
SLAC - PUB - 5699
November 199 1
(1)

Scalable Coherent Interface: Links to the Future*

David B. Gustavson** and Ernst K.ristiansen***

**Stanford Linear Accelerator Center, P.O. Box 4349, MS 88, Stanford, CA 94309.
***Dolphin Server Technology, P.O. Box 52, Bogerud, N-0621 Oslo 6, NORWAY.

Abstract
Now that the Scalable Coherent Interface (SCI) has

solved the bandwidth problem, what can we use it for?
SCI was developed to support closely coupled
multiprocessors and their caches in a distributed shared-
memory environment, but its scalability and the ejicient
generality of its architecture make it work very well over
a wide range of applications. It can replace a local area
network for connecting workstations on a campus. It can
be a powerful II0 channel for a supercomputer. It can be
the processor-cache-memory-I/O connection in a highly
parallel computer. It can gather data from enormous
particle, detectors and distribute it among thousands of
processors. It can connect a desktop microprocessor to
memory chips a few millimeters away, disk drives a few
meters away, and servers a few kilometers away.

1: Introduction

Communication among the various parts of a computer
system has used buses for several generations, except in
the very highest-performance situations. But computer
buses have reached practical and fundamental limits. such
as the speed of light, the capacitance of transceivers and
connectors, and the one-talker-at-a-time bottleneck.

However, the demands of real-world applications
continue to grow without regard to these limits,
surpassing the ability of buses to accommodate them.

For example, building a large multiprocessor by
connecting hundreds or thousands of powerful
microprocessors requires a high degree of parallelism for
which buses are impractical.

Engineering simulations can saturate any conceivable
machine, and run so slowly on present machines that users
are forced to overly simplify their design models.

The next generation of particle physics experiment (at
the Superconducting Super-Collider in Texas or the Large
Hadron Collider in Geneva) will generate raw data at

.* Work supported by the Department of Energy, contract
DE-AC03-76SFOO515.

** Email: dbg@slacvm.slac.stanford.edu
*** Email: ehk@ifi.uio.no

1014-byte/set rates, calling for vast amounts of specialized
processing power and high capacity data transmission.

Recognizing this problem, Paul Sweazey (who was the
cache coherence task group coordinator for Futurebus)
convened a SuperBus study group in 1987 to consider
what could be done. This became the Scalable Coherent
Interface, IEEE project P1596, in 1988. The general
strategy was clear, but many details remained.

The approach taken was to use a large number of
2-byte-wide point-to-point links, initially running at
1000 Megabytes/s each. A packet protocol would be
developed to allow a collection of links to provide bus-
like services, but taking care to choose only scalable
algorithms that guarantee forward progress, avoiding
starvation and deadlock. The protocol also had to
efficiently maintain consistency among a large number of
hierarchical caches. A fiber-optic link was required too,
but for practical reasons it would initially be slower, at
1000 Megabits/s.

This is a relatively new kind of standards work: rather
than codifying existing practice, the standardization
process creates new technology as needed. This approach
is essential if standards are to be completed before they
are obsolete, in a fast-moving field like ours.

The SC1 work was essentially complete in January
1991. Draft 1.0 was distributed to a balloting body
numbering about 150 persons, and passed with a 92%
approval. However, a large number of suggestions was
made by the voters, which resulted in a few minor
technical changes but a significant amount of
reorganization and editorial change to the document. The
resulting Draft 2.0 was redistributed to the balloting body
in December 199 1, and the expectation is that the standard
will receive final IEEE approval early in 1992.

Chip design proceeded in parallel with the standards
work, with heavy involvement of industry in the
architectural development.

The serial link chip saw working silicon at Hewlett
Packard in October of 1991. However, it relies on other
chips (not yet available) for the protocol. The same chip
also supports Serial HIPPI and can transparently replace
20 parallel signals in each direction with a pair of fibers.

Invited paper presented at COMPCON Spring ‘92, San Francisco, CA, February 25-27,1992

The first to announce a chip that supports the parallel
SC1 links was Dolphin Server Technology, with a family
of interface chips that they will use in products but also
sell to others. These chips should become available in the
first half of 1992. A single chip incorporates the receivers,
transmitters, fast buffer storage, protocol logic, most of
the cache-coherence protocol support, and a general-
purpose interface to the user’s processor.

