
1. .

SLAC-PUB-6516

June 1994

(T)

Neural Network Construction via Back-Propagation*

THOMAST. BURWICK

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

ABSTRACT

A method is presented that combines back-propagation with multi-layer neural
network construction. Back-propagation is used not only to adjust the weights but

also the signal functions. Going from one network to an equivalent one that has

additional linear units, the non-linearity of these units and thus their effective

presence is then introduced via back-propagation (’weight-splitting’). The back-

prop~ated error causes the network to include new units in order to minimize the
error funtion. We also show how this formalism allows to escape local minima.

Talk presented at Stanford PDP Research Meeting, June 23, 1994

- - * Work supported by U.S. Department of Energy under contract DE-AC03-76SFO05 15.
-..

1. .

1. Introduction Backpropagation has proved to be a most powerful tool for train-
ing multi-layer neural networks to fit a given set of input/output patterns. The
error is back-propagated through the network to adjust the weights such that in
successive steps the network turns into the desired function- approximator [1]. It is
well known, however, that apart from adjusting the weights, the choice of the net-
work architecture itself plays a crucial role for the performance. It is quite difficult, -
in general impossible to guess an optimal architecture from the begining. Instead,
there are two alternatives. Either one begins with too many units and by pruning

[2] or weight decay removes unnecessary units. Using back-propagation weight de-

cay is achieved by adding penalty terms to the error function [3]. Alternatively, one

may begin with not enough units and include additional units until the network

is able to perform the required task (see for example [4], or more recently [5]).

Although the latter possibility - neural network construction - is generally seen as

being more elegant, the drawback is that so far there seems to be no natural way

to embedd network construction into a back-propagation procedure. Nevertheless,

given the success of back-propagation, it is highly desirable to find ways to com-

bine back-propagation with network construction. In this paper we show how this

may indeed be achieved by introducing what we call ‘weight-splitting’.

How could a back-propagated error cause the creation of an additional unit? It

seems rather impossible that discrete steps like adding units to a network could be

implemented via back-propagation. What will help is that every network is equi-

valent to an infinite number of networks with additional linear units. Such units

may be described as ‘transparent’ and thus ‘invisible’ to the forward propagating

input. Suppose that in a first step we go to one of these equivalent networks - a

trivial task - and in a second step we make the signal function subject to back-

propagatim. In order to minimize the error function back-propagation may then

turn the linear into a non-linear unit: the additional unit becomes ‘visible’. Thus

it is the back-propagated error that causes the effective presence of an additional

unit. Gradient descent gives a measure of how much is gained when introducing

this unit.

In the following this procedure will be discussed in more detail. We will see

that it will allow for such a variety of possible strategies that only experiments

may tell what strategy is best. Given the vast number of possible ways to im-

plement the method, we will restrict this paper to setting the stage for future

experiments by explaining the theoretical framework. In section 2 we explain how

signal functions can be varied and optimized by using a straightforward extension

of back-propagation. In section 3 we show how this can be used to add new units to

a network. This describes ‘weight-splitting’. In section 4 we comment on different

-strategies how weight-splitting can be applied. Section 5 contains the summary.
--

2

I .

2. Variable Signalfunctions and Extended Backpropagation Let us intro-
duce the basic notation. Given the layers n = 0,1,..., H + 1, the layer n = O is

the input layer, n = 1,..., H are hidden layers and n = H + 1 is the output layer.

There are N~ units j~ = 1,2,..., N. in layer n. The signal of unit j. in layer n is

(1) -

for n = 1,..., N, while S~O= fjO

weighted input In to the units

output signals. We use variable

9@(x)

jn-1

are the input signals. The weights w~– 1 give the

in layer n. We also write S~~ = Oj~+l for the

signal functions. A particular choice could be

= atanh(x) + (1 – a)x (2)

In (1) we allow for different parameters a at each unit. It is essential for the

following that the dependence on the parameter a is such that for a certain value

the signal function reduces to a linear one. In the following signal functions go(z)

are assumed to be linear for a = O.

It is straightforward to extend back-propagation to adjust not only the weights

w but also the signal functions, i.e. the parameters a. We have to pick a certain
error function, say

~Ht 1

where (~~,~~), p = 1, p, are the p input/output patterns

to learn. Forward propagation is performed using (1). For

also need -

s:= g:;” (I;n) , S:n=ga;n(I;n)

where

(3)

that the network has

back-propagation we

(4)

(5)

For example (2) we have g:(z) = 1 – a tanh(x)2 and g.(x) = tanh(x) – z. Chosing

a learning rate q the error function (3) is then minimized if the weights and signal

functions are adjusted according to the

(6)

3

.

