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Abstract 
Now that the Scalable Coherent Interface (SCI) has 

solved the bandwidth problem, what can we use it for? 
SCI was developed to support closely coupled 
multiprocessors and their caches in a distributed shared- 
memory environment, but its scalability and the ejicient 
generality of its architecture make it work very well over 
a wide range of applications. It can replace a local area 
network for connecting workstations on a campus. It can 
be a powerful II0 channel for a supercomputer. It can be 
the processor-cache-memory-I/O connection in a highly 
parallel computer. It can gather data from enormous 
particle, detectors and distribute it among thousands of 
processors. It can connect a desktop microprocessor to 
memory chips a few millimeters away, disk drives a few 
meters away, and servers a few kilometers away. 

1: Introduction 

Communication among the various parts of a computer 
system has used buses for several generations, except in 
the very highest-performance situations. But computer 
buses have reached practical and fundamental limits. such 
as the speed of light, the capacitance of transceivers and 
connectors, and the one-talker-at-a-time bottleneck. 

However, the demands of real-world applications 
continue to grow without regard to these limits, 
surpassing the ability of buses to accommodate them. 

For example, building a large multiprocessor by 
connecting hundreds or thousands of powerful 
microprocessors requires a high degree of parallelism for 
which buses are impractical. 

Engineering simulations can saturate any conceivable 
machine, and run so slowly on present machines that users 
are forced to overly simplify their design models. 

The next generation of particle physics experiment (at 
the Superconducting Super-Collider in Texas or the Large 
Hadron Collider in Geneva) will generate raw data at 
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1014-byte/set rates, calling for vast amounts of specialized 
processing power and high capacity data transmission. 

Recognizing this problem, Paul Sweazey (who was the 
cache coherence task group coordinator for Futurebus) 
convened a SuperBus study group in 1987 to consider 
what could be done. This became the Scalable Coherent 
Interface, IEEE project P1596, in 1988. The general 
strategy was clear, but many details remained. 

The approach taken was to use a large number of 
2-byte-wide point-to-point links, initially running at 
1000 Megabytes/s each. A packet protocol would be 
developed to allow a collection of links to provide bus- 
like services, but taking care to choose only scalable 
algorithms that guarantee forward progress, avoiding 
starvation and deadlock. The protocol also had to 
efficiently maintain consistency among a large number of 
hierarchical caches. A fiber-optic link was required too, 
but for practical reasons it would initially be slower, at 
1000 Megabits/s. 

This is a relatively new kind of standards work: rather 
than codifying existing practice, the standardization 
process creates new technology as needed. This approach 
is essential if standards are to be completed before they 
are obsolete, in a fast-moving field like ours. 

The SC1 work was essentially complete in January 
1991. Draft 1.0 was distributed to a balloting body 
numbering about 150 persons, and passed with a 92% 
approval. However, a large number of suggestions was 
made by the voters, which resulted in a few minor 
technical changes but a significant amount of 
reorganization and editorial change to the document. The 
resulting Draft 2.0 was redistributed to the balloting body 
in December 199 1, and the expectation is that the standard 
will receive final IEEE approval early in 1992. 

Chip design proceeded in parallel with the standards 
work, with heavy involvement of industry in the 
architectural development. 

The serial link chip saw working silicon at Hewlett 
Packard in October of 1991. However, it relies on other 
chips (not yet available) for the protocol. The same chip 
also supports Serial HIPPI and can transparently replace 
20 parallel signals in each direction with a pair of fibers. 
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The first to announce a chip that supports the parallel 
SC1 links was Dolphin Server Technology, with a family 
of interface chips that they will use in products but also 
sell to others. These chips should become available in the 
first half of 1992. A single chip incorporates the receivers, 
transmitters, fast buffer storage, protocol logic, most of 
the cache-coherence protocol support, and a general- 
purpose interface to the user’s processor. 

SC1 is agnostic with regard to processor religion, 
working equally well with all denominations. However, in 
the development of SC1 we learned that interconnects 
have-become the limiting part of modem multiprocessors, 
and the next generation of processor could change a few 
features that would make multiprocessing work much 
better. We will be writing more on this subject this year. 

sophisticated, but it does not work in highly parallel 
systems. 

