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Abstract

The measured dynamic aperture of the HERA proton ring and the
value expected from simulation studies agree within a factor of 2. A
better agreement is achieved if a realistic tune modulation is included
in the simulation. The approximate threshold of tune-modulation in-
duced diffusion can be calculated analytically. Its value is in remark-
able agreement with the dynamic aperture measured. The calculation
is based on parameters of resonances through order 11 which are com-
puted using differential-algebra methods and normal-form algorithms.
Modulational diffusion in conjunction with drifting machine parame-
ters appears to be the most important transverse diffusion process.
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1 INTRODUCTION

Dynamic aperture and transverse particle diffusion rates are an important
concern in the design and operation of large hadron storage rings. At injec-
tion energy, nonlinear persistent-current field errors in the superconducting
magnets limit the dynamic aperture of the HERA proton ring, which is the
second superconducting storage ring in operation. In this report, simulation
studies and an analytical estimate of the dynamic aperture are compared
with observations from the first two years of operation.

Section 2 describes the model of HERA used in the simulation and tech-
niques of tracking data analysis. Section 3 is devoted to a comparison of the
dynamic aperture measured with that expected from tracking. An analyti-
cal study of high-order resonances in the presence of tune modulation and
an approach to calculate amplitude-dependent diffusion rates are discussed
in Section 4. The results are summarized and some conclusions are drawn
in Section 5. This report focuses on the main ideas. For more details see
[1, 2, 3].

2 TRACKING SIMULATIONS

2.1 Model of HERA

The main circuit of the HERA proton ring comprises about 400 supercon-
ducting dipole magnets and 200 s.c. quadrupoles. A single FODO cell con-
tains four dipoles and has a length of 47 m. Quadrupole and sextupole
corrections coils are wound upon the beam pipe along 2/3 of the length of
each dipole to control tune and chromaticity [4]. Every second dipole mag-
net is equipped with a decapole correction coil, and dodecapole correctors
are installed inside the main quadrupoles to locally compensate the largest
systematic multipole components [5].

The normal and skew multipole components through 32-poles have been
measured for each of the s.c. HERA magnets. In the simulation, the individ-
ual multipole components up to 20-poles of all s.c. dipoles and quadrupoles
are taken into account by five thin, higher-order lenses in each FODO half
cell. The strengths of the 6-, 10- and 12-pole correctors, independently pow-
ered in each quadrant, are added to the individual multipole coefficients of
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a magnet. This model of HERA is a very good approximation to the real
machine.

2.2 Early Indicators of Unstable Trajectories

The minimum time needed to inject 210 bunches into the HERA proton ring
is about 20 minutes, corresponding to 6 · 107 turns. A typical number of
turns in the tracking studies is 104, which requires about 15 minutes CPU
time on an IBM 9000-720, using the computer codes RACETRACK and
SIXTRACK [6]. Reliable criteria for early detection of unstable trajectories
are, therefore, indispensable. A promising method consists of determining
the rate of divergence of two initially close trajectories in phase space [7],
which is characterized by the Lyapunov exponent and is a well established
concept in the theory of nonlinear dynamics [8]. A trajectory is either regular
or chaotic. For regular motion the distance d in phase space between two
tracks grows linearly with the number of turns N :

d(N) ∝ N, (1)

when averaged over long periods of time. Chaotic motion is characterized by
an exponential growth of this distance:

d(N) ∝ eλN , (2)

where λ is the Lyapunov exponent. Its formal definition is

λ ≡ lim
N→∞

lim
d(0)→0

1

N
ln
d(N)

d(0)
. (3)

The main reason for the calculation of Lyapunov exponents in tracking stud-
ies is that chaotic particles are potentially unstable and may experience an
amplitude growth on a longer time scale. An amplitude increase for chaotic
trajectories, and only for those, has indeed been found over a 10–100 times
larger number of turns [1].

3 PREDICTED AND MEASURED DYNAMIC

APERTURE

The predicted and the measured dynamic aperture of the HERA proton ring
are shown in Fig. 1, as a function of the amplitude of momentum oscillation
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∆p/p. The upper dotted line represents the border above which particles are
lost within 2 · 104 turns in the simulation. The amplitude at which the onset
of chaotic particle motion is detected by the Lyapunov exponent method
using 104 turns is about 30 % smaller (18 mm at β = 76 m for ∆p/p ≈ 0).
This amplitude was supposed to give a conservative estimate of the actual
dynamic aperture.

In 1991/92, the physical aperture, determined by means of orthogonal
orbit bumps, was about 14 mm (β = 76 mm). Beam profile measurements
with the residual gas monitors [9], performed after bad injection or exci-
tation, show that the dynamic aperture is only 8.5–11 mm and, hence, is
considerably smaller than both the physical aperture and the value expected
from the simulation (see Fig. 1). It turned out to be sufficient for stable
beam operation.

