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Abstract 
The Scalable Coherent Interface (IEEE P1596) is 

establishing an interface standard for very high performance 
multiprocessors, supporting a cache-coherent-memory model 
scalable to systems with up to 64K nodes. This Scalable 
Coherent‘Interface (SCI) will supply a peak bandwidth per - - 
node of 1 G~~aByte/second. The SC1 standard should 
facilitate assembly of processor, memory, I/O and bus bridge 
cards from multiple vendors into massively parallel systems 
with throughput far above what is possible today. 

The SC1 standard encompasses two levels of interface, a 
physical level and a logical level. The physical level specifies 
electrical, mechanical and thermal characteristics of 
connectors and cards that meet the standard. The logical level 
describes the address space, data transfer protocols, cache 
coherence mechanisms, synchronization primitives and error 
recovery. In this paper we address logical level issues such as 
packet formats, packet transmission, transaction handshake, 
flow control, and cache coherence. 

1 INTR~DU~I-I~N 

The Scalable Coherent Interface (SCI) Project started in 
November 1987 as a study group under the Microprocessor 
Standards Committee (MSC) of the Technical Committee on 
Mini- and Microcomputers in the IEEE Computer Society. 
Paul Sweazey was the chairman of the study group, which 
used the tiorlcing name SuperBus. In July 1988 the study 
group became a working group, adopting the name Scalable 
Coherent Interface, chaired by David B. Gustavson. 

The objective of the SC1 working group is to define an 
interconnect system which scales well as the number of 
attached processors increases, provides a distributed cache- 
coherent memory system, and defines a simple interface 
between modules [1,4.5,7,8,11]. 

We quickly discovered that a traditional backplane bus 
could not achieve our goals. Todays buses are limited by the 
distance a signal must travel and the propagation delay across 
a backplane. In asynchronous buses, the limit is the time 
needed for a handshake signal to propagate horn the sender to 
the receiver and for a response to return to the sender. In 

synchronous buses, it is the time difference between clock and 
data signals which originate in different places. 

Transmission lines in backplanes are disturbed by con- 
nectors and variations in loading as the number of inserted 
modules varies. This makes reliable high speed signalling on 
a backplane bus very difficult. In addition, a backplane bus 
can only service one request at a time and therefore becomes a 
bottleneck in multiprocessor systems. 

The SCI working group solves these problems by defining 
a radically different interconnect system. We are defining an 
interface standard which enables a system integrator to attach 
his board to an interconnect which may have many different 
configurations. These configurations may range from simple 
rings to complex multistage switching networks. 

The interface standard defines a point-to-point commu- 
nication between neighbor nodes, greatly reducing 
transmission line problems. This point-to-point link uses 
differential ECL signalling, allowing high speed ,@ansfers of 
1 Gbytehcond though the link is only 2 bytes wide. Small 
packets carry data from node to node across these links, 
Buffering in the node interfaces accommodates many 
simultaneous requests, making SCI well suited to high 
performance multiprocessor systems. The SC1 standard 
allows up to 64K nodes to be connected to an interconnect, 
and should provide the next generations of computers with 
sufficient interconnectionbandwidth. 

A bit-serial link is also under development, for use with 
fiber optic or coaxial cable links over longer distances (but at 
lower speeds). The bit serial version will support the same 
architecture and protocols as the 2-byte-wide version. 

Cache coherence is an important part of the proposed 
standard. Current mechanisms prove insufficient when the 
number of processors increases dramatically. This calls for a 
new approach to the cache consistency problem. The SC1 
working group is defining a scalable distributed directory 
scheme where processors sharing cache lines are linked 
together by pointers stored in the caches. 

High volume products using the SC1 standard are expected 
to become available by the mid-19909. Figure 1 gives a 
rough estimate of future volumes of board level products[2]. 
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simultaneously in a system. This is done by separating the
interfacing node from the transporting interconnect. A view of
a typical system is illustrated in Figure 2.

2.1 SCI viewed by a node

An SC1 node receives a steady stream of data and transmits
another stream of data. These streams consist of SC1 packets
and idle symbols. A node is responsible for operating on these
packets and idle symbols according to the SC1  standard. To
do that, a node may have the construction shown in Figure 3.
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The following sections provide more insight into the
solutions which the SC1 working group is currently pursuing.
The next section describes various configurations of an SC1
system and emphasizes interfacing via different interconnects.
The packet format and packet transmission is described in
section three. In section four we focus on the mechanisms for
packet flow control. Section five gives a brief overview of the
cache coherence model. Finally, we summarize the
standardized Control and Status Register space and the status
of realization in silicon.

