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Abstract

A global orbit feedback system has been installd
on SPEAR to help stabilize the position of the photon
beams. The orbit control algorithms depend on either
harmonic recoriswuction of the orbit or eigenvector
decomposition. The orbit motion is corrected by dipole
corrector kicks determined from the inverse corrector-to-
bpm response matix. This paper oudines features of these
control algorithms as applied to SPEAR.

1. ~TRODUCTION

A project has been initiated to stablize the,elec~on
beam orbit in SPEAR. The goat is to corrmt for current
related and temperature related orbit motion in order to
reduce motion at the 9 photon beam source points. In the
first phase of his projwt, we utilize existing local servo
loops that kmp the photon hms fixd at monitors locatd
seved meters from the source [1]. Much like the original
NSLS system [2], the job of the global fmdback system is to
complement the independent servo controllers to provide
more stable photon beams. To reduce competition betwmn
the global and local feedback loops, the effect of the local
servo bumps is subtractd horn the global orbit perturbation
before processing in the orbit conmol algorithm [3].

Presentiy, the global orbit control system operates
on tie SPEAR control computer with a cycle time of about
20 sec. Conversion to fast digiti signal processor boards
witi Pm (or more sophisticated) feedback compensation is
mderway [4]. To date, we have pursud two orbit correction
dgonthms, namely, harmonic orbit representation and dirat
decomposition of the orbit in terns of the eigenvectors of
the corrector-to-bpm response matrix. In this paper, we
discuss as~ts of these algorithms that may be useful to
other laboratories “developing simtiar globrd orbit fdback
systems. Specifically, practical questions related to
estimation of harmonic orbit content from unequal barn
position monitor @pm) phase intervals [5], harmonic
estimation in the presence of bpm readback noise, and a
technique to decouple the local and global orbit feedback
systems in the framework of eigenvector correction, me
discussed. For SPEAR, we typically use 20 bpms and 30
corrutors in ach phe. The present horizontal and vertical
betatron tunes in SPEAR are 6.834 and 6.714, respectively.

2. HARMOMC ORBIT CORRE~ION

Harmonic correction is based on the fact that, in
normrdized betatron coordinates, a dipole field error
generatesan orbit perturbation with harmonic amplitudes
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hn(v) ~ ~

spectrum for random orbit

(1)

where v is the tune and n is the harmonic number. h
practice, tiere may be a distribution of field errors that
superpose to make a more generrd s~mm; however, a
random distribution produces a spectrum simfiar to that for a
single dipole kick. Hence, as shown in Fig. 1, a ~ge part of
most orbit perturbations in SPEAR can be removal by -
canceling tie dominant n=6,7,8 the harmonics.

Harmonic orbit corrwtion proceeds in two stages.
First, the orbit perturbation is approximate by a sum of
harmonics ~ourier series). Then a corrxtor pattern is
applied to cancel the corresponding harmonics. In the first
stage of harmonic orbit correction, the harmonic amplitudes
must be estimated from bpm readings, which, in SPEAR, ~
nor distributed at uniform phase intervals. The harmonics
can be estimati by writing ach (norrndized) bpm ~ding
as a sum of sine and cosine terms, and solving the set of
equations for the harmonic coefficients. We solve this finear
system of equations with singular value duomposition
(SVD), which automatically gives the least squares fit
solution if the number of bpm r=dings excee~ the number
of harmonic expansion coefficients.

If the number of harmonic coefficients is chosen to
equal the number of bpms, the predicti orbit is correct at W
bpm positions (n-equations in n-unknowns). However, due
to the non-unifom grid, diasing effwts, and bpm r~dbxk
noise, tie harmonic representation of the orbit can be much
larger tian the actual orbit between the bpms. Selwting a
subset of harmonics from this s~trum can also result in a
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poor approximation to the perturbed orbit. Another
disadvantage is that large corrector kicks may be needed.
For these reasons, given the non-uniform distribution of
bpms in SPEW, it is better to solve for a least-squares fit on
a subset of harmonics to approximate tie orbi~

For bprns separatd by uniform phase, tie harmonic
coefficients can be found via a D~. Witi non-uniform
phase intervrds, it is possible to make a Iin= transformation
to a uniform phase grid. One method of transformations~
with the assumption that the bpm readings are samples of a
periodic, band-limitd function which maybe represent by
a finite sum of harmonics. In this case, the harmonic
expansion is fwst written for the non-uniform phase bpm
rmdings. NexL the same equations are written for the
(unknown) bpm readings at uniform phase intervals, and the
expansion coefficients are eliminated between the two sets
of equations. The result is an interpolation formula for a
linear transformation from the non-uniform to the uniform
grid. Note, however, that the harmonic coefficients obtained
from a D~ on the ‘@ansformd’ data will be the same as
those obtained direcdy from the non-uniform grid data.
Problems with rdiasing and bpm noise on the original non-
uniform grid cannot not be removal by the transformation to
a uniform grid.

