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ABSTRACT 

Crossing of bunches at an angle in a storage ring is studied. A case when a particle 

trajectory intersects the opposing bunch off-center and at an angle to the main axis 

of the bunch charge distribution is considered. Formulae for a kick experienced by a 

particle are derived for crossing in both horizontal and vertical planes. This kick is a 

function of the off-center distance in the longitudinal direction and the crossing angle. 

In such a geometry, synchro-betatron resonances can be excited. The resonance width 

is proportional to the derivative of the kick over the longitudinal distance from the 

bunch center. The magnitude of this derivative is evaluated in detail. 

1. INTRODUCTION 

A crab-crossing scheme suggested by R. Palmer’ is aimed to increase the in- 

tegrated luminosity of future multibunch linear colliders. As shown in Ref. 2, this 
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idea may be utilized to control synchro-betatron resonances in storage rings where 

bunched beams intersect each other at the interaction point at an angle unequal to 

zero. Recently, Oide and Voss3 suggested testing the scheme in PEP. * 

To estimate the strength of synchro-betatron coupling in a crossing beam geom- 

etry without crab crossing, it is necessary to calculate the overall kick cy a particle 

experiences when its trajectory intersects the opposing bunch off-center at a distance 

Here we provide a formula which gives such an estimate. Of particular interest 

is the value (da/dzo) at zo = 0, which plays the role of the driving force for the 

synchro-betatron resonance. The magnitude of this derivative is evaluated here in 

detail. 

2. THE ELECTROMAGNETIC FIELD OF THE BUNCH 

Consider a particle which traverses an oncoming bunch along the trajectory, which 

we assume for simplicity to be a straight line (Fig. 1). In general, this line is slanted 

at an angle S to the main axis of the bunch charge distribution. The crossing angle 

of the bunch tra,jectories in the laboratory coordinate system is defined as S/2. As 

a result of going through the bunch, the particle experiences a kick which depends 

both on the angle 6 and on the position of the particle with respect to the center of 

gravity of the charge distribution. We characterize the latter by a displacement zo at 

which the particle trajectory crosses the main axis of the bunch. 

We assume that the distribution of the charge in the oncoming bunch is Gaussian 

in all three dimensions. In the rest frame of the bunch with coordinates z’, y’, z’ , the 
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charge density is then given by: 

. 
,‘2 ‘2 z’2 

P (X’,Y’, 4 = s3/5b’d’ exp - a’2 - b - d’2 
( > 

3 (1) 

where Ne is the full charge of the bunch, and a’, b’ and d are a times the hori- 

zontal, vertical and longitudinal standard deviations (0) of the charge distribution, 

respectively. Here and everywhere below, the prime denotes a value calculated in the 

rest frame of the bunch. 

The electric field of such a bunch can be found from the potential derived in the 

last century by Houssais:4 
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Now we go back to the laboratory frame which moves with the velocity -V along 
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the z-axis. Defining /3 = V/c, 7 = l/d-, we find: 

J% = 57x (6) 

00 exp 

(b2 + q),/(a2 + q)(@ + q)(@r2 + q) 
(7) 

Hz = PEy , (8) 

Hv = -PEz . (9) 

From these expressions, it is easy to calculate the transverse kicks by integrating 

the corresponding component of the Lorentz force over time t: 

00 

CY~ - APJP = 
J 

dte(E, - /?Hy)/P x (2el74 Jm dt&(r(t)) (10) 
--oo -00 

M 

ay - AP,/P = 
J 

dte(& +- PHz)/P x (2el7mc) /m d%W) (11) 
-00 -00 

In these formulae, the fields should be integrated along the particle trajectory r = r(t). 

For the further calculations, we assume that the particle trajectory lies in the 

vertical plane x = 0 for the case of the vertical crossing and, correspondingly, in the 

horizontal plane y = 0 for the case of the horizontal crossing. 



3. THE VERTICAL COMPONENT OF THE ELECTRICAL FIELD 

It is instructive to see how our expression produces known results for the .vertical 

component of the electrical field for a flat bunch in its rest frame (we omit here the 

primes which denote the rest frame). We rewrite Eq. (4) in the following form: 

2Ne O” exp 
qwz) = J;rY 

J 
dq 

( -a2+q-b +q x2 -“-&) 

(a2 + q)lj2(b2 + q)3/2(cP + q)lj2 * (12) 
0 

If we assume now b << a, x << a, and z << d, the integration in (12) is easily 

performed, and we obtain: 

E&,Y,z) = dd2& - +dy) ~(b;$$+o&)] exp [py?62] ’ 

where G(x) is the error function’ with the asymptotic behavior Q(x) + 1 for x + 00, 

and sign(y) is the step function sign(y) = +l for y > 0, sign(y) = -1 for y < 0. 

In the region b << y << a, this formula simplifies to the following expression: 

2Ne 
E&7 Y, 4 = ad * SGP(Y) . b(T) +I(~)] . 

Expression (13) gives an electric field of a plate with a Gaussian charge distribu- 

tion in its transverse direction y. Outside the plate, for y >> b, the field is uniform 

and changes sign from one side to another. Deep inside the plate, where y << b, the 

field is proportional to the distance y from its midplane. 



4. THE VERTICAL KICK 

From now on, we assume the following: 

(a) the beam is flat: a > b; 

(b) the particle energy of both beams is large: 7 > 1; 

(c) the angle 6 is small: tan 6 x 6. 