Figure 3. SC1 interface. ,,”
2 CONFIGURATIONS

When there is no traffic on the SC1 interconnect, a node re- -
ceives idle symbols. Since the utilization is zero in this case, _
all nodes are free to transmit. The idle symbols convey this
information to the nodes. In case the node has nothing to send
and the bypass fifo is empty, the output consists of idle
symbols only.

When a node receives a packet, it checks the packet’s des-
tination. Packets destined for other nodes are routed to the
bypass fifo and transmitted onward. The retransmitted packet
accumulates flow-control information for other SC1 nodes.
The flow-control information is divided between the packet
header and the (minimum one) idles separating the packets.
The arbitration, priority and forward progress schemes are
enforced this way.

When a node receives a packet which is destined for it (and
it is ready to accept it), the packet is routed to the input fifo
until the node has time to process it further. The packet’s
header information is also used to generate a short ‘echo’
packet, which is routed to the bypass fifo, ultimately to be
received by the packet’s sender. The echo is part of the
arbitration, priority and forward-progress mechanisms.

A node which is granted interconnect access and which has
an empty bypass fifo is allowed to transmit a packet. Since
many nodes may have interconnect access simultaneously,
multiple nodes may transmit at the same time. This contention
is solved either by buffering in the interconnect or by filling
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SC1  supports multiple configurations ranging from simple
low cost implementations to high performance, high cost
systems. An important property of SC1 is that it includes hooks
to allow several different implementations to reside

VMEbus Futurebus

Figure 2. SC1 Configuration.



the bypass fife of the transmitting node(s). The SC1 system
uses idles, packet headers, and echoes to selectively grant
interconnect access under heavy system loading.

2.2 SCI interconnect

SC1 can be configured in many ways. However, there are
two basic structures-the ring and the switch. The ring
implementation is the simplest. In a ring, nodes pass packets
to their neighbors. In such a structure there are no active
components except the nodes. This means that the nodes
themselves have to control the arbitration, priority and forward
progress schemes.

Some bus protocols also incorporate a cache coherence
scheme. Most use a snooping scheme where bus interfaces
monitor all bus activity and update their cache states
accordingly. In SC1 this is not possible, since no one node can
observe all the relevant transactions.

2.4 Scalability

A significant aspect of SC1  is scalability. It should be
possible to have a simple, cheap system with the same basic
properties as a high performance one. To achieve this, a large
and important task of the SC1  working group is to assure that
enough, but not too much, functionality is included in the
standard.

A simple and cheap system would be a ring, with all
packets at the same priority. This results in round-robin
arbitration. A requesting node is simplified by allowing only
one packet outstanding at any time, but it still needs separate
request and response queues. A responding node might only
be able to handle a single request at a time. If it is busy, a
busy echo will inform the sender to re-transmit the packet.

Figure 4. Ring interconnect.

A more complex, but still fairly inexpensive, system could
use a combination of rings and bridges. The rings would be
used between nodes which require low latency and where the
ring bandwidth is sufficient. The bridges would be used to
connect rings. Such a system could even support a dynamic
interconnect where any node can be plugged into any socket.
Multiple outstanding requests and live insertion might be
supported.

A switch looks at the destination address and routes the The most complex system would be a switching -
packet directly to the destination. A switching structure can interconnect built of elements like the butterfly switch. This
have various complexities and costs, including full crossbar interconnect is hardwired, so a node can only be plugged into
switches and butterfly switches. In a switching structure, its addressed location. This kind of interconnect would handle
priority and forward progress schemes must be enforced by the more traffic, and multiple outstanding requests from a
switch. However, the node interfaces are the same in both a requesting node could be supported. In addition to the round-
ring and a switch implementation. robin arbitration scheme, multiple priority levels could be

2.3 Interconnection to other buses

Another important feature of SC1  is the ability to interf‘ace
to other buses. Some SC1  transactions and cache states are
specifically defined to accommodate other buses.

A bus bridge will respond to a range of destination
addresses. The bus bridge node is responsible for converting
SC1 transactions into native bus transactions. Two cases are
handled with special care: bus locking and cache coherence.