SC1 is agnostic with regard to processor religion,
working equally well with all denominations. However, in
the development of SC1 we learned that interconnects
have-become the limiting part of modem multiprocessors,
and the next generation of processor could change a few
features that would make multiprocessing work much
better. We will be writing more on this subject this year.

sophisticated, but it does not work in highly parallel
systems.

A cache coherence scheme that scales to large systems
requires a directory that keeps track of which data are
being used by which caches, so that the appropriate
caches can be updated as necessary. Earlier schemes have
used a directory but kept it in memory. SC1 maintains it as
a distributed doubly linked list of caches instead, with the
head pointer at a memory controller and the link pointers
stored in the cache controllers. This has the virtue that the
correct amount of storage is always available for the
directory structure, no matter how many caches are
sharing copies of a particular line of data. It also spreads
the maintenance traffic across the system, rather than
concentrating it at the memory.

Pursuing these ideas led us to SCI.
2: Solving the problems

3: The SC1 solution
Starting from a computer bus point of view, let us

consider how one can make buses better. The speed of
light limit allows a bus to run faster if it is shorter and
connects fewer devices. Sadly, this makes it less useful.

The one-at-a-time bottleneck can be improved by
reducing the number of devices, ultimately to just one

_ talker per bus. Then to connect a large number of devices,
one has to interface, or bridge, a large number of buses.

Throughput can be improved by using split-cycle
operations that don’t tie up the bus, intermediate paths or
bridges while waiting for the response to a request.

The connector and capacitance problems can be
eliminated by using proper transmission lines, with one
device on each end so that there are no disruptive stubs in
the middle. Connectors work much better when signals
pass through them, notpust them as they do in buses.

Bus turn-around delays (the time from turning off the
drivers on one end, letting the signals propagate to the
other, turning on the drivers on the other end and letting
the signals propagate back to the start) can be eliminated
by using one transmission line for each direction.

Differential signalling reduces sensitivity to noise and
virtually eliminates ground-return-current noise, because
the signalling current is constant - the same current
flows either on one wire or its neighbor. If signals are
transmitted continuously, the returning current does not
stop, start, or change sign. Furthermore, it is easier to
receive signals at very high speeds when they run
continuously, not stopping and starting unpredictably.

Cache consistency, or coherence, has been maintained
in small bused systems by taking advantage of the bus
bottleneck - every cache controller observes every

~ transaction in the system, “snooping” to catch transactions
that might invalidate cached data. That approach can be
scaled up to a few buses by making the bridges rather

SC1 has several aspects. Its protocols describe packets
and their behavior, and work without regard to the packet
transport mechanism currently in use.

Three links are defined in the present standard, so that
products from various vendors can communicate. Future
technological improvements will bring new link
standards, faster or cheaper or both, but the SC1 protocols
will still work. Cable connectors, pinout, and signals are
specified.

A module and subrack have been defined, based on the
international (metric) IEEE Std 1301.1-1991, with
connector, power and cooling specified so that
interchangeable modules can be built by multiple vendors.

3.1: Protocols

SC1 packets are efficient. They are designed for fast
routing through switch networks or bridges: when cross-
traffic permits, a packet can start out the other side before
it has been entirely received.

The packets are short, to match the needs of the
processor and cache. (SC1 specifies a 64-byte cache line
size. Other line sizes may be used in caches between the
processor and the SCI-visible cache.) Short packets also
result in less latency when one blocks another’s access to
a shared path.

Longer packets that can transfer 256 bytes are defined
as an option, but are not likely to be implemented in the
first generation of support chips.

SCI-to-SC1 bridges are simple. They merely forward
packets based on the address, and are not directly
involved in the cache coherence mechanism.

SC1 also provides noncoherent transactions, as needed
for certain I/O operations, Control and Status Register[20]
accesses, and interfaces to noncoherent buses like VME.

speed and signalling details. However, SC1 does assume
that the error rates are very low; if a link technology with
high error rates has to be used, mechanisms transparent to
SC1 will be needed that make the link appear reliable.

3.2: Links
3.3: Mechanical Package

SC1 links run continuously. The startup process may
take as long as necessary for the receiver to synchronize
to the transmitter, but then synchronization is maintained

- -continuously. If some catastrophe causes the link to lose
synchronization, the protocols reset and resynchronize the

:-. links;
Every SC1 interface has one input and one output link,

or a multiple of pairs of links. Low-cost systems can
connect outputs to inputs to form rings. High performance
systems connect the outputs and the inputs to a switch
network that routes the packets directly (by means outside
the scope of the SC1 standard). The protocols are the same
in either case, so the SC1 device, or node, does not have to
know what kind of interconnect it is using.