The output error enters into

A~:” = (;H+,- O;H+,. (7)

For different error functions (3) only (7) will change, not the inner derivatives.

These are obtained from the back-propagation rule:

This completes describing the back-propagation procedure with varying signal func-

tions. In fact, the procedure is easily generalized to signal functions that depend

on several parameters. The form of the signal function maybe under complete

control if we allow for an arbitrary number of parameters. For the purpose of this

paper and the sake of clarity it is sufficient to work with signal functions like (2)

that have only one parameter. A study of more complex varying signal functions

and their effect on speeding up convergence can be found in [6].

3. Weight-Splitting and Neural Network Construction We will now show
how (6) can be used to add new units to a network. The first step is trivial
and involves going from a given network architecture to another with additional
units that are linear. The effective presence of the new units is only introduced in a
second step where back-propagation changes the new signal functions to non-linear
ones.

Take for example the situation shown in fig. 1. We choose our notation such

that the ~w units are j = 1,..., N, the signals are Vj and the corresponding

parameters ~j. The new weights that replace the w are u, v. Both networks are

the same if

‘x
n

Wjn+l jnS~n = E ‘kjgaj (~ ‘jj.s~.). (9)

j. j j.
for all possible signals S~~. Thus the signal functions of the new units indeed have

to be linear, ~j = O, and the the choice of the new weights is only restricted by

n

‘jntl j. = E ‘j.tl j“j j. (lo)
j

Notice that (10) may be written as a matrix equation W = VU where V is a

N.+l x N and U a N x Nn matrix. A simple choice would be

N.= N. (Nn+l), giving V = WU-l (U = V-l W) immediately.

U (V) diagonal,

4

I .

The new units begin to play a role only after they turn non-linear and this is

where extended back-propagation enters. It is easily seen how introducing the new

units via back-propagation helps to improve the performance. For that purpose
we introduce also the notation

for the error that is back-propagated to the new units. This is analog to (8). Using

gradient descent the change in the error function due to changes in u, v and a is

given by (q small)

AE N ; ~ [(Avj.+1j)2 + (Aujj.)2 + (Aaj)2]

where the extended back-propagation rules (6)-(8) give (aj = O)

(12)

(13)

(14)

In (14) we used S: = ~ since go(x) = @x. For example (2) this is @ = 1. Let us

now assume that upon varying the weights w we arrived at a minimum so that

(16)

for some p. This may be a global minimum (for the given architecture) due to a
lack of units so that the network cannot learn the required p patterns. For the

equivalent network varying U, v at ~j = O corresponds to Varying w and so (13),

.(1.4) and (16) give Au = Au = O. However, the A~j in (15) maybe non-zero,
-..

5

I .

leading to AE <0 in (12). Moreover, once that aj # O the relations (13), (14) will

no longer hold and in the next back-propagation steps also u, v will be changed.

The network begins to ‘roll down’ the error function first in the aj and then also
the weight directions. This is how introducing a new unit via back-propagation

will cause the network to leave the minimum of the old architecture.

Notice that (16) may describe a local minimum. In that case (15) helps to -

escape the local minimum at the cost of introducing a new unit - another possible

application of weight-splitting.

4. Possible Implementations of Weight-Splitting We mentioned before that
for every network there is an infinite number of equivalent networks with additional
linear units. As a consequence there is a variety of ways that may be taken to apply
weight-splitting. To illustrate this point we will now first present a particular
algorithm and then discuss possible modifications.

Using a notation slightly different from section 2, we take H to be the maximal

number of hidden layers that we want to allow, and introduce h s H as the

number of layers that the weight-splitting algorithm introduced up to a certain

back-propagation step. A unit j. in layer n is said to be active iff a;” # O. A layer is

said to be (completely) acti-ve if some (all) of its units are active. Introducing a new

unit refers to activating this unit. We assume that the hidden layers n = h+ 1,....H

are not active, i.e., their units are linear, a~~ = O.

We define every hidden layer to have the same number of hidden units, N. =

N,n=l ,..., H. The number of active units in layer h is N’. The signal function

of the output unit is fixed.

We ak use the notion of active weights. A weight w~~+,j~ is said to be active

if n = H, or if the unit jn+l in layer n + 1, n = O, H – 1, is active. Only active

weights will be varied by back-propagation.