A cache coherence scheme that scales to large systems 
requires a directory that keeps track of which data are 
being used by which caches, so that the appropriate 
caches can be updated as necessary. Earlier schemes have 
used a directory but kept it in memory. SC1 maintains it as 
a distributed doubly linked list of caches instead, with the 
head pointer at a memory controller and the link pointers 
stored in the cache controllers. This has the virtue that the 
correct amount of storage is always available for the 
directory structure, no matter how many caches are 
sharing copies of a particular line of data. It also spreads 
the maintenance traffic across the system, rather than 
concentrating it at the memory. 

Pursuing these ideas led us to SCI. 
2: Solving the problems 

3: The SC1 solution 
Starting from a computer bus point of view, let us 

consider how one can make buses better. The speed of 
light limit allows a bus to run faster if it is shorter and 
connects fewer devices. Sadly, this makes it less useful. 

The one-at-a-time bottleneck can be improved by 
reducing the number of devices, ultimately to just one 

_ talker per bus. Then to connect a large number of devices, 
one has to interface, or bridge, a large number of buses. 

Throughput can be improved by using split-cycle 
operations that don’t tie up the bus, intermediate paths or 
bridges while waiting for the response to a request. 

The connector and capacitance problems can be 
eliminated by using proper transmission lines, with one 
device on each end so that there are no disruptive stubs in 
the middle. Connectors work much better when signals 
pass through them, notpust them as they do in buses. 

Bus turn-around delays (the time from turning off the 
drivers on one end, letting the signals propagate to the 
other, turning on the drivers on the other end and letting 
the signals propagate back to the start) can be eliminated 
by using one transmission line for each direction. 

Differential signalling reduces sensitivity to noise and 
virtually eliminates ground-return-current noise, because 
the signalling current is constant - the same current 
flows either on one wire or its neighbor. If signals are 
transmitted continuously, the returning current does not 
stop, start, or change sign. Furthermore, it is easier to 
receive signals at very high speeds when they run 
continuously, not stopping and starting unpredictably. 

Cache consistency, or coherence, has been maintained 
in small bused systems by taking advantage of the bus 
bottleneck - every cache controller observes every 

~ transaction in the system, “snooping” to catch transactions 
that might invalidate cached data. That approach can be 
scaled up to a few buses by making the bridges rather 

SC1 has several aspects. Its protocols describe packets 
and their behavior, and work without regard to the packet 
transport mechanism currently in use. 

Three links are defined in the present standard, so that 
products from various vendors can communicate. Future 
technological improvements will bring new link 
standards, faster or cheaper or both, but the SC1 protocols 
will still work. Cable connectors, pinout, and signals are 
specified. 

A module and subrack have been defined, based on the 
international (metric) IEEE Std 1301.1-1991, with 
connector, power and cooling specified so that 
interchangeable modules can be built by multiple vendors. 

3.1: Protocols 

SC1 packets are efficient. They are designed for fast 
routing through switch networks or bridges: when cross- 
traffic permits, a packet can start out the other side before 
it has been entirely received. 

The packets are short, to match the needs of the 
processor and cache. (SC1 specifies a 64-byte cache line 
size. Other line sizes may be used in caches between the 
processor and the SCI-visible cache.) Short packets also 
result in less latency when one blocks another’s access to 
a shared path. 

Longer packets that can transfer 256 bytes are defined 
as an option, but are not likely to be implemented in the 
first generation of support chips. 

SCI-to-SC1 bridges are simple. They merely forward 
packets based on the address, and are not directly 
involved in the cache coherence mechanism. 



SC1 also provides noncoherent transactions, as needed 
for certain I/O operations, Control and Status Register[20] 
accesses, and interfaces to noncoherent buses like VME. 

speed and signalling details. However, SC1 does assume 
that the error rates are very low; if a link technology with 
high error rates has to be used, mechanisms transparent to 
SC1 will be needed that make the link appear reliable. 

3.2: Links 
3.3: Mechanical Package 

SC1 links run continuously. The startup process may 
take as long as necessary for the receiver to synchronize 
to the transmitter, but then synchronization is maintained 

- -continuously. If some catastrophe causes the link to lose 
synchronization, the protocols reset and resynchronize the 

:-. links; 
Every SC1 interface has one input and one output link, 

or a multiple of pairs of links. Low-cost systems can 
connect outputs to inputs to form rings. High performance 
systems connect the outputs and the inputs to a switch 
network that routes the packets directly (by means outside 
the scope of the SC1 standard). The protocols are the same 
in either case, so the SC1 device, or node, does not have to 
know what kind of interconnect it is using. 