Some extra cost was incurred in the interface to
support ring connections, because nodes in a ring have to
pass along packets not addressed to them. This additional
cost for address recognition, storage and other logic was

_ worthwhile because the system cost for a ring connection
is very low. This allows SC1 nodes to be used in high-
volume low-cost applications, bringing that economy of
scale to the low-volume high-performance applications.

Rings turn out to be better performers than one might
expect, because the SC1 protocols discard the packet upon
receipt. Thus it only travels, on average, half way around.
Furthermore, rings can be interconnected to make high-
performance switch fabrics.

The GigaByte!s link uses 18 differential ECL signals
for 16 data bits, a clock, and a flag bit that delimits
packets. The clock runs at 250 MHz, clocking data at each
edge, so the data rate is 2 bytes every 2 ns. Our strategy is
to keep links narrow and fast, because pins, connectors
and cables remain expensive while speed gets cheaper.

The Gigabit/s link can use fiber optics, for long
distances (kilometers), or electrical coaxial cable, for
short distances (tens of meters). The signals are encoded
as 16 bits plus flag in a 20-bit frame, DC-balanced so that
AC-coupling techniques can be used to break ground
loops etc. Coaxial cable is inexpensive and convenient for
the short distances typical of a room full of computing
equipment. When requirements change, the optical
transceivers can be added to a socket already in the
device, or a separate package can be used as a translater
between the electrical and the optical signalling domains.

- ~ -Technological change or economic change will require
definition of new link standards from time to time, but the
,,protocols were designed to be independent of the link

Some applications have special needs that require the
use of special-purpose or existing system packaging.
However, a wide variety of applications can benefit from
the enormous effort that has gone into defining the IEEE
1301 standard. Many users underestimate the difficulty of
designing satisfactory packaging, and underestimate the
cost as well.

The module size selected by SC1 is based on 300 mm
depth, 300 mm height, and 30 mm width. Actual board
dimensions are less, to allow for guides, clearances, etc.

The connector is the 2 mm EIA-64 (often referred to as
Metral@) modular family. Modules of 4 rows of 6 pins are
available as building blocks. SC1 mounts the pins on the
backplane, sockets on the module board. Six modules are
used for signals (18 pairs in, 18 out, 36 grounds for
impedance control and isolation, and static signals that
can be used for coded location information if desired.)

SC1 distributes 48 V power. The voltage requirements
of high performance chips are expected to change rapidly
in the near future, so there is no way to specify enough
power pins for each relevant voltage. Furthermore, SC1 is
expected to be used in large systems where it is important
to be able to replace a module without turning the power
off. That is only practical when a single supply voltage is
used, and then only with some help from the connector,
using pins of several lengths.

Using 48 V means that ordinary signal pins can be
paralleled to handle enough current. Thus the SC1 power
connector is just a seventh signal module. The pins are
arranged in rows of various lengths: a long row serves as
ESD discharge and early ground; medium rows connect
the main power; and short pins enable the on-board power
converter operation. Thus there is never any significant
current flowing in the power pins when contact is made or
broken.

The remaining space on the backplane and back edge
of the module can be used for 14 more connector modules
(336 pins) which can be used for custom I/O, more SC1
links, or fiber-optic and coaxial connectors.

4: Support for simulation and verification

The SC1 specification includes a lot of tutorial
explanation, because it is a new approach in the computer
communication field, but relies on executable C-code
programs for the detailed specification.

This approach is valuable for testing the specification
in simulation, for verifying the design of SC1 chips, and
for simulating the performance of SC1 systems.

The cache coherence mechanism was particularly
important to model and understand precisely. Multiple
processors are maintaining shared data structures, the
directory linked-lists, concurrently with no semaphore or
lock variables. (The protocols use indivisible
compare&swap transactions instead.)

Work is in progress at the University of Oslo[11,161 to
verify the correctness of this specification by

~mathematical proof. Though this is unlikely to be
completed before chips are built, the intense scrutiny it
has brought to the specification has greatly increased our
confidence in it. Simulation has also been used
extensively.

