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1. Introduction -- 
f, 

Generally covariant field theories have observables which are metric indepen- 

dent. Hence they are global invariants. Recently, a new class of such theories, the 

so called topological quantum field theories (TQFT), were introduced by E.Witten. 

Originally they were affiliated with Yang-Mills instantons (TYM),“’ sigma models 

(TSM)[” , and gravity (TG)13’ . Later on they enveloped other domains of physical 
[4-71 systems . The main question is obviously whether the TQFT’s probe some 

physical phenomena or are they merely mathematical tools to study topological 

properties of certain bundles? The answer to this question is two-fold: (i) The ob- 

servables of the TQFT span the cohomology ring on certain moduli spaces. These 

moduli spaces may be intimately related to physics. An example familiar to string 

theorists is the moduli space of Riemann surfaces. Another example is the mod- 

---&space of instantons. (ii) The possibility that the TQFT’s describe a generally 

covariant phase which eventually undergoes a spontaneous symmetry breakdown 

whereby ordinary gravity emerges [1’71. This scenario must presumably be related 

to some new mechanism of symmetry breaking since it involves a passage from a 

system with finitely many degrees of freedom to one with infinitely many. Other 

conjectures like possible connections to strings above the Hagedorn temperature [al 

7 to the scattering of strings at large angles and very large energies[” and to higher 

dimensional extended objects[“, were also proposed. In this work we follow the 

first direction. 

The main feature of the TQFT’s is the “topological symmetry” which is the 

largest local symmetry possible for the fields that describe the system. This sym- 

metry is responsible for gauging away any dependence on local properties. The 

classical action does not play any role and can be taken to be zero or a topological 

number. The quantum Lagrangian is derived via BRST gauge fixing of the topo- 

logical symmetry and related “ghost symmetries”[111 [“I . The observables of the 

theory, which are expectation values mainly of the ghost fields, can be expressed 

as an integral of closed forms on some moduli space. Can one write down a TQFT 
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which corresponds to any given moduli space ? In this paper we present a general 

prescription for the building of such a TQFT. 

An older member in the family of generally covariant field theories is the Chern- 

Simons (CS) t ac ion in three dimensions. Just as for the TQFT, here too the general 

covariance is not achieved by functionally integrating over all possible metrics, but 

by an inherent metric independence. The CS theory entered recently a renaissance 

period due to a sequence of works by E. Witten. In those works links were derived 

between the CS theory, knot theory and the Jones polynomials1131 , the theory of 

rational conformal field theories in two dimensions and the theory of Einstein grav- 

ity in three dimensions 1141[151[61( for the CS of ISO(2,l) group). It was shown”31that 

the moduli space of flat gauge connections (MSFC) in two dimension is the phase 

space of the three dimensional CS theory and is related to the space of “confor- 

ma1 blocks” of the corresponding conformal field theory. This naturally invites the 
- --- 

_ - _~ -~ 

: -- 

construction of a TQFT for the MSFC. Applying the general procedure mentioned 

above to this particular moduli space, is a main topic of the present work. A BRST 

quantization of the CS action in the large k limit, does not lead to the MSFC but 

to a modified moduli space which involves the Yang-Mills ghosts[‘“’ [15’. It turns 

out that the same moduli space emerges in the TQFT of flat connections in three 

dimensions. In a special situation of this model, the partition function is a field 

theoretical description of the Casson invariantsn5’. When the group is taken to be 

an lGt group, the TQFT is identical to the super-IG CS theory for this group. 

Moore and Seiberg”” conjectured that all chiral algebras of rational confor- 

ma1 field theories arise from the quantization of CS theories for some compact 

gauge groups, namely, the quantization of the associated MSFC. Can one describe 

other two dimensional field theories in terms of certain moduli spaces of gauge 

connections? One obvious generalization is to the non-compact groups. Another 

possibility is to describe moduli spaces of some connections which in some limits 

turn into flat connections. This may correspond to integrable two dimensional sys- 

+ For the definition of the IG group see section 5 
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terns which are conformally invariant at their critical points. An example of such 
- 

f a scenario is worked out in the case of the moduli space of “self dual” connections 

(MSSDC). 
.L. 