Most backplane buses accommodate a unique read-modify-
write transaction to manipulate semaphores and other critical
data. During the read transaction a lock signal is asserted,
inhibiting the use of the bus until the data is written. Since
SC1 is defined with a four-phase transaction protocol with no
guaranteed delivery order, a lock must be executed as a single
SC1 transaction. Figure 5. Switch interconnect.



provided. This interconnect also supports live insertion and
withdrawal, and may be able to implement request-combining
schemes to reduce the effect of congestion at hot spots.

3 PHYSICALLAYER

SC1  specifies signals at an interface to an interconnect
system. All signals are unidirectional differential 1OOk  ECL
compatible signals. 18 signals are sent from a node: 16 data
signals, 1 flag bit and 1 clock signal. The frequency of the
clock is 250 MHz. The skew between the signals is one of the
most critical items.

Power distribution is solved by distributing 48 VDC to all
nodes and using on-board power converters. This reduces the
number of pins-needed for power and ground, allows the
vendor to select the optimal voltages for various logic families
and interface needs, greatly simplifies power-on module
replacement, and makes uninterruptible power supplies very
simple via storage batteries.

The board size recommended is 6U (233.35mm)  x 280mm.

4 PACKETFORMAT

Figure 6 shows the packet format. The width of a packet
word is 16 bits. In addition, a flag indicates that a packet is
being received or transmitted. Each word in the packet is
clocked with a differential clock line. A node receives 2 bytes
at a rate of 500MHz resulting in an interconnect bandwidth of
1 Gbyte/second.

A packet consists of three main sections: a header section,
an address and data section, and an error check word. The
first 16-bit word of the header contains the ID code of the final
receiving node. By looking at the first word of a packet, a
node can quickly determine if the packet is addressed to that
node. During routing through an SC1 interconnect,
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Figure 6. Packet format.

intermediate nodes and switches look at the target word to
determine where to route the packet. The third word of the
packet contains the ID code of the sender, needed to address
the response back to the correct sender, as shown in Figure 7.

The command word of the header controls packet flow and
interconnect access. Priority arbitration is supported with
round robin arbitration on the lowest level. Flow control and
arbitration will be discussed in more detail in section 5. The
command word of the header also contains the transaction type
and the packet length.

I 0 15

I Target
I

Figure 7. Header format.

The command field contains the command a responder
must execute. In a multiprocessor SC1 environment, a
command is often applied to a cache line. The cache line size
is 64 bytes, but manipulations on smaller and larger data sizes
are also supported. The commands can be divided into cache
coherence transactions, lock transactions, DMA transactions,
and I/O register transactions. The cache coherence
transactions manipulate a linked-list structure used to maintain
a coherent memory image.

The sequence number in the control word is a label which
identifies a packet. A node connected to an SC1  interconnect
may send many requests (up to 64), before a response is
received. This transaction pipeline can cause responses to be
returned out of order, and therefore a sequence number is
needed to identify a response with the corresponding request.

The target word and the three first address words define the
64-bit SC1 address. The data part may contain from 16 to 256
bytes. When a packet is transmitted, a cyclic redundancy code
(CRC) for the packet is computed, and this code is attached
after the last word of the packet. The CRC is a “serial-
parallel” version of the 16-bit CCITT-CRC.

4.1 Packet reception

In an SC1 interconnect, a node is addressed by a 16-bit
identification code, which is located in the first word of the
packet. This allows 64K nodes to be attached to the
interconnect. This allows for easy detection, and decisions to
pick up the packet can be made quickly. An input flag marks
the beginning of a packet; if the target ID of the packet
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matches the ID code of the node, the packet is stripped from
the interconnect. While the packet is being stripped and
received, a CRC for the packet is computed. The computed
CRC code is compared with the CRC code at the end of the
packet. If they match, the reception is completed; otherwise
the packet is discarded.

A stripped packet creates a small echo packet, with in-
terchanged target and source IDS. The echo packet is returned
to the sender for flow control. If the input fifo was not empty,
the busy bit in the control word of the echo is set, so that the
sender knows it must retransmit the packet later. If bad CRC
is received, the echo CRC is complemented so it will be
discarded (it is too late to avoid its transmission).

