exchange, can lead to significant

deviations from the SM prediction for the rate in b → sγ which are sensitive to

the sign and magnitude of the angle φ.

The first class of LRM we will discuss is that where the right-handed and

left-handed CKM mixing matrices are assumed to be equal, i.e., VR = VL. In this

case, W±
R searches at the Tevatron collider together with the value of the KL−KS

mass difference constrain38 the mass of W±
R to be at least mWR

> 1.6κTeV,

where κ ≡ gR/gL is the ratio of right-handed to left-handed SU(2) coupling

constants. In the LRM the complete operator basis governing b→ s transitions is

expanded to include 20 operators. Two new four-quark operators O9,10 which have

different chirality structure are also present,39,40 and left-right symmetry dictates

the existence of a set of operators which have a flipped chirality structure compared

to the standard set. The latter are obtained by the substitution PL ↔ PR in the

definition of O1−10, where PL,R = (1 ± γ5)/2. We denote the standard set of



operators as “left-handed”, i.e., O1L−10L, and the chirality flipped operators as

“right-handed”, O1R−10R. These two sets of operators do not mix under the QCD

evolution and thus can be treated independently. The expression for the partial

decay width now becomes

Γ(b→ sγ) =
α(mb)GFm5

b

128π4
|V ts∗
L V tb

L |2
(
|c7L(mb)|2 + |c7R(mb)|2

)
, (21)

where c7L,R(MW1) are defined via the low-energy effective Hamiltonian

Heff = −GF emb

4
√

2π2
s̄σµν (c7LPR + c7RPL) bF µν . (22)

The expressions for the coefficients ciL and ciR are evaluated via the one-loop

matching conditions at the scale MW1 and are given in Ref. 39. The branching

fraction is obtained by scaling to the semi-leptonic decay rate as usual, except

that possible W±
R contributions41 to b→ c`ν must also be included. The resulting

values for B(b → sγ) from the work of Rizzo39 are displayed in Fig. 8a-b as a

function of the tangent of the WL −WR mixing angle, tanφ, for MWR
= 1.6 TeV.

Figure 8a examines the branching fraction for various values of the top-quark

mass assuming κ = 1, while Fig. 8b fixes mt = 160 GeV and varies κ between

0.6 and 2. In both cases the solid horizontal line represents the CLEO bound.

We see from the figures that for κ = 1, tan φ is constrained to lie in the range

−0.02 <∼ tanφ <∼ 0.005 and that these bounds strengthen with increasing values

of κ. We also note that b → sγ was found not to be sensitive to the exact value

of the WR mass.

The assumption that VR = VL is simple and attractive, but one should keep

in mind that realistic and phenomenologically viable models can be constructed

where VR is unrelated to VL, and hence the above constraints on the model pa-

rameters can be avoided. One such example is the model given in Gronau and

Wakaizumi,42 where B decays proceed only through right-handed currents. Using

the form of VL and VR given in this reference, consistency with the B lifetime

provides the bound MWR
≤ 416.2κ[|V cb

R |/
√

2]1/2 ' 415κGeV. Collider bounds

from the Tevatron can be satisfied38 in this model if κ ≥ 1.5 and MR ≥ 600 GeV,

assuming that the W±
R decays only into the known SM fermions as well as the

right-handed neutrino. The value of B(b → sγ) as a function of tanφ is pre-

sented in Fig. 8c from Ref. 39. Here, κ = 1.5 and MWR
= 600 GeV is assumed

and the outer(inner)-most solid line corresponds to mt = 120(200) GeV. It is



immediately clear that the allowed range of tanφ is much more restricted than

in the VL = VR case and that both the upper and lower CLEO bounds will

play a role. For MWR
= 600(800) GeV, the allowed ranges of tanφ are found

to be −0.43 × 10−3 < tan φ < 0, and 0.40 × 10−3 < tanφ < 0.81 × 10−3

(−0.32 × 10−3 < tanφ < 0, and 0.29 × 10−3 < tan φ < 0.60 × 10−3). These

ranges are highly constrained and a more precise determination of the b → sγ

branching fraction would finely-tune the values of the parameters in this model.

3 Conclusion

In summary, we have seen that the process b→ sγ provides powerful constraints

for a variety of models containing physics beyond the SM. In most cases, these

constraints either complement or are stronger than those from other low-energy

processes and from direct collider searches. We look forward to an exciting future

in B physics!
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Fig. 1. The branching fraction for b → sγ in the Standard Model (a) as a function of the

top-quark mass including QCD corrections to the leading log (dashed) and next-to-leading log

order (solid). (b) Dependency of the branching fraction on the choice of renormalization scale

µ for various values of the b-quark mass as indicated with mt = 150 GeV.

Fig. 2. The allowed range of (a) κγ and (b) κ̃γ assuming (κ̃)
g = 0 (solid curve) or (κ̃)

g =( κ̃)
γ

(dashed curve).

Fig. 3. Allowed (shaded) region of the ∆κγ − λγ parameter plane from the CLEO upper and

lower bounds on b → sγ, assuming mt = 150 GeV, and the UA2 event rate for pp → Wγ

as discussed in the text. The point in this plane representing the SM is labeled by S.

Fig. 4. Branching fraction for b → sγ as a function of mt. The solid curve represents the

three generation SM value and the vertical lines are the allowed ranges of B(b → sγ) in the

four generation model.

Fig. 5. The excluded regions in the mH± − tan β plane resulting from the present CLEO

bounds in (a) Model I (shaded area is excluded) for mt = 150 GeV and (b) Model II for

various values of mt as indicated, where the excluded regions lie to the left and below each

curve.

Fig. 6. Contours of B(b → sγ) in units of 10−4 in the mλ − µ parameter plane with

tan β = 10, mt = 140 GeV, m0 = 100 GeV, taking A = +1,−1 + 2,−2 in (a), (b), (c),

(d), respectively. All masses in GeV.

Fig. 7. Constraints on |Im (XY ∗)| as a function of the mass of the lightest charged Higgs

boson, mH±1
with mH±2

= 100, 250, 500, 750, and 1000 GeV corresponding (from left to

right) to the dashed, dash-dotted, solid, dotted, and dashed curves. The bottom solid curve

represents the case where the H±2 contributions have been neglected. The allowed region lies

beneath the curves.

Fig. 8. B(b → sγ) in the LRM assuming VR = VL as a function of the tangent of the

WL−WR mixing angle, tφ. (a) κ = 1 andMWR
= 1.6 TeV, withmt = 120, 140, 160, 180,

and 200 GeV corresponding to the dotted, dashed, dash-dotted, solid, and square-dotted curves,

respectively. (b) mt = 160 GeV and MWR
= 1.6 TeV with κ varying between 0.6 (left-most

dotted curve) and 2.0 (inner-most dash-dotted curve). (c) Gronau-Wakaizumi version of the

LRM with κ = 1.5, MWR
= 600 GeV with the outer-most solid curve corresponding to

mt = 120 GeV, and is increased in each case by steps of 20 GeV.