Some extra cost was incurred in the interface to 
support ring connections, because nodes in a ring have to 
pass along packets not addressed to them. This additional 
cost for address recognition, storage and other logic was 

_ worthwhile because the system cost for a ring connection 
is very low. This allows SC1 nodes to be used in high- 
volume low-cost applications, bringing that economy of 
scale to the low-volume high-performance applications. 

Rings turn out to be better performers than one might 
expect, because the SC1 protocols discard the packet upon 
receipt. Thus it only travels, on average, half way around. 
Furthermore, rings can be interconnected to make high- 
performance switch fabrics. 

The GigaByte!s link uses 18 differential ECL signals 
for 16 data bits, a clock, and a flag bit that delimits 
packets. The clock runs at 250 MHz, clocking data at each 
edge, so the data rate is 2 bytes every 2 ns. Our strategy is 
to keep links narrow and fast, because pins, connectors 
and cables remain expensive while speed gets cheaper. 

The Gigabit/s link can use fiber optics, for long 
distances (kilometers), or electrical coaxial cable, for 
short distances (tens of meters). The signals are encoded 
as 16 bits plus flag in a 20-bit frame, DC-balanced so that 
AC-coupling techniques can be used to break ground 
loops etc. Coaxial cable is inexpensive and convenient for 
the short distances typical of a room full of computing 
equipment. When requirements change, the optical 
transceivers can be added to a socket already in the 
device, or a separate package can be used as a translater 
between the electrical and the optical signalling domains. 

- ~ -Technological change or economic change will require 
definition of new link standards from time to time, but the 
,,protocols were designed to be independent of the link 

Some applications have special needs that require the 
use of special-purpose or existing system packaging. 
However, a wide variety of applications can benefit from 
the enormous effort that has gone into defining the IEEE 
1301 standard. Many users underestimate the difficulty of 
designing satisfactory packaging, and underestimate the 
cost as well. 

The module size selected by SC1 is based on 300 mm 
depth, 300 mm height, and 30 mm width. Actual board 
dimensions are less, to allow for guides, clearances, etc. 

The connector is the 2 mm EIA-64 (often referred to as 
Metral@) modular family. Modules of 4 rows of 6 pins are 
available as building blocks. SC1 mounts the pins on the 
backplane, sockets on the module board. Six modules are 
used for signals (18 pairs in, 18 out, 36 grounds for 
impedance control and isolation, and static signals that 
can be used for coded location information if desired.) 

SC1 distributes 48 V power. The voltage requirements 
of high performance chips are expected to change rapidly 
in the near future, so there is no way to specify enough 
power pins for each relevant voltage. Furthermore, SC1 is 
expected to be used in large systems where it is important 
to be able to replace a module without turning the power 
off. That is only practical when a single supply voltage is 
used, and then only with some help from the connector, 
using pins of several lengths. 

Using 48 V means that ordinary signal pins can be 
paralleled to handle enough current. Thus the SC1 power 
connector is just a seventh signal module. The pins are 
arranged in rows of various lengths: a long row serves as 
ESD discharge and early ground; medium rows connect 
the main power; and short pins enable the on-board power 
converter operation. Thus there is never any significant 
current flowing in the power pins when contact is made or 
broken. 

The remaining space on the backplane and back edge 
of the module can be used for 14 more connector modules 
(336 pins) which can be used for custom I/O, more SC1 
links, or fiber-optic and coaxial connectors. 

4: Support for simulation and verification 

The SC1 specification includes a lot of tutorial 
explanation, because it is a new approach in the computer 
communication field, but relies on executable C-code 
programs for the detailed specification. 



This approach is valuable for testing the specification 
in simulation, for verifying the design of SC1 chips, and 
for simulating the performance of SC1 systems. 

The cache coherence mechanism was particularly 
important to model and understand precisely. Multiple 
processors are maintaining shared data structures, the 
directory linked-lists, concurrently with no semaphore or 
lock variables. (The protocols use indivisible 
compare&swap transactions instead.) 

Work is in progress at the University of Oslo[ 11,161 to 
verify the correctness of this specification by 

~mathematical proof. Though this is unlikely to be 
completed before chips are built, the intense scrutiny it 
has brought to the specification has greatly increased our 
confidence in it. Simulation has also been used 
extensively. 