4.2 Packet Hinsmission

A node. may transmit if the bypass fifo is empty (see
Figure 3) and the node is granted interconnect access through
the flow control mechanism. Before transmission, the packet
is put into the output fife.

Transmission starts by putting the target word onto the
output and setting the output flag high. The output flag is high
while the packet is being transmitted. A CRC is attached to
the end of the packet when the output flag goes low.

If a packet enters the node interface during transmission,
and the packet is not for this node, the packet is put into the
bypass fifo until the transmission is done. The size of the
bypass fifo must therefore be at least as large as the maximum
transmitted packet size to avoid fifo overflow.

4.3 Transaction handshake

SC1  supports a transaction pipeline up to 64 transactions
deep. This means that a node may send up to 64 requests
without waiting for a response. A normal transaction consists
of two subactions, a request subaction and a response
subaction. Together with each subaction there is an echo

SENDER RECEIVER
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Figure 8. Split transaction handshake.

packet returned to the sender, as shown in Figure 8.

When the request is transmitted, it is labelled with a
sequence number. The ID code of the sender and the sequence
number uniquely identify a packet in the SC1  interconnect.
When a responder accepts a packet, the sequence number in
the request packet is saved. The responder will add this
sequence number to the response packet when the response is
transmitted back to the sender.

Transmission errors could cause many kinds of problems.
Fault recovery has been carefully considered, and most of the
burden placed on software error handlers. The principle relied
on is that transmission errors are detected by a time-out
mechanism so the sender can retry a transaction if no echo or
response has been received within the time-out interval.

CPU/CACHE

Figure 9. Node interface.

5 FLOW CONTROL

In SCI, flow control of packets is needed to maintain high
throughput and fair access when many packets are sent to the
interconnect at the same time. The flow control issues
discussed in this section are arbitration, deadlocks, servicing,
and congestion.

As explained earlier, a node may transmit when its bypass
fife is empty. This means that up to 64K nodes may start to
transmit at once, allowing 64K packets to exist in the
interconnect. However, nodes connected to a ring can not
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retransmit until their bypass fifos are empty. To avoid
starvation, an arbitration algorithm ensures that all nodes have
access to the ring. Our current algorithm is based on fair and
priority transactions. The arbitration mechanism is enforced
by header information and idle symbols between packets. The
priority level of a transaction is coded into the command word
of the packet header (as shown in Figure 7).

Another node which wants to transmit and has a higher
priority marks the header of a passing packet. This informs
the packet’s sender that another node with a higher priority
wants to transmit. This flow-control information is also
distributed to others, in idle symbols between the packets.

To avoid deadlocks, separate request and response queues
are added to each input and output fifo as shown in Figure 9.
To ensure fairness, packets are selectively accepted into these
queues, based on an approximate packet aging protocol. Also,
the acceptance protocol can be influenced by the incoming
packet’s priority.

6 CACHECOHERENCE

High performance processors need local caches to reduce
the effective memory access latency. In a multiprocessor
environment this- leads to potential conflicts because several
processors may simultaneously want to modify locally cached
copies of the same dam.

Cache coherence protocols define mechanisms that guar-
antee consistent data even if data is cached and modified by
several processors. The SC1 definition supports a hardware-
based cache coherence protocol, reducing the programmer’s
software effort to secure consistency, and also reducing
operating system complexity.

Many existing cache coherence protocols use a snooping
technique and rely on transactions like broadcast and
eavesdropping to guarantee data consistency. In a large high
speed distributed system, the broadcast transaction is
ineffective at best, and eavesdropping is impossible to
implement because it requires a bus common to all processors
in the system. Since a highly scalable interconnect system is

/ one of the main objectives in defining the SCI, these and
similar mechanisms are unsuitable.

We have developed a directory-based cache coherence
protocol[6] with distributed properties, where all the nodes
with cached copies participate in the control. The principle is
that every sharable block in memory is associated with a list of
processors sharing that block. A memory block is usually the
size of a cache line, which is 64 bytes.

The selection of 64 bytes as the cache line size is based on
many factors. The density of current state of the art ECL chips
prohibits packet sizes larger than 80 bytes because of the fifo
buffering. An 80-byte  maximum packet size has a reasonable
overhead, making cache line transfers efficient for a 64-byte

line size and less efficient for a 32-byte line size. Concern
about false sharing makes a 12%byte line size less attractive,
and trace driven simulations [ 101  show that a 64-byte line size
is a good choice for SCI. Futurebus+ has also selected 64
bytes, making the interface between SC1  and Futurebus+
simpler and more efficient.