The following algorithm will search for an error-minimum using the current ar-

chitecture. Whenever it reaches a minimum that is non-vanishing it will introduce,

i.e. activate, an additional hidden unit.

O) Initialize the weights w H to small random values. Set h = O, N’ = N, and

w? = 6jn+1jn for n =0,..., H– 1?J.tljn

1) Vary active weights and active signal functions using back-propagation (6)

until the error (3) reaches a minimum. Notice that standard techniques may be

applied (e.g. simulated annealing) to assure that the minimum is global for the

given architecture.

-$ 6kl is the Kronecker symbol: 6kk = 1 and 6~~= O if k # i.
--.

6

I .

2) If this minimum is

procedure with success.

3) Activate a new unit,

smaller than some predefine tolerance terminate the

IfN1 < N reset N’ + N1+l. If N’ = N, h < H, reset

h ~ h + 1, N’ = 1. If N’ = N, h = H terminate the procedure without success

(the N, H may have been predefine too small).

4) Return to step 1.

A most simple example is shown in fig. 2. It is essential that forward and

backward propagation for non-activated signal functions and weights need no com-

putation. This is why units are effectively not present until they are activated.

There are numerous possibilities to modify the above procedure. Instead of

establishing a new unit only when a non-vanishing error minimum is reached, one

could make all signal functions subject to back-propagation from the beginning

(h = H). In that case one should shift the error function

~+ E+ P[a] (17)

with a term, P[a] N a2, that penalizes the presence of every new unit. Alter-

natively and returning to the above procedure of introducing units only when an

error-minimum is reached, one may choose P[a] N (a – 1)2. This would acceler-

ate the back-propagation steps of introducing the new unit, ga (x) + tanh (z) for

example (2). Both approaches may be combined in

This is minimal for absence, a = O, or presence, a = 1, of- a unit. Small a are

pena~zed, but once the gain in decreasing the error overcomes the penalty, the

term (18) will support introducing this new unit. Of course, there is no need to

continue varying the signal function once a unit is established, i.e., a = 1.

Following the above algorithm, in step 3 units of a new layer are always acti-

vated in the same order. Alternatively, one may use (15) to establish criteria that

decide what unit should be activated next. Also, there is freedom of choosing how

many neurons should be activated, and along what architecture (see fig. 3). One

could allow for Nn # N in hidden layers. Moreover, instead of activating only one

unit whenever step 3 was reached, there may be cases where many hidden units

are needed so that more units should be activated at once. Then step 3 could be

modified to activate for example a whole layer, combined with a penalty term as

in (17) with ~[a] w Q2.
--.

7

.

5. Conclusions and Outlook The triviality of linear units in a feed-forward net-

work can be turned into an advantage if applied to network construction. Back-

propagation can then be used to introduce new units in a two step procedure.

The first step is simple and consists of going from one network architecture to an

equivalent one with additional linear units. This network will behave exactly as

the original architecture. In a second step, however, we make the parameters of the

signal function subject to back-propagation. The back-propagated error will then

turn *he linear into non-linear units, thereby establishing their effective presence

(’weight-splitting’). This method may also be applied to escape local minima at

the cost of introducing an additional unit (which maybe removed again by pruning

and weight-decay).

There is an infinite number of equivalent networks with additional linear units,

and as a consequence a lot of freedom for implementing the first step of weight-

splitting. Also, there is a freedom of chosing at what step of back-propagation the

new units should be established. Moreover, one should notice that there is another

way to combine back-propagation with network construction. It consists of going

from one network architecture to another with additional non-linear units that

are effectively not present due to vanishing weights. The back-propagated error
will then create non-vanis~ng weights. Such a trivial approch, however, cannot

create a multi-layer network like the one shown in fig. 2, where the signals of
each layer are mapped exclusively to the next layer. Nevertheless, combining both

approaches is possible. It is also possible to combine weight-splitting with other

construction algorithms. Comparing all the different ways to apply weight-splitting

will require extensive numerical studies. Using the algorithm that we described in

section 4 together with a shift (17) where P[a] N (a — 1)2 accelerates introducing

the new ~~itj go(z) = z ~ gl(x) = tanh(z) for example (2), seems to be the most

conservative approach and will evidently lead to the right architecture. But more

efficient ways to apply weight-splitting are still to be established and we leave their

studies to future investigations.

Acknowledgements It is a pleasure to thank David Rumelhart for valuable
discussions.

[1] A.E.
. . New

Bryson and Y.-C.

York: Blaisdell;
--

REFERENCES

Ho (1969), ‘Applied Optimal Control’,

.

8

1. .