5: Conclusions and further work

SC1 began as a research project carried out in the
standards-development environment. It was not obvious at
the start whether protocols with the desired properties
existed. It is remarkable how simple and elegant the
solutions to some of the difficult problems turned out, and

_ how widely applicable SC1 will be as a result. We often
found that the requirement for finding scalable solutions
initially made things more difficult, but then they became
easier because the same mechanism could be extended
beyond its original purpose to fill other needs.

In the course of SC1 development we have seen the
need for several related projects. Five of these have been
started as official standards projects already, and more are
in the planning stages. The existing projects are:

5.1: SCWME ‘bridge

This project, P1596.1, is defining a bridge architecture
for interfacing VME buses to an SC1 node. This provides
I/O support for early SC1 systems via VME. Products are
likely to be available in 1992. Chaired by Ernst
Kristiansen, Dolphin Server Technology, Oslo, Norway,
ehk@ifi.uio.no, phone +47-2-627000, fax +47-2-627313.

The main decisions involve the mechanism for
mapping addresses between VME and SCI, which
versions of VME to support, and how to handle interrupts,
mutual exclusion, and cache coherence.

Current thinking would place the SC1 bridge in the
controller positions of four half-length VME backplanes,
arranged back to back. This should give excellent
performance; dedicating the controller positions seems a

, reasonable compromise for an I/O system. The bridge
may also support transfers from one VME bus to another.
We expect to support most of the VME sixes.

5.2: Cache optimizations for kiloprocessors

This project, P1596.2, is developing request
combining, tree-structured coherence directories and fast
data distribution mechanisms needed for systems with
thousands of processors, compatible with the base SC1
coherence mechanism. Chaired by Ross Johnson,
University of Wisconsin, Madison, WI, ross@cs.wisc.edu,
phone 608-262-6617, fax 608-262-9777.

This working group is developing and extending ideas
that came up during the development of the base SC1
standard, but which we felt could be postponed to avoid
delaying SCI’s introduction. That is, the protocols defined
by P1596 seem adequate for systems with perhaps
hundreds of processors (enough for a year or so), and
include hooks for adding these optimizations later.

When a large number of requests is addressed to the
same node, the interconnect becomes congested and
performance suffers. Request combining allows several
requests to be combined into one when they meet (waiting
in queues in the interconnect). All but one of these
requests generates an immediate response, which tells the
requester to get the data from that one’s cache instead.

SC1 nodes are designed to handle this kind of no-data
response already, because it is used in the basic coherence
protocol. The remaining request goes forward, eventually
resulting in a response that provides the data to that cache,
where they are read by the other nodes. This spreads out
the traffic, reducing congestion.

Note that these immediate responses relieve the
interconnect from retaining any information about the
combining, which enormously simplifies the process
compared to previous implementations.

Once the data become available, the time needed to
distribute them to all the requesters becomes important.
The linear linked lists of the base SC1 standard result in
times proportional to the number of requesters, which can
be a performance problem in large systems.

Instead of linear lists, one would like to maintain a tree
structure, which could distribute the data in time
proportional to the logarithm of the number of requesters.

At first we thought it would be impractical to maintain
binary trees in the distributed coherence directory because
the overhead would be too high. The schemes we had
seen others use were not acceptable for SC1 because they
involved setting lock variables to get mutual exclusion
while tree maintenance was done, scaling poorly and
violating an SC1 design principle. (Lock variables also
introduce a variety of complications, such as what to do
when the process that holds the lock fails.)

Thus we first considered using approximate or
temporary pointers that would form shortcuts along the

4

linear directory lists, but which would gradually become
inaccurate as processors rolled out cache lines etc.
Whenever a temporary pointer was used it would be
checked for validity, and the algorithm would drop back
to following the (always valid) linear list when necessary.

But at the August 1991 meeting, Ross Johnson
presented a method for maintaining correct trees at all
times, without using lock variables and without adding
much overhead. Though details need to be worked out and
some comer cases need more study, we feel that the
remaining questions can be resolved.

Open issues concern the worst-case scenarios (when
things happen in the worst possible sequence) and how to
reduce the likelihood of having these occur.

5.3: Low-voltage differential signals for SC1

This project, P1596.3, is specifying low-voltage
differential signals suitable for high speed communication
between CMOS, GaAs and BiCMOS logic arrays used to
implement SCI. The object is to enable low-cost CMOS
chips to be used for SC1 implementations in workstations
and personal computers, at speeds of at least 200
MBytes/s. Chaired by Gary Murdock, National
Semiconductor, Santa Clara, CA, phone 408-721-7269,
fax 408-721-7218.