Every block has a tag which includes a pointer to the
processor at the head of the list. Each processor cache tag has
a pointer to the next node sharing that cache line. In effect, all
nodes with cached copies of a memory block are linked
together by these pointers. The nodes have a forward pointer
and a backward pointer to connect them with the previous and
next node in the list. The resulting doubly linked list is shown
in Figure 10.

Figure 10. SC1 sharing list.

This distributed list concept ensures good scaling prop-
erties. Even as the number of nodes in a list grows
dramatically, the corresponding memory tag size is constant.
However, two pointer locations are associated with every
cached block in a node.

The list pointers are actually the interconnect addresses for
the processors. When a node accesses memory to get a copy
of shared data, it provides memory with its own address. If
there are currently no nodes with cached copies, the requesting
node is made the head of a new list and memory saves the
node address in the tag for this block. If, however, there exist
nodes with cached copies of data, the pointer to the head of the
sharing list is returned from memory to the requesting node,
and this node inserts itself at the head of the list. Currently
cached dam is always returned from the old head, rather than
from memory.

The nodes in a linked list typically have read access to
shared data. When a node wants write access, and it is
currently the list head, then it purges the rest of the list. If it is
in another portion of the list, the node first deletes itself from
the list, then performs another memory read to move to the
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head of the list. Write access is restricted to the head node
only.

All bus transactions concerning cache coherence are im-
plemented within the standard packet format described above.

The cache coherence protocol described above has not yet
been tried in real systems. We are therefore relying on several
people at the University of Oslo who are using their expertise
to do formal verification[9].

7 CO~OLANDSTATLJSREGISTERS

The Control and Status Registers (CSRs)  are an important
part of the proposed standard. The CSR definitions are
essential for al..initialization and exception handling. Some of
the CSRs must be SC1 specific, but the majority of the
necessary definitions can be common with other standards[3].
The IEEE has approved a request for a standard project for
defining CSRs. The project number is IEEE P1212, chaired
by David V. James. The CSR standard is being coordinated
with Futurebus+, Serial Bus and SCI. It will also try to
coordinate with the ongoing CSR activity for VMEbus.

8 REALIZATION

Realization in commercial systems is important for
acceptance of a defined standard. Therefore the first
implementation is being done in parallel with the
standardization work. So far we have done measurements that
assure us that it will be possible to make implementations for
the 1 Gigabyte/second transfer rate.

We have both a high level and a low level simulation
model of an SC1 system running. We have simulated both the
arbitration and the cache coherence scheme. The length of a
maximum data packet will initially be limited to 64 bytes (i.e.
a cache line). For the first implementation we are using ECL
gate arrays, with one chip (or perhaps two) for the SC1
interface and the cache coherence protocol. This interface
chip will be common for all nodes. In addition, Dolphin
Server Technology is making a physically addressed cache
controller which can be used as a second level cache
controller, and a global memory controller chip that supports
the necessary directory handling’in  global memory.

The first configuration will be a ring structure with high
performance CPU’s, large main memory and connection to
standard buses like VMEbus  for I/O functions. We expect to
have prototypes ready for testing late this year.

9 CONCLUSION

This paper has presented an overview of the objectives of
the SC1  working group, and the solutions which are currently
being pursued. Scalability of a system is a key aspect as many
high performance computer manufacturers are moving toward
large multiprocessor systems. In order to utilize these systems

efficiently, a cache coherence mechanism must have good
scaling properties. Also, for a system to both be cost effective
and support high performance solutions, it is necessary to
separate the module interface from the interconnect
implementation.

We feel that our current proposals meet these objectives.
The SC1 project is moving rapidly and has attracted
participants from many of the high performance computer
companies. We already have a first draft of the standard
available, and we hope to send it out for ballot late this year.
The proposed architecture appears to be achievable based on
technology available today.

If you would like to participate in this work, or if you
would like more detailed information, please contact one of
the authors or the chairman of the project:

David B. Gustavson, IEEE P1596 Chairman
Computation Research Group, bin 88
Stanford Linear Accelerator Center
Stanford, CA 94309, USA
tel: (415) 926-2863
fax: (415)961-3530  or (415)926-3329
Email: DBG@SLACVM.bimet
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