While measurement and prediction agree within a factor of 2, their dif-
ference is too large to be explained by uncertainties in the field errors, beam
orbits, and the like. Rather, the difference indicates that some physical effect
has been omitted in the simulation.

Two effects that have not been considered are tune modulation and slow
drifts of parameters. Current ripple in the superconducting main circuit
causes a tune modulation of frequency 50 Hz and of amplitude 5 · 10−5–10−4

(quoted in units of the revolution frequency 47 kHz) [1]. Figure 1 indicates
a strong impact of longitudinal oscillations on the dynamic aperture. The
effect of synchrotron oscillations and nonzero chromaticity can to first or-
der be understood by the accompanying tune modulation in the transverse
phase space. A typical modulation amplitude amounts to 2 · 10−4, and the
synchrotron frequency is about 20 Hz.

When in addition to the nonlinear field errors a realistic tune modulation
(of amplitude q ≈ 10−4 at a frequency of 50 Hz as that due to magnet cur-
rent ripple) is also included in the simulation model, the dynamic aperture
for on-momentum particles is considerably reduced [1], and chaotic trajecto-
ries are found close to the actual dynamic aperture. In this case, the chaotic
trajectories at amplitudes between 10 and 16 mm are interspersed among reg-
ular regions of phase space, so that tune modulation alone is not sufficient
to cause a loss of all particles in this amplitude range. To account for the
latter, additional slow drifts of the machine parameters are required which
alter the position of chaotic regions in phase space and thereby convert previ-
ously regular particles into chaotic ones and vice versa. A continuous drift of
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Figure 1: Dynamic aperture in the HERA proton ring: the dynamic aperture r

expected from simulation studies, r ≡ (2β(Ix+ Iz))
1
2 with β = 76 m, as a function

of the amplitude of momentum oscillations ∆p/p, the two-sigma beam size, and the
actual dynamic aperture. The range depicted for the latter refers to the variation
observed over periods of days or weeks.

parameters is caused, for instance, by low-frequency quadrupole vibrations,
by the spread of persistent-current sextupole decay [10] and by temperature
changes of magnets and power supplies. From Fig. 2 a tune change by 10−4

causes a position change of resonances and chaotic regions in phase space by
|∆Ix,z| ∼ 0.02 mm mrad (Ix,z is the action variable). Neither the total im-
pact of low-frequency tune modulation or synchrotron oscillations, nor the
additional effect of parameter drifts can be reliably estimated by tracking
studies for 104 turns. Here, an analytical treatment offers more insight.

4 ANALYTICAL TREATMENT

4.1 Resonances and Tune Modulation

The transverse phase space of HERA is covered by a web of weak, isolated
resonance islands. Close to one of these resonances, kQx + lQz ≈ p, the
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transverse motion is well described by the nonlinear Hamiltonian

H(Ix, Iz, φx, φz, θ) = IxQx0 + IzQz0 + g(Ix, Iz) +

+h(Ix, Iz) cos(kφx + lφz − pθ) +

+q · (Ix + Iz) · cos(Qmθ + α), (4)

where the last term represents a tune modulation of amplitude q and fre-
quency Qm in both transverse planes and α an initial phase. The terms Ix
and Iz designate the horizontal and vertical action, respectively; φx and φz
are the corresponding angle variables; and θ denotes the azimuthal position
around the storage ring. The function h is called driving term. It determines
the strength of the resonance and, for HERA, is typically much smaller than
the detuning term g [1].

Differential-algebra methods in conjunction with normal-form algorithms
[11] provide an efficient way to compute the Hamiltonian (4). Care has to
be taken, however, since resonances of order lower than 11 may cause a di-
vergence of the normal-form transformation. One possible approach [1] is to
first perform an eighth order normalization and then to rewrite the remain-
der as a Dragt-Finn factorization [12]. The original map M , extracted from
the HERA model, is then cast into the following form:

M = A−1e:−2πQI+t3(I)+...+t8(I):e:f9(I,φ): . . .