5: Conclusions and further work 

SC1 began as a research project carried out in the 
standards-development environment. It was not obvious at 
the start whether protocols with the desired properties 
existed. It is remarkable how simple and elegant the 
solutions to some of the difficult problems turned out, and 

_ how widely applicable SC1 will be as a result. We often 
found that the requirement for finding scalable solutions 
initially made things more difficult, but then they became 
easier because the same mechanism could be extended 
beyond its original purpose to fill other needs. 

In the course of SC1 development we have seen the 
need for several related projects. Five of these have been 
started as official standards projects already, and more are 
in the planning stages. The existing projects are: 

5.1: SCWME ‘bridge 

This project, P1596.1, is defining a bridge architecture 
for interfacing VME buses to an SC1 node. This provides 
I/O support for early SC1 systems via VME. Products are 
likely to be available in 1992. Chaired by Ernst 
Kristiansen, Dolphin Server Technology, Oslo, Norway, 
ehk@ifi.uio.no, phone +47-2-627000, fax +47-2-627313. 

The main decisions involve the mechanism for 
mapping addresses between VME and SCI, which 
versions of VME to support, and how to handle interrupts, 
mutual exclusion, and cache coherence. 

Current thinking would place the SC1 bridge in the 
controller positions of four half-length VME backplanes, 
arranged back to back. This should give excellent 
performance; dedicating the controller positions seems a 

, reasonable compromise for an I/O system. The bridge 
may also support transfers from one VME bus to another. 
We expect to support most of the VME sixes. 

5.2: Cache optimizations for kiloprocessors 

This project, P1596.2, is developing request 
combining, tree-structured coherence directories and fast 
data distribution mechanisms needed for systems with 
thousands of processors, compatible with the base SC1 
coherence mechanism. Chaired by Ross Johnson, 
University of Wisconsin, Madison, WI, ross@cs.wisc.edu, 
phone 608-262-6617, fax 608-262-9777. 

This working group is developing and extending ideas 
that came up during the development of the base SC1 
standard, but which we felt could be postponed to avoid 
delaying SCI’s introduction. That is, the protocols defined 
by P1596 seem adequate for systems with perhaps 
hundreds of processors (enough for a year or so), and 
include hooks for adding these optimizations later. 

When a large number of requests is addressed to the 
same node, the interconnect becomes congested and 
performance suffers. Request combining allows several 
requests to be combined into one when they meet (waiting 
in queues in the interconnect). All but one of these 
requests generates an immediate response, which tells the 
requester to get the data from that one’s cache instead. 

SC1 nodes are designed to handle this kind of no-data 
response already, because it is used in the basic coherence 
protocol. The remaining request goes forward, eventually 
resulting in a response that provides the data to that cache, 
where they are read by the other nodes. This spreads out 
the traffic, reducing congestion. 

Note that these immediate responses relieve the 
interconnect from retaining any information about the 
combining, which enormously simplifies the process 
compared to previous implementations. 

Once the data become available, the time needed to 
distribute them to all the requesters becomes important. 
The linear linked lists of the base SC1 standard result in 
times proportional to the number of requesters, which can 
be a performance problem in large systems. 

Instead of linear lists, one would like to maintain a tree 
structure, which could distribute the data in time 
proportional to the logarithm of the number of requesters. 

At first we thought it would be impractical to maintain 
binary trees in the distributed coherence directory because 
the overhead would be too high. The schemes we had 
seen others use were not acceptable for SC1 because they 
involved setting lock variables to get mutual exclusion 
while tree maintenance was done, scaling poorly and 
violating an SC1 design principle. (Lock variables also 
introduce a variety of complications, such as what to do 
when the process that holds the lock fails.) 

Thus we first considered using approximate or 
temporary pointers that would form shortcuts along the 
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linear directory lists, but which would gradually become 
inaccurate as processors rolled out cache lines etc. 
Whenever a temporary pointer was used it would be 
checked for validity, and the algorithm would drop back 
to following the (always valid) linear list when necessary. 

But at the August 1991 meeting, Ross Johnson 
presented a method for maintaining correct trees at all 
times, without using lock variables and without adding 
much overhead. Though details need to be worked out and 
some comer cases need more study, we feel that the 
remaining questions can be resolved. 