[2]

[3]

[4]

-..

P. Werbos (1974), ‘Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences’, Ph.D. Thesis, Harvard University;

D.B. Parker (1985), ‘Learning Logic’, Technical Report TR-47, Center for

Computational Research in Economics and Management Science,

Massachusetts Institute of Technology, Cambridge, MA;

D.E. Rumelhart, G.E. Hinton, and R.J. Williams (1986),

‘Learning Representations by Back-Propagating Errors’, Nature 323,

533-536; ‘Learning Internal Representations by Error Propagation’,

in D .E. Rumelhart, J .L. McClelland, and the PDP Research Group, ParaZZei

Distributed Processing, vol. 1, chap. 8, Cambridge: MIT Press.

J. Sietsma and R.J.F. Dow (1988), ‘Neural Net Pruning - Why and How’,

in IEEE International Conference on Neural Networks, San Diego 1988,

vol. I, 325-333, New York: IEEE.

G.E. Hinton (1986), ‘Learning Distributed Representations of Concepts’,

in Proceedings oj the Eighth Annual Conference of the Cognitive Science So-

ciety, Amherst 1986, 1-12. Hilldale: Erlbaum;

R. Scalettar and A. Zee (1988), ‘Emergence of Grandmother Memory in Feed-

forward Networks: Learning with Noise and Forgetfulness’, in Connectionist

Models and Their Implications: Readings from Cognitive Science, eds. D.

Waltz and J.A. Feldman, 309-332, Norwood: Ablex;

A.H. Kramer and A. Sangiovanni-Vinventelli (1988), ‘Efficient Parallel Lear-

ning Algorithms for Neural Net works’, in Advances in Neural Information

Processing Systems I (Denver 1988), ed. D.S. Touretzky, 40-48, San Mateo:

Morgan Kaufmann;

S.J. Hanson and L. Pratt (1988), ‘A Comparison of Different Biases for Min-

imal- Net work Construct ion with Back-Propagation’, in Advances in Neural

Information Processing Systems I (Denver 1988), ed. D.S. Touretzky, 177-

185, San Mateo: Morgan Kaufmann;

Y. Chauvin (1988), ‘A Back-Propagation Algorithm with Optimal Use of

Hidden Units’, in Advances in Neural Information Processing Systems I (Den-

ver 1988), ed. D.S. Touretzky, 519-526, San Mateo: Morgan Kaufmann.

M. M6zard and J.-P. Nadal (1989), ‘Learning in Feedforward Layered

Networks: The Tiling Algorithm’, Journal oj Physics A22, 2191-2204;

M. Marchand, M. Golea, and P.Ruj&n (1990), ‘A Convergence Theorem for

Sequential Learning in Two-Layer Perceptions’, Europhysics Letters 11,
487-492;
M. Frean (1990), ‘The Upstart Algorithm: A Method for Constructing and

Training Feedforward Neural Networks’, Neural Computation 2 (1990),

198-209.
--.

9

I .

[5] S.G. Romaniuk and L.O. Hall (1993), ‘Divide and Conquer Neural Networks’,

~eural Networks, vol. 6, 1105-1116; and references therein.

[6] J.A. Drakopoulos (1994), ‘Multi-Sigmoidal Neural Networks’,
Technical Report, Department of Computer Science, Stanford University,

CA; and references therein.

. .

.

10

I .

FIGURE CAPTION

FIG. 1 Starting from a given architecture (a) N new units are introduced by weight-

splitting (b). Both networks are equivalent if the new units are linear, and

the weights obey eq. (10). Only the back-propagated error will change the -

new units to non-linear ones, thereby establishing their effective presence.

FIG.2 The XOR-problem is the simplest that needs hidden units. Applying the

algorithm described in section 4 with H = 2, one may start with no hidden

units, h = O, (a) and after activating a first hidden unit, h = 1, N’ = 1,

(b) and a second, N’ = 2, (c) one arrives at an architecture that solves the

problem. (Broken circles and lines correspond to non-activated units and

weights.)

FIG.3 There are many possible ways how to apply weight-splitting. The figure

demonstrates for a simple situation how connections could be splitted into

one, two, three, etc. new units.

.

-..
-.

11

7716AI (a)

—

v

u

.

(b) ~ 6-94

Fig. 1

. .

*

6-94 (a) (b)

Fig. 2

(c)
771 6A2

--

(

AA
1,

1,
1,

I \

+/ !.-or
I \

\

6-94

,

. .

. --

Fig. 3

etc.

771 6A3