. . . e:f11(I,φ):A+O(12), (5)

where the tn and fn are polynomials of degree n in y =
√

2Iy cosφy, and

py = −
√

2Iy sinφy (y = x, z). The A denotes the eighth order normal-form
transformation. The tunes are given by the first partial derivatives with
respect to Ix,z of the approximate Hamiltonian

Happrox = A−1[QI − 1

2π
{t3(I) + . . .+ t8(I) +

+ < f9(I, φ) + . . .+ f11(I, φ) >φ}]. (6)

Here, the angular brackets indicate an average over φx,z. Tune curves ob-
tained by this method and those from an eighth and an eleventh order
normal-form analysis are compared with the tracking data in Fig. 2. The
divergence of the eleventh order normal-form analysis and the shortcoming
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Figure 2: Horizontal tune Qx obtained from tracking and from different normal-

ization schemes as a function of amplitude r ≡ (2βIx)
1
2 , (β = 76 m, Iz = 0).

of an eighth order normalization are evident, while the combination of a
normal-form transformation and a Dragt-Finn factorization reproduces the
amplitude-dependent tunes up to the threshold of chaotic motion found in
the simulations without tune modulation.

To identify the relevant high-order resonances the amplitude-dependent
tunes are depicted for three different working points in Fig. 3. It is possible
to identify 28 resonances of order 7 to 11, which are crossed by the tune, if
the starting action is changed continuously from 0 to 2 mm mrad along the
three lines Ix = 0, Iz = 0, and Ix = Iz. In the following, we will use this set
of resonances [1] to determine typical values of certain quantities.

The Hamiltonian (4), whose contour lines form an island structure in
phase space, can be further approximated by a nonlinear pendulum [13].
The pendulum motion is characterized by two parameters: the island width
∆Itot and the island tune QI . The former describes the size of the island in
action space ∆Itot ≡ (∆I2

x + ∆I2
z )

1
2 and reads

∆Itot = 4

 (l2 + k2)h

|l2 ∂2g
∂I2
z

+ 2kl ∂2g
∂Ix∂Iz

+ k2 ∂2g
∂I2
x
|

 1
2

. (7)

Figure 4 shows the island width ∆Itot for the above set of high-order reso-
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Figure 3: Diagram of the amplitude-dependent particle tunes and of all resonance
lines up to order 11. The numbered dots indicate tunes for special values of the
starting actions, (Ix, Iz)= 1) (0,0); 2) (0,2); 3) (2,0); 4) (2,2), in units of mm
mrad. The connecting lines correspond to a continuous variation of the initial
action between these values. The squares, circles, and triangles refer to three
different working points.

nances. Note that the resonances represented in the picture are encountered
for different working points and along different lines in tune space and that
a typical separation of resonances along one line is 0.5–1 mm mrad, so that
the resonance overlap criterion [13] is fulfilled only for I ≥ 4 mm mrad (or
r ≥ 25 mm).

The second parameter—the island tune QI—designates the frequency at
which particles inside a resonance island oscillate around the elliptic fixed
point [14]. It is given by

QI =

[
k2∂

2g

∂I2
x

+ 2kl
∂2g

∂Ix∂Iz
+ l2

∂2g

∂I2
z

] 1
2

h
1
2 , (8)

evaluated at the resonance. The island tune for resonances through order
11 varies between 3 · 10−15 (10−10 Hz) at very small amplitudes and 5 · 10−4

(25 Hz) for amplitudes of about 23 mm (β = 76 m) [1]. Resonance islands
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Figure 4: Total island width ∆Itot as a function of the resonant action I ≡ Ix+Iz.
The curve represents the parametrization ∆Itot ≈ 2.4 · 10−3I4(mm mrad)−3.

are most sensitive to an external tune modulation at frequencies close to the
island frequency. In contrast, they are almost undisturbed by high-frequency
perturbations (i.e., f > 100 Hz). The fraction of the resonance island wsl
which becomes chaotic under the influence of a tune modulation of amplitude
q and frequency Qm can be derived explicitly and, within a factor of 2, is
given by [13, 1]

wsl ≈ π|k + l|qQ2
m/

(
2Q3

I cosh (πQm/2QI)
)
. (9)

In Fig. 5 the absolute width of the chaotic layer wsl∆Itot is depicted for each
resonance, again as a function of the action I. Comparison with Fig. 4 shows
that up to 10% of a resonance island can become chaotic. For about half of
the resonances of Fig. 4, however, the stochastic width is insignificant. In
particular, it is negligibly small at resonant action values below I0 ≈ 0.8 mm
mrad (r ≈ 11 mm). This I0 approximates the threshold for tune-modulation
induced diffusion, independently of the exact details of the diffusion mecha-
nism, and its value is in remarkable agreement with the dynamic acceptance
measured.

