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ABSTRACT

The Contractor Renormalization group (CORE) method, a new approach to

solving Hamiltonian lattice systems, is introduced. The method combines con-

traction and variational techniques with the real-space renormalization group ap-

proach. It applies to lattice systems of infinite extent and is ideal for studying phase

structure and critical phenomena. The CORE approximation is systematically im-

provable to any desired degree of accuracy. It is complementary to standard Monte

Carlo methods and incorporating dynamical fermions presents no problems. The

method is tested using the 1+ l-dimensional Ising model.
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Many problems in particle and condensed matter physics cannot be studied with con-

“ vent ional pert urbat ion theory. Aside from Monte Carlo simulations, few tools allow one

to deal with general Hamiltonian systems and fewer tools deal directly with their infinite-

volume behavior. This paper introduces a new tool, the Contractor Renormalization group,

(CORE) approximation, which can handle this class of problems. Its virtues are: it is sys- -

thematically improvable to any desired degree of accuracy; it is a variational procedure which

can produce an upper bound on the energy of the lowest eigenstate of the Hamiltonian in

any sector of the theory defined by a distinguishable set of quantum numbers; it applies to

lattice systems of infinite extent allowing one to directly study phase structure and critical

phenomena; it provides tools for checking convergence and estimating the size of contribu-

tions which have not yet been computed; it requires modest computer resources by modern

standards; it is complementary to standard Monte Carlo methods; incorporating dynamical

fermions presents no new problems.

We start with a brief description of the method, then apply two variants of the CORE

approximation to the 1+ l-dimensional Ising model. Numerical results are presented for each

calculation. A comparison of these calculations demonstrates the flexibility of the CORE

approach. A thorough discussion of these results and convergence properties of the method

is deferred to a later paper.

Description of the Method In the limit t

state I@v=) onto the lowest eigenstate of H

Therefore, the expectation value

~ m, the operator e–tH contracts any trial

with which it has a non-vanishing overlap.

(1)

tends to the corresponding eigenvalues co of H as t becomes large. In general, ~(t) cannot

be computed exactly. Reliably approximating ~(t) and other similar matrix elements is the

primary goal of the CORE method.
--.

The first step in building a CORE approximation to &(t) is to construct a computable

‘tH for t in some range O < t < tn~Z.operator T(t) which closely approximates e To find
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such an operator, first divide H into two (or more) parts, i.e., H = H1 + H2, where the

individual parts HI and H2 are chosen such that e–tHl and e–tH2 can be computed exactly.

Next, follow the approach of Ref. [1] and rewrite e-tH as a symmetric product

e–tH
=e

–tH1/2 e–tH2j2 eC3(t) e–tH2/2 e–tH112, (2) -

where C3 (t) is a sum of terms all of which begin in order t3 or higher. The simplest T(t)

is obtained by

approximation

operators as a

replacing eC3(t) by the identity operator. One way to construct a better

is to retain low-order terms in C3(t) and rewrite the exponential of these

symmetric product of explicitly computable terms. Another is to use the

operators TP(t) = [T(t/p) ]P. In any case, it is very important to ensure the approximate

contractor satisfies all the symmetries of H.

Given a contractor T(t), COcan then be bounded from above by computing

~~(t) : (@vU [ T(t) HT(t) \0..,)

(ova I T(t)2 I@“ar) .
(3)

A best estimate for Cois obtained by minimizing 8T(t) with respect to t and any parameters

in I@v.,). Consider a trial state given by l@,a,) = ~~=1 aj [@j), where { Idj) } is some set of

orthonormal states. One can easily demonstrate that minimizing &~(t) with respect to the

aj parameters is equivalent to solving the generalized eigenvalues problem

det ([TAT] - ~[T(t)2]) =0, (4)

where [. ..] denotes truncation to the subspace spanned by the Idj ) states. In particular, for a

given operator 0, [0] = POPt where P is the projection operator P = ~~=1 [~j) (~j 1. Thus,

finding the best trial state I@vU) is equivalent to diagonalizing the effective Hamiltonian

Hefi(t) = [T(t) 2]-112 [T(t) HT(t) ]
.

This operator plays a key role in the CORE approach.--.

[T(t) 2]-1i2. (5)

To simplify the computation of H.ff(t), one partitions the lattice into separate blocks

and chooses a trial state which is a tensor product of identical block states. Truncating the
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Hilbert space on a block-by-block basis allows the efficient evaluation of H.ff(t) by the finite

czuster method. In this method, H,ff(t) (or any other extensive quantity) is calculated as

a specific sum of finite-volume contributions. A general statement of the cluster method

has been given in Ref. [2] and references cited therein ; only a brief description can be

presented here. Evaluation of H.ff (t) by the finite cluster method is accomplished in the

following sequence of steps. First, compute H.ff (t) on a sub-lattice which contains only a

single block. This yields all of the so-called range-one terms in the cluster expansion of the

effective Hamiltonian. Next, calculate H.fi (t) for a theory defined on a sub-lattice made up

of two adj scent ( connecte~ blocks. The range-two contributions to the cluster expansion are

obtained by removing from the two-block calculation those contributions which arise from

terms already included in the single-block calculation. Repeat this procedure for sub-lattices

containing successively more connected blocks, then sum the connected contributions from

these sub-lattices with weights given by the number of ways each sub-lattice can be embedded

in the full lattice. The stage at which one cuts off this cluster expansion determines the

maximum range of the interactions which will appear in H,ff. The finite cluster method is

simple to implement, provides numerous means of detecting computational errors, and does

little or no harm- to the variational bound in t~(t).