A simple discussion of the relevance of moduli spaces to physical systems is 

presented in section 2. We then show how to derive a TQFT with observables 

which correspond to a given moduli space. The TQFT is constructed via a gauge 

fixing of a local “topological symmetry” and a related “ghost symmetry”. These 

ideas are demonstrated with some examples. Some general properties which are 

shared by most TQFT’s are then summarized. Section 3 is devoted to a review 

of the relations between the three dimensional CS theory, the Moduli space of 

flat connections and conformal field theories. The equivalence of the ISO(2,l) CS 

theory and three dimensional gravity is also discussed. In section 4, we apply 

the procedure of section 2 and write down a TQFT which corresponds to the 

-- -TCiZSFC in two dimensions. The BRST algebra, and non-trivial global invariants 

are presented. We comment on the issue of the relation between the S0(2,1) 

TQFT and the moduli space of Riemann surfaces. Finally, the generalization to 

the case of MSSDC is discussed.’ In section 5, we add one more dimension and 

discuss the differences between the TQFT’s in two and three dimensions. The 

field theory formulation of the Casson invariants is written down. Using the group 

ISO(2,l) we get the TQFT which is associated with three dimensional gravity. 

The super-IG CS action for the group IG, is shown to be identical to the TQFT 

of the group IG. A generalization to higher space-time dimensions and to higher 

forms is briefly discussed at the end of that section. We summarize, make some 

concluding remarks and discuss some open questions in section 6 . Flat connections 

are the topic of the appendix where we present a short summary of the geometrical 

properties of the orbit space, write down a parametrization of flat connections and 

describe the MSFC as well as the MSSDC. 
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2. Topological Quantum Field Theories and Moduli Spaces - 
i 

TQFT’s such as the TYM”‘, TSM”‘, TG and others are all characterized by 
-- some observables- global invariants- which are related to the cohomology ring on 

certain moduli spaces. A natural question is whether for any given moduli space 

one can construct a corresponding TQFT. H ere, we show how to construct TQFT’s 

which correspond to some given moduli spaces. 

The connection between moduli spaces and physical systems can be described 

simply in the following way. Assume that a physical system is defined by a set of 

fields @‘; on a d dimensional space-time manifold M, and a certain local symmetry 

G under which the fields @‘; transform in some representation of the group G . 

Mathematically, a certain bundle is defined over M. Very often we are interested 
- 

not in the whole space of possible a’; configurations but in a particular subset which 

._ -can be characterized by 

{@IF(@) = O}, (24 

_ - -~ - 

where F(a);) is a given functional of the fields a’;. The condition (2.1) can be, 

for example, the Euler-Lagrange equations of the action describing the physical 

system. We now perturb a given configuration in this subspace and demand that 

the perturbation does not take a’; out of this subspace, namely: 

: -- qa?; + N?,;) = 0 --+ gm~ = 0. 
2 

(2.2) 

We want further to mod out from the possible variations, S@;, those redundent 

ones which are the transformation of @p; under G. We, therefore, choose a gauge 

slice by imposing a gauge condition 

GGF(@ + S@i) = 0 ~GGF --+ r6C?i = 0. 
1 

(2.3) 

As for solutions to the equations (2.2-2.3) th ere are two possibilities (i) No non- 

trivial solutions, then the @p configurations are isolated. (ii) There are solutions 
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and then these solutions span the moduli space, M, of configurations fulfilling 

c (2.1) modulo gauge transformations. For finite deformations we want to integrate 

S@; but there may be obstructions[1’21 -1 to the integration of the infinitesimal defor- 

mations. Regarding the solutions of (2.2-2.3) as the kernel of an operator 13 acting 

on S@i, then the obstructions are given by the cokernel of this operator. Therefore, 

the dimension of the moduli space is the number of solutions minus the number of 

obstructions which is : 

- dimM = dim(KernelD) - dim(coKernelD) = indexed (2.4) 

_ - - - 
We demonstrate the statements made above in table 1’ for the moduli spaces 

which are related to various physical systems: (i) Yang Mills instantons in four 

: -- dimensions “Jo’, (ii) World h t s ee instantons in two dimensions [21, (iii) two-torusL41 

, (iv) flat SO(2,l) connectionsn7’ (which is equivalent to Riemann surfaces with 

g > l)* and (v) (1,l) forms on Calabi-Yau manifolds. 