4.2 Diffusion Rates

A concept complementary to the dynamic aperture is the amplitude-dependent
diffusion rate, which is very important for background considerations and for
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Figure 5: Absolute width of stochastic layer ∆Itot·wsl as a function of the resonant
action I ≡ Ix + Iz. A tune modulation amplitude of q ∼ 5 · 10−5 at a frequency
of 50 Hz is assumed. The curve represents the parametrization wsl · ∆Itot ≈
10−4I5(mm mrad)−4.

experiments in the beam halo. A possible semi-analytical scheme for eval-
uating macroscopic (i.e., measurable) diffusion rates contains the following
basic ingredients:

1. the parameters of isolated, high-order resonances,

2. local diffusion rates in the vicinity of a single resonance, and

3. a method to combine the local diffusion rates at each resonance into
a macroscopic ‘global’ diffusion rate, which may be compared with
measurements.

A diffusion equation was successfully applied to parametrize the beam profile
evolution in the Fermilab Tevatron [15] and is routinely employed to analyze
the transverse drift rates measured with the HERA collimator system [16].
A diffusion equation for the total transverse action I ≡ Ix + Iz is of the form

∂f/∂t = ∂/∂I · (D(I)∂f/∂I) , (10)

where f denotes the distribution function. The diffusion coefficient D(I) is
related to the squared action change per time interval by the formula [1]

D(I) =
〈
(∆I)2/(2∆t)

〉
. (11)
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Here, the bar indicates the mean over a particle ensemble. An approach to
calculating the ‘global’ diffusion coefficient D(I) consists of averaging the
local diffusion rates describing motion close to a single resonance over the
region between two adjacent resonances. This average, indicated by the
angular brackets in (11), can be motivated by a continuous slow drift of
resonance islands in phase space. Several mechanisms can cause a local
diffusion of particles:

a. The effect of an external diffusion (for instance gas scattering) can be
considerably increased in the vicinity of a resonance if the resonance
island and the island tune are sufficiently large and if the angle in
action space between energy surface and resonance contour is small.
The enhanced diffusion is known as resonance streaming [17, 18].

b. Particles inside the thin stochastic layer which is generated by tune
modulation around the separatrix of a primary resonance may diffuse
along the resonance contour under the influence of a second resonance,
which is an example of Arnold diffusion [13, 18].

c. If the machine parameters were kept constant, the strong diffusion of
particles across the chaotic layer would have no measurable effect. Since
the tunes change continuously, however, the resonance islands are alter-
ing their position in the four dimensional phase space, and individual
particles will follow a succession of regular and chaotic trajectory seg-
ments. A measurable diffusion rate called sweeping diffusion is the
result [2].

d. A tune modulation of small modulation frequency Qm and large am-
plitude q generates a strongly chaotic band of overlapping sideband
resonances. Particles inside this ‘modulational layer’ can be driven
along the resonance contour by another resonance. This mechanism is
known as modulation diffusion [19, 18].

The diffusion processes a–d are locally described by a Fokker-Planck
equation in the action variable [18, 17, 13, 19, 2]. If the motion is Hamilto-
nian, the Fokker-Planck equation reduces to a diffusion equation with action-
dependent coefficients [18, 1]. Thus, it is not too surprising that a diffusion
equation also parametrizes the macroscopic behavior as reflected in beam
profile and background.
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Figure 6: Comparison of diffusion coefficients computed for different types of
nonlinear transport mechanisms and for gas scattering (pH2 = 2 · 10−9 mbar) as a
function of action [2].

Figure 6 compares the relative significance of different diffusion processes
[2]. The figure shows that modulational diffusion is the dominant transport
process and that its associated diffusion rate exhibits a steep increase as a
function of amplitude. The latter was calculated assuming that the particles
are driven along the modulational layer under the action of the linear coupling
resonance Qx −Qz = −1,

Hcoupl(Ix, Iz) = κI
1
2
x I

1
2
z cos(φx − φz + θ + χ0), (12)

where the parameter κ ≈ 0.005 corresponds to the minimum distance of the
measured tunes as a function of nominal tunes [21], and χ0 is an initial phase.

The estimated diffusion rate agrees qualitatively with the observation,
but is too small by six or seven orders of magnitude to explain the measured
dynamic aperture. This discrepancy may be ascribed to resonances of or-
der higher than 11, omitted in the analytical calculation, or to a diffusion
mechanism different from those considered here.
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5 SUMMARY AND CONCLUSIONS

For tracking calculations and analytical studies a very detailed model of the
HERA proton ring is available, which includes the measured field errors up
to 20-poles for each individual magnet. The dynamic aperture predicted by
simulations and the measured value agree within a factor of 2. A better
agreement is achieved if the effect of tune modulation is also considered: for
a realistic tune modulation, chaotic trajectories are theoretically expected,
and indeed are observed in the simulation, at amplitudes very close to the
actual dynamic aperture. The dynamic aperture in HERA appears to be
caused by the combined effects of nonlinear field errors, tune modulation,
and drifting machine parameters.
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