A difficulty can arise in the correction process
when only a subset of harmonics is used to cancel the orbit
perturbation; corrector errors introduce other (uncorrected)
harmonics on each correction cycle. These components
accumulate m a random-wdk manner. This eff~t can occur
on SPEAR under some conditions.

3. S~G~AR VmUE DECOMPOS~ION

Singular value decomposition (or ‘eigenvector’
decomposition) of the orbit has the advantage that one
operates direcdy on the corrector-to-bpm response matrix
via SVD,

R= UWVT (2)

to produce an orthonormd basis of eigenvectors (contained
in the columns of U) that can be usti to decompose tie orbit
perturbation [6,7,8]. The diagond elements of W contain the
corresponding singular values ~eigenvdues~, and the rows
of VT represent the corresponding (ofionorrnal) corrector
patterns needed to produce the ‘eigen-orbits’, U. An example
of the spectrum of singular values from the vertical
component of the response matrix measured on SPEAR is
shown in”Fig. 2. The SVD algorithm automatically accounts
for cases with more correctors than bpms, and otherwise
rank-deficient response matrices. SVD also produces the
minimum RMS comector amplitudes requir~ to correct tie
orbit. See Reference [9].

To apply the SVD orbit correction, we first project
the orbit perturbation onto mch eigenvector of the matrix U,
and use the projection coefficients, divided by the singular
vrdues, to determine the corresponding strength of the
corrector eigenvectors, V. Since small singulai values
indicate large corrector strengths, and their eigenvectors
often correspond to local rather than global orbit
pefiurbations, it is common practice to set a lower bound on
the singular values to be usd in the orbit correction. Similar
to discarding
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Figure 2. Spectrum of singular values for vertical
response matrix measured on SPEAR. .

Fourier components far from the tune in a harmonic orbit
correction, the effect is to reduce sensitivity to bpm noise
while accepting that the correctd orbit wi~ not pass through
each bpm exactly. For reasons discussed above, corrector
errors can excite modes not covered by a truncated
eigenspec~m. Figure 3 shows the effect of limiting the
spectrum of harmonics, or SVD eigenvectors, used to
represent the orbi~ The data shown in Wis plot is an average
value of the RMS orbit (evaluated over all bpms) produced
from an ensemble of 300 perturbed orbits with 10 micron
random quadruple displacements and 10 micron random
bpm readback noise. These plots show how the orbit
correction is improved and the rms corrector strengths
increase as the number or harmonics or eigenvectors is.
increasti. The bpm readback noise eventurdly limits the
level of orbit correction which can be achieved.

With a global harmonic or SVD orbit correction
system operating in conjunction with lml bearntine steering
systems, mch global orbit corr=tion cycle may cause the
local system to respond in order to keep the photon tis
on target. If a unified globawocal feedback system is not
available, an alternative approach to decoupling the systems
is possible. In his case, one fust m~ures tie corr=tor-to-
photon bpm response matix. In SPEM for instance, tiere
are 30 correctors and 9 photon bpms. SVD will prtiuce 9
eigenvectors hat can control the orbit at the photon bpms,
and 21 eigenvectors that pefiurb the el~tron bm orbit but
do not disturb the photon beam positions at the photon
bpms. If we use this set of 21 eigenvectors as an expansion
basis for global orbit correction system, tien the global and
Iocrd systems are effectively decoupled.

In conclusion, we show in Fig. 4 an example of
orbit control on SPEAR. Here, the SVD orbit correction
algorithm was applied in a feedback loop with 15 of 20
vertical plane eigenvectors chosen to corr~t the electron
beam orbi~ The figure shows the vertical RMS orbit initially
drifting before the fetiback system is switch~ on. At time
t=lhr, an orbit was mmured to serve as the reference orbit
for the global feedback system. This orbit was retain~ in
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Figure 3. Comparison of harmonic and eigenvector orbit correction as a function of (a) number of harmonics and @)
number of eigenvectors used to represent the orbi~ RMS vrduesevduatd at bpm positions.

memo~. Shotiy after time t=2hr, the global orbit feedback
system was switched on, and the orbit returned to the

~~ference position (m~sured at t=l hr).
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