+ The notations in the table follow references:[1,12], [2,4], and[l” 
* For more details see section 4. 
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- 

Configuration G-Symmetry Conditions on S@i Moduli Space 

A, : non-abelian DL,SApl + t,p7sD[QA6] = 0 Yang Mills 

non-abelian gauge gauge symmetry D,SA” = 0 instantons 

fields in four dim. 

x2 : world-sheet D&xi + ~,~JjD%rj = 0 world sheet 

coordinates on reparametrization J: complex structure instantons 

symplectic manifold 

gap : world sheet d,d,(g*“Sg,z) = 0 torus 

metric reparametrization g,E = gzz - -0 

on torus 

(e aa G> : ww d[$Wp] + eabe%S+ = 0 Riemann surfaces 

gauge symmetry (bl(ySe,l)a + eabebl(ySwpl = 0 world sheet SO(2,l) ofg> 1 

connections BEb = Sab& + eabwa 

gij : diffeomorphism on 8ittj(:) = 0 (1,l) forms 

metric on Khaler manifold g = det(gij) Calabi-Yau 

Kahler Manifold Manifold 

Table l- Examples of moduli spaces 

The basic idea of the use of TQFT to explore the moduli spaces is to formulate 

a field theory which is invariant under an additional local “topological symme- 

try “[1o-121 of the form S@i = O;( 5 w ) h ere 0; has the same properties as a’; under 

the Lorentz and G transformations but may differ in boundary conditions. The 

form of the original action is not important as long as it is invariant under the topo- 

logical symmetry. In general, the Lagrangian is taken to be zero up to topological 

terms and up to eliminating auxiliary fields. In the case that the configurations, 

@p, are characterized by a topological number which can be expressed as a d di- 

mensional integral, it makes sense to take the later as the action. This will imply 

some boundary condition on the local parameter of the topological symmetry 1121 . 
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- 
Quantization of the TQFT is performed by using the BRST method. cXUI; is now 

t replacing 0; where E is an anti-commuting global parameter and %i is an anti- 

commuting ghost. The gauge-fixing and Faddev-Popov Lagrangians are derived 
-. 

by BRST variation of of a “gauge condition” 2(l): 

#I (Gp+FP) = cw2Q) = 8’$m(!D;)] = my@>;) - aqF(aq]. (2.5) 

Here SBRST = ;eb, G is an anti-ghost in a representation of the group G and 

the Lorentz group such that aIF is a singlet under both groups and B is the 

associated auxiliary field. The Euler-Lagrange equation for G leads to an equation 

for \Ir; which is the same as eqn. (2.2) for S@i . The Lagrangian (2.4) is further 

invariant under a local “ghost symmetry”. The origin of this symmetry is the 

following: 2(l) is obviously invariant under the G symmetry, thus transformations 
. 

that leave @p; and 9; inert and transform q’; and B in the same way as @‘; and s 
--- 

transform under G, leave (2.5) invariant. In general, one can replace 2(l) by 2(l)’ = 

Q(F(@i)+d3) h w ere cy is an arbitrary parameter. For cy # 0 the “ghost symmetry” 

mentioned above is not a symmetry. However, by adopting the “ghost symmetry” 

transformation, for the variation of B in Z(l)’ the resulting f?‘)’ is invariant again 
_ - under a “ghost symmetry “[“I _~ -- . We thus use here the cx = 0 gauge. In the appendix, 

we briefly state the inability to gauge fix a Yang-Mills symmetry in a global way (in 

the space of connections). This phenomena, known as the Gribov ambiguity, shows 

up also in the gauge fixing of the topological symmetry. Therefore, we can choose 

a gauge slice only locally around a given ip;. ’ The implications of this ambiguity 

will be addressed elsewhere Dl . 