Under these assumptions, we obtain the vertical kick of the trajectory by inte- 

grating (11) along the line 

x(t) = 0 ; y(t) = c6t ; z(t) = zo + a! . (14) 

After integration over q, we get: 

Ivllb 
8Nroc 

cry = 
&7d J dt . sign[y(t)] exp ( - [ (zo i-W]} ‘i” 

0 0 

Here, rg is the classical electron radius rg = e2/mc2. The function sign(y) has the 

value +l for y 2 0 and -1 for y < 0. 

The second integral in Eq. (15) can be expressed in terms of the error function: 

2Nro 
cYy = 

7J2-S 
W,T) , 

where 

(16) 

F~(s,T) = exp(-s2) Jdu exp[-(1 - T2)o] sinhg”’ [a (:A) - Q(~J;;)] , 

0 
(17) 
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s = zo/d 

and 

(18) 

(1% 

5. THE HORIZONTAL KICK 

S+rilarly, we obtain the horizontal kick of the trajectory by integrating (10) along 

the line 

x(t) = c& ; y(t) = 0 ; z(t) = zo + ct . (20) 

After integration over q, we get: 

M/b 
- 8Nroc 

CYX = 
67d J dt -sign[x(t)] exp - 

{ [ (zo ;kt)‘]} ‘r uduexp(-u2) 

0 
Jxyt) - uyu2 - P) - 

(21) 

The second integral in Eq. (21) can be expressed in terms of the Dawson’s function 

X 

D(x) = esx2 J dte” . (22) 
0 

We get 

2Nro 
ax = 

74n 
Fx(SJ) , (23) 

where 

00 

F,(s,T) = ess2 J dve+’ 
sinh(2sfi) 

fi D(~fi) _ e-r2(1-b2/a2b’ D . 

0 
(24) 

The quantities s and 7 are defined in Eqs. (18) and (19). 
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6. THE RESONANCE DRIVING FORCE 

As was mentioned before, the derivative of the kick o over zo,A G [d&/d~a]~~ 

evaluated at the point zo = 0 plays the role of a synchro-betatron resonance driving 

force. From Eqs. (16) and (23), one obtains the following derivatives for the vertical 

and horizontal planes: 

AY 3 [+,/dz&,, = 
4Nro 

rm 
GA4 7 (25) 

where 

Gdd = 
J 
mdvexp[-(l - r2)U] k (Tfi) - @(r&J)] ; (26) 

0 

AZ E [dc~,/dz~]~, = 
4Nro 

rm 
G(T) , (27) 

where 

G(T) = $7 dvexp(-v) - (28) 

0 

The integrals in Eqs. (26) and (28) can be evaluated analytically in some limiting 

cases. 

(a) In the case of not-too-large aspect ratio of the beam a 2 b and for very small 

crossing angles 6 << 1, the arguments of both the error functions in Eq. (26) and 

the Dawson’s functions in Eq. (28) are small. Since for small 5, a(x) e 2x/&, 
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we get 

AY = 
2Nrod 

-&a + bf 
for 6 + 0 . 

Similarly, since D(x) + x for x + 0, we get in this case 

for 6 -+ 0 . 

(29) 

(30) 

(b) In the opposite case of large 6, when the arguments of both error function are 

large, 

Q(x) + 1 - exp (-x2)/xT for x >> 1 . 

Correspondingly, for such values of 6 for which T >> 1 

8Nro 
Ay = JiFydG (31) 

(c) For a particular case of a flat beam b << a, in the region of the values of 6 where T 

is small, the argument of the second error function in Eq. (26) is typically small, 

while the argument of the first error function is large. In this case, formula (25) 

gives 

AY = 
4Nro 

-/J777 * 
(32) 

Note that in this case the kick does not depend on the crossing angle 6; that 

is the direct consequence of the homogeneity of the field in the region which 

contributes to the kick. 

For intermediate values of S, the integration in formulae (26) and (28) should be 

performed numerically. 



7. NUMERICAL EXAMPLE 

To get the feeling of the magnitude of the kicks, consider the following numerical 

example for a beam configuration typical for a test on crab crossing in PEP.3 

N = lOlo , I = 0.2 mA ; 

y = 2 - lo4 ) P = 10 GeV/c ; 

flz = lcm , d=&cm; 

OX = 0.274 mm , a = 0.387 mm ; 

oy cc ox , baa. 

The solid curves in Fig. 2 represent the derivatives Ay and A, as functions of 

the crossing angles SY and Sx for the vertical and horizontal crossing, respectively. 

The curves are obtained by direct numerical integration in Eqs. (26) and (28). The 

dashed curves represent the estimates Eqs. (29) and (30). 

Formula (32) g ives, in this case, cry = 14.6zo/d prad. 

In Fig. 3, the kicks ox and oy are presented as functions of zo/d for three different 

values of the crossing angle S, and S,, respectively. 
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FIGURE CAPTIONS 

1. Crossing geometry in (y, z) plane. The position of the particle is showri at the 

time t = 0. 

2. The derivatives A = do/dzo at zo = 0 [see Eqs. (25) and (27) in text]. In 

each case, the solid lines give the result of numerical integration in Eqs. (26) 

and 28, respectively. The dashed lines represent the approximation given by 

Eqs. (29) and (30). Calculations are done for the following values of parameters: 

CT, = 372 pm, uy = 8.1 pm, cr, = 1 cm, y = 2 - 104, and N = lOlo. 

3. Horizontal and vertical kicks cry and CY, as functions of the ratio zo/d [see 

Eqs. (25) and (27) in text]. Numerical integration in Eqs. (17) and (24) is 

performed for the same bunch parameters as in Fig. 2 for three values of the 

crossing angle S, and 6,, respectively: (a) 6 = 4 mrad; (b) 6 = 8 mrad; (c) 6 = 

12 mrad. 
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