The cluster expansion of ~~(t) converges rapidly, except near a critical point where the

correlation length of the system becomes large. Near such a point, choosing a starting state

having significant overlap with the exact ground state is crucial to improving the conver-

gence of the cluster expansion. Fortunately, there exists an iterative procedure which allows

simultaneous construction of a good trial state and the cluster-expansion computation of

~~(t) in that state. This procedure, which we refer to as a Hamiltonian real-space renormal-

ization group (RG) method because of its similarity to the approach used in Ref. [3], treats

the “problem of infinite volume and vanishing mass gap quite successfully.

Our” real-space renormalization group method develops H,ff by successive thinning of--.

degrees of freedom. First, one specifies the RG algorithm by deciding how to partition the

lattice into blocks of sites and which states on each block to eliminate. The Hilbert space is

4



.

then thinned by a truncation to the same chosen subset of states on each block and H.ff (t) is

calculated using the cluster expansion. The last step in this initial RG transformation is to

select a best value for t. This can be done in a number of ways. For example, one can extract

the coefficient of the identity operator in H.ff and vary t to minimize this quantity. Better

yet, one can evaluate H.ff in a simple product state to produce a mean-field estimate of the

ground state energy and minimize this with respect to t. Once a best t = t; is chosen and

an effective Hamiltonian ~~~) (t;) is obtained, the above procedure is repeated, constructing

a new contractor T(l)(t) to approximate exp[—t ~$~) (t~)].Thus, the renormalization group

procedure generates a sequence of effective Hamiltonian ~~~) (t:), where

(6)Hj;+l) (t) = Rn(t)[T(~)(t)H~:)(t:)T(n)(t)]Rn(t),

and Rn(t) = [T(n)(t)2]–1/2. As the recursion proceeds, the effective Hamiltonian evolves

eventually into a simple form which can be trivially diagonalized, yielding an estimate of

the ground state energy.

Note that from a programming point of view, CORE calculations involve mainly matrix

multiplications; diagonalizations and inversions of only very small matrices are required.

- Often the matrices being multiplied will be sparse and so one can exploit efficient algorithms

for carrying out ~hese computations, resulting in even greater economies of time and memory

usage.

Excited States and Matrix Elements

excited states in a CORE calculation. If

There are many ways of extracting the energies of

one retains r states per block in the RG algorithm,

then about r/2 energy levels may be reliably obtained from the excited-state energies of the

effective Hamiltonian ~~~) (t;) for n sufficiently large. One can also construct an operator O

such that [Ovm) and O [0..,) do not mix under H and T(t) and O = X6 eipxb O(b), where b

labels <blocks, p is a momentum label, xb is the position vector associated with block b, and

the operator O(b) acts only on the single block b. Then the energy gap A~ associated with

O IS given by a ratio of e~tensive quantities A~ = (M~(t)) / (20(t)), where

z~(t) = [T(t) 2]-1/2[otT(t)2Q] [T(i) 2]-l/2,

5
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HQ(t) = [T(i)2]-1/2[QtT(t)HT(i)Q][T(t)2]-1/2, (8)

MQ(t) = HQ(~) – ; {zn(~), ~eff(~)} > (9)

and (. . .) denotes evaluation in the ground state of H,ff. Each of the operators MQ (t)

and Z~ (t) has a cluster expansion and can be developed using the same sequence of RG -

transformations as for H~~)(t:).

The expectation value of an extensive operator 0 can also be evaluated in the CORE

method. One develops 0 using the same RG transformations as for H, producing a sequence

of effective operators 0~) (i;). The matrix element of O.ff is then evaluated once H,ff has

evolved to the point where its ground state can be easily determined.

The 1+1-Dimensional Ising Model The Ising model in 1 + 1 dimensions is often used

as a testing ground for new calculational methods. The Hamiltonian in this model is given

by

H1sing= - ~ [cA~z(~) + sA~.(j)~.(j + 1)] , (lo)
j

where j labels the sites in the infinite chain, CA = cos(~r/2), and s~ = sin(J~/2), for

O < A ~ 1. This model exhibits a second-order phase transition at A = 1/2. For A < 1/2,

the ground state of the system is unique and the order parameter (a.(j)) = O. When

A > 1/2, the system has a twofold-degenerate ground state corresponding to values of the

order parameter given by (aZ(j)) = +(1 – cot2(~r/2))118.