Faster signalling requires smaller signals, if edge rates
and currents are to be kept reasonable. Smaller signals
require differential signalling (or at least their own
reference independent of system ground). At first glance,
differential signalling seems to cost a factor of two in
signal traces and pins, but the real cost is much smaller
because far fewer ground pins are needed, far less system
noise is created (or picked up), and the higher signalling
speeds reduce the number of parallel signals needed.

SPICE modelling has been done that shows we can
signal at SC1 speeds with contemporary CMOS
technology. MOSIS test chips have already reached nearly
this performance. In fact, the hardest part of the problem
is how to provide or accept the data at the signalling rate!

Present modelling is based on a 250 mV voltage swing,
centered on 1 V. This provides a little headroom for
common-mode rejection at the receiver, while allowing
use of 5 V, 3.3 V and eventually 2 V technologies.

The working group is choosing certain signal levels
and rates to be supported as signal interchange (link)
standards for CMOS implementations of SCI, and will
also define an g-bit and possibly a 4-bit link to
complement the 1596-defined 16-bit and l-bit links. This
work should complete in 1992.

. .-

5.4: High-bandwidth memory chip interface

This project, P1596.4, is defining an interface that will
permit access to the large internal bandwidth available
inside dynamic memory chips. The goal is to increase the
performance and reduce the complexity of memory
systems by using SC1 signalling technology and a subset
of the SC1 protocols. This work was started by Hans
Wiggers of Hewlett Packard Laboratories, and is now
chaired by David B. Gustavson, Stanford Linear
Accelerator Center, Computation Research Group,
P.O. Box 4349, MS 88, Stanford, CA 94309, USA,
dbg@slacvm.slac.stanford.edu, phone 415-926-2863, fax
415-961-3530.

A serious problem with present memory systems is the
need to use a large number of memory chips in parallel
banks to get the bandwidth needed for today’s powerful
microprocessors. As the capacity per chip increases, the
smallest memory configuration with adequate bandwidth
reaches a point where it has an unreasonably large
capacity (and needlessly high cost). Furthermore, the
increments for expansion are too large. We hope to get
much higher bandwidth from far fewer chips by using
SCI-like signalling technology. This will lower the entry
cost for low-end systems while raising the performance of
high-end systems.

Several models are being considered [19]. One of the
most promising uses several RAM chip ringlets attached
to a single controller by g-bit-wide point-to-point links.
The name RamLink is becoming popular for this
approach. Details of the signalling are still being worked
out, but there seems to be general agreement to use small
signal voltages.

5.5: Shared-data formats optimized for SC1

This project, P1596.5, is specifying data formats for
efficiently exchanging data between byte-addressable
processors on SCI. SC1 supports efficient data transfers
between heterogeneous workstations within a distributed
computing environment. Current systems require
conversions among large numbers of vendor- or language-
dependent data formats; specifying a single transfer
format greatly reduces the complexity of this conversion
problem. In addition to simplifying the data-interchange
problem, standard data formats provide a framework for
the design of future processor instruction sets and
language data types. Chaired by David V. James, Apple
Computer, Cupertino, CA, dvj@apple.com, phone
408-974-1321, fax 408-974-9793.

The specification defines integer and floating-point
sizes, formats, and address-alignment constraints. Bit

fields are supported as subcomponents of a larger byte-
addressable integer datum. Work on this project has just
begun, but it should not take long to complete, since much
of the groundwork has been done earlier in conjunction
with development of the CSR Architecture[20].

6: Acknowledgements

The development of a standard of this sophistication in
such a short time was only possible due to several
fortunate circumstances.

One key was having a core of people with the right
experience available full-time, which kept the momentum
high. We would particularly like to acknowledge the
contributions of David V. James, formerly of Hewlett-
Packard and now of Apple Computer, who has been our
vice chairman and chief architect. The particular
experience he brought to bear on this problem, and his
particular talents, were invaluable.

Another key was having active participation from
industry. That kept us from designing impractical
protocols, and kept us thinking about the value of
timeliness. In particular, Dolphin Server Technology has
been extremely helpful in this work, supporting it with
experienced and talented people and with a large
investment in supportive products.

7: References and Bibliography

3.

4.

5.

6.

7.

-~
8.

D. B. Gustavson, “IEEE P1596, A Scalable Coherent
Interface for Gigabyte/s Multiprocessor Applications”,
Nuclear Science Symposium, Orlando, Florida, November
9-11,198s.