Open issues concern the worst-case scenarios (when 
things happen in the worst possible sequence) and how to 
reduce the likelihood of having these occur. 

5.3: Low-voltage differential signals for SC1 

This project, P1596.3, is specifying low-voltage 
differential signals suitable for high speed communication 
between CMOS, GaAs and BiCMOS logic arrays used to 
implement SCI. The object is to enable low-cost CMOS 
chips to be used for SC1 implementations in workstations 
and personal computers, at speeds of at least 200 
MBytes/s. Chaired by Gary Murdock, National 
Semiconductor, Santa Clara, CA, phone 408-721-7269, 
fax 408-721-7218. 

Faster signalling requires smaller signals, if edge rates 
and currents are to be kept reasonable. Smaller signals 
require differential signalling (or at least their own 
reference independent of system ground). At first glance, 
differential signalling seems to cost a factor of two in 
signal traces and pins, but the real cost is much smaller 
because far fewer ground pins are needed, far less system 
noise is created (or picked up), and the higher signalling 
speeds reduce the number of parallel signals needed. 

SPICE modelling has been done that shows we can 
signal at SC1 speeds with contemporary CMOS 
technology. MOSIS test chips have already reached nearly 
this performance. In fact, the hardest part of the problem 
is how to provide or accept the data at the signalling rate! 

Present modelling is based on a 250 mV voltage swing, 
centered on 1 V. This provides a little headroom for 
common-mode rejection at the receiver, while allowing 
use of 5 V, 3.3 V and eventually 2 V technologies. 

The working group is choosing certain signal levels 
and rates to be supported as signal interchange (link) 
standards for CMOS implementations of SCI, and will 
also define an g-bit and possibly a 4-bit link to 
complement the 1596-defined 16-bit and l-bit links. This 
work should complete in 1992. 

. .- 

5.4: High-bandwidth memory chip interface 

This project, P1596.4, is defining an interface that will 
permit access to the large internal bandwidth available 
inside dynamic memory chips. The goal is to increase the 
performance and reduce the complexity of memory 
systems by using SC1 signalling technology and a subset 
of the SC1 protocols. This work was started by Hans 
Wiggers of Hewlett Packard Laboratories, and is now 
chaired by David B. Gustavson, Stanford Linear 
Accelerator Center, Computation Research Group, 
P.O. Box 4349, MS 88, Stanford, CA 94309, USA, 
dbg@slacvm.slac.stanford.edu, phone 415-926-2863, fax 
415-961-3530. 

A serious problem with present memory systems is the 
need to use a large number of memory chips in parallel 
banks to get the bandwidth needed for today’s powerful 
microprocessors. As the capacity per chip increases, the 
smallest memory configuration with adequate bandwidth 
reaches a point where it has an unreasonably large 
capacity (and needlessly high cost). Furthermore, the 
increments for expansion are too large. We hope to get 
much higher bandwidth from far fewer chips by using 
SCI-like signalling technology. This will lower the entry 
cost for low-end systems while raising the performance of 
high-end systems. 

Several models are being considered [19]. One of the 
most promising uses several RAM chip ringlets attached 
to a single controller by g-bit-wide point-to-point links. 
The name RamLink is becoming popular for this 
approach. Details of the signalling are still being worked 
out, but there seems to be general agreement to use small 
signal voltages. 

5.5: Shared-data formats optimized for SC1 

This project, P1596.5, is specifying data formats for 
efficiently exchanging data between byte-addressable 
processors on SCI. SC1 supports efficient data transfers 
between heterogeneous workstations within a distributed 
computing environment. Current systems require 
conversions among large numbers of vendor- or language- 
dependent data formats; specifying a single transfer 
format greatly reduces the complexity of this conversion 
problem. In addition to simplifying the data-interchange 
problem, standard data formats provide a framework for 
the design of future processor instruction sets and 
language data types. Chaired by David V. James, Apple 
Computer, Cupertino, CA, dvj@apple.com, phone 
408-974-1321, fax 408-974-9793. 

The specification defines integer and floating-point 
sizes, formats, and address-alignment constraints. Bit 



fields are supported as subcomponents of a larger byte- 
addressable integer datum. Work on this project has just 
begun, but it should not take long to complete, since much 
of the groundwork has been done earlier in conjunction 
with development of the CSR Architecture[20]. 
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