In any application of the CORE method, one must choose a contraction operator T(t),

a renormalization group algorithm, a method of determining the optimal value of t in each

RG step, and the truncation order to use in the cluster expansion of H.ff (t). Symmetry, the

choice of RG algorithm, and the truncation order used in the cluster expansion determine

the general form of the effective Hamiltonian. Here, we test the CORE approximation in two

differat applications to the Ising model. In both applications, we chose an RG algorithm

in which the Hilbert space is truncated to the lowest two eigenstates in each block. We also--.

chose to truncate the cluster expansion of Heff (t) after two- and three-block clusters. For

these choices, the effective Hamiltonian in this model takes the general form
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where

label.

Hefl(t) = – ~ca(t)va,
a

Va = ~o.(i),

Oa(i) = ;ao(i)aa,(i+1) ...Oar(i + r),

Ca(t) are the couplings, a labels the different types of operators Va, and i is a site

There are only two one-site operators: a(l) = {u, z}, where u denotes the identity

operator. In other words, the only one-site operators are OU(i) = o.(i) = 1 and OZ(i) =

Oz(i). There are three two-site operators: a(2) = {ZZ, yy, zz}. The three-site operators are

Q(3) = {X2X, Xux, Xxz, Zxx, yzy, yuy, yyz, Zyy, Zuz, Zzz}.

In our first application, we used a contraction operator given by TI (t) = S~(t)S1 (t), where

Sl(t) = ~a U~(i) and U.(t) = Hi [1+ tanh(cot/2)0a(i)]. The operators in this product

were ordered according to their site range, increasing in size from right to left. For the RG

algorithm, two-site blocking was used and the Hilbert space was truncated to the lowest

two eigenstates in each block. In each RG step, t was chosen to minimize the mean-field

energy density of H.ff (t). Calculations were done using T~(t/n) for various values of n and

truncating the cluster expansion of H.ff(t) after two- and three-block clusters.

For our second application of the CORE method, the lattice was divided into blocks

containing three sites and the Hilbert space was again truncated to the lowest two eigenstates

in each block. We used an approximate contractor given by T2(t) = S~(t)S2(t) with S2(t) =

exp(—tV/2) exp(—tH~/2), where Hb contains all intra-block interactions and V contains

all inter-block operators (those which cross block boundaries). Note that exp(–tHb/2) =

~~ exp(–tHb(p)/2) and exp(–tV/2) = HP exp(–tV(p)/2), where p labels the blocks. The

operators Hb(p) and V(p) can be exponentiated numerically with no difficulty. We fixed i

by minimizing the expectation value of H.ff in a mean-field state. Calculations were done

using T; (t/n) for various values of n and stopping the cluster comput at ion after two- and

three-block clusters.
-..

Selected estimates EO of the ground-state energy density from both variants of the CORE

approach described above are compared to the exact energy density Co in Fig. 1. The
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fractional errors 6,0 shown in this figure are defined by 6,0 = I(EO – eO)/eO[. Selected mass

gap estimates A are compared to the exactly-known gap A....t in Fig. 2. In this figure, the

difference between the CORE estimates and the exact gap is denoted by 6A = A – A,X,C~.

Fig. 3 illustrates the amounts by which the T~2 CORE estimates of the magnetization

M = [(az(j)) 1, for some site j, differ from the exact values. The accuracy of the results

is striking; especially considering that only the first three terms in the cluster expansion

were included in the calculations. The CORE method reproduces the correct location of

the critical point with remarkable precision. The critical exponent ( was extracted from

a straight-line fit of our T~2 results for lnM to the form in M = ~ ln(l — A~/A2), where

A = tan(A~/2), A. = tan(AC~/2), and ACis our computed value for the critical point. For

~. = 0.5053 and fitting in the range 0.51 ~ ~ ~ 1.0, we obtain [ = 0.12437, to be compared

to the exact value of 0.125. Using larger blocks or including more terms in the cluster

expansion should significantly improve this result.

Conclusion Given its simple theoretical foundations, the relative ease

tion, and our success in applying it to the 1+1-dimensional Ising model, we

of implementa-

believe that the

CORE approximation will prove to be a powerful tool for analyzing intrinsically nonper-

turbative systems. One particularly exciting feature of this method is that it can be easily

applied to systems containing dynamical fermions, systems which resist treatment by present

stochastic means. Another is the fact that by a suitable choice of truncation algorithm, one

can use the techniques introduced in this paper to generate eflective Hamiltonian for the

composite particles of a theory. For example, one could truncate the small-block problem

in lattice QCD to the lowest-lying hadronic states and then develop the Hamiltonian com-

puted in this subspace using the CORE approximation. The CORE approach should also

be useful for investigating resonance phenomena. In general, we feel that the possibility of

eliminating the quenched approximation in lattice quantum chromodynamics, better study-

ing spontaneous symmetry breaking and other nonperturbative phenomena in relativistic--.

field theories, and probing the low-energy physics of the Hubbard and t– J models warrants

further work with the CORE approximation.
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