D. V. James, ‘Scalable I/O Architecture for Buses”,
COMPCON Spring 1989. San Francisco, CA, Feb. 27-
March 3,1989.

D. B. Gustavson, “Scalable Coherent Interface”,
COMPCON Spring 1989, San Francisco, CA, February 27-
March 3,1989.

E. H. Kristiansen, K. Alnes, B. 0. Bakka and M. Jenssen,
“Scalable Coherent Interface”, Eurobus Munich, May 1989.

P. Sweazey, “Cache Coherence on SCI”, IEEE/ACM
Computer Architecture Workshop, Eilat, Israel, June 1989.

S. Gjessing, S. Krogdahl, E. Munthe-Kaas, “Formal
Specification and Verification of SC1 Cache Coherence”,
NIK89, Stavenger, Norway, November 1989. Also
available as Informatics Research Report No. 142,
University of Oslo, 1990.

E. H. Kristiansen, “Scalable Coherent Interface”, New
Backplane Bus Architectures, pp 67-75, CERN CN/90/4,
March 22-23.1990.

J. E.-Smith and J. R. Goodman, “Restricted Fetch&@
Operations for Parallel Processing, by Gurindar S. Sohi.”

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Computer Sciences Technical Report #922, University of
Wisconsin - Madison, March 1990.

K. Alnes, E. H. Kristiansen, D. B. Gustavson, D. V. James,
“Scalable Coherent Interface”, CompEuro 90, Tel Aviv,
Israel, May 1990.

D. V. James, A. T. Laundrie, S. Gjessing, G. Sohi “New
Directions in Scalable Shared-Memory Multiprocessor
Architectures: Scalable Coherent Interface,” Computer Vol.
23, No. 6, June 1990, pp. 74-77.

S. Gjessing, S. Krogdahl, E. Munthe-Kaas, “Approaching
Verification of the SC1 Cache Coherence Protocol”,
Informatics Research Report No. 145, University of Oslo,
August 1990.

“SC1 - Scalable Coherent Interface, P1596/D2.00
18Nov91,” Draft for Recirculation to the Balloting Body.
Prepared by the P1596 Ballot Review Committee of the
Microprocessor Standards Committee. IEEE, New York,
N.Y., 1991.

S. L. Scott, “A Cache Coherence Mechanism for Scalable,
Shared-Memory Multiprocessors,” Computer Sciences
Technical Report #1002, University of Wisconsin -
Madison, February 1991.

P. J. Woest and J. R. Goodman, “An Analysis of
Synchronization Mechanisms in Shared-Memory
Multiprocessors,” Computer Sciences Technical Report
#1005, University of Wisconsin -Madison, February 1991.

S. L. Scott and J. R. Goodman, “Performance of Pipelined
K-ary N-cube Networks,” Computer Sciences Technical
Report #lOlO, University of Wisconsin - Madison,
February 1991. This paper shows that when pipelining is
permitted, as is the case for SCI, one gains performance
rapidly (relative to synchronous systems) by increasing the
dimensionality of the interconnect, and the resulting
performance is much higher than for synchronous systems.

S. Gjessing, E. Mtmthe-Kaas, “Formal Specification of
Cache Coherence in a Shared Memory Multiprocessor,”
Informatics Research Report, Univ. of Oslo, Nov. 1991.

G. Delp, D. Farber, R. Minnich, J.M. Smith; M. Tam,
“Memory as a Network Abstraction,” IEEE Network
Magazine, July 1991, pp. 34-41.

J.W. Bothner, T.I. Hulaas, “Various interconnects for SCI-
based systems,” proceedings of Open Bus Systems ‘91,
Paris, 26-27 November 1991.

S. Gjessing, G. Stone, H. Wiggers, “RamLink: A High
Bandwidth Point-to-Point Memory Architecture,”
COMPCON Spring 1992, San Francisco, CA, Feb. 24-28,
1992.

IEEE Std 1212-1991, Standard for Control and Status
Register (CSR) Architecture for Microcomputer Buses.
This standard is used by SCI, SerialBus (P1394). and
Futurebus+ (IEEE Std 896.1 and 896.2-1991).

J.M. Mellor-Crummey, “Concurrent Queues: Practical
Fetch-and-Phi Algorithms,” Technical Report 229,
November 1987, University of Rochester, Computer
Science Department, Rochester, New York 14627. (J.M.M-
C. is now at Rice University).