To fix the “ghost symmetry” we introduce a commuting “ghost for ghosts” 

field 4 and a its anti-ghost 4. The BRST gauge fixing Lagrangian now has the 

following form: 

p) (GF+~~) = 82)d2) = ~?‘~‘[@~j-‘(@~)], (2.6) 

where i(2) is the sum of the 8’) and the BRST transformations associated with 

the ghost symmetry. GGF(<P~) is the gauge condition of (2.3). It is now obvious 
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that the equation of motion of the combined action will require @r; to obey eqn. 
-. 

e 

-. 

(2.3). The equations for Q’; are therefore identical to those which define the moduli 

space (2.2-2.3). Th e condition for having a moduli space M, thus, translate into 

a condition of having ghost zero modes. 

An important question about our construction is whether a different gauge 

fixing can yield different observables[“]. This question is under a current investi- 

gation . Here we make the following remarks about possible circumstances where 

different theories emerge from what might be considered an unusual dependence 
-- 
on the gauge fixing, but infact is an outcome of differences in the original systems. 

(i) Following the condition to have a moduli space, mentioned above, gauge fix- 

ings which do not accomodate ghost zero modes are different from those which 

have them. But in fact the two possibilities cannot coexist for a given topology of 

the bundle. (ii) In case that “different boundary” conditions are imposed on the 

topological symmetry (For example TYM in four dimensions there are boundary 

conditions[10121 whereas the MSFC over the same space-time there are no boundary 

conditions). (iii) In case that different fields are accompaning the different gauge 

fixings ( For example the TQFT which correspond to the MSFC and MSSDC in 

section 4). 

We now describe this construction for the examples of above in table 2. 
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Topological 

Symmetry 

$A, = $a Mawxp + &,)I 

Da@ + ~,BJ,i0%/5j = 0 B[?g(D,xi + e,pJ3iDW - Bi) 

T+$: = eap J$f 

&lap = +cYp &jJsR’2’] &kYp = q&&3) DaDall, = 0 

8B = qYD& 11, = Kc 
. 

Se - $ba ffa - S[$(@&wp + det e)] 
. 

SW, = &I +ffP$aDaeaa] 

&;j = $,;; S[~‘33it$ZOg g] 

-1_ 

&ha = iDad d[aG,] + Cabefa+i] = O 

8B = i[$, 41 (&bpl)” + ~“*e+&l = 

&8+/q = 0 

1c, = Giygil’ 

Gauge 

Fixing 

Ghost Equations 

Symmetry of XP 

&ha = iD& D[&,l + ~.,p,aD[‘+~~ = ( 

iB’yP = i[lj”P, $1 Da+” = 0 

/ 

Table 2- the corresponding TQFTs. 

Several remarks+ related to the table are in order: 

(i)There are no ghost symmetries in the second example because we took a = 

-1, and in the last example because the diffeomorphism symmetry is fixed in 2(l). 

(ii) In the examples given in the tables above there is no further local symmetry 

in addition to the original G symmetry, but there are some cases where there still 

are further stages of ghost symmetry. Such a case will be considered in section 5. 

(iii) In some works the gauge fixing of the original topological symmetry, the 

ghost symmetry and the local G symmetry is performed simultaneouslyL10’11’181 . 

Using several stages of gauge fixing better describes the construction of the space 

of ghost configurations which is identical to the desired moduli space. 

t In the fourth row, we take for $a = y5zPa + $a J and similarily for +,q and B see eqn. 
(3.8). 
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(iv) One can in general add some interaction terms to the action. Those terms - 
c will obviously modify the equation of motion for q’10-121. However, as explained 

below, due to an independence on a “coupling constant”, the equation of above 
-1 

are still valid. 

The BRST algebra that we have at the present stage is not nilpotent but 

rather it is closed up to a G transformation, &, with the ghost for ghost C# as 

the parameter of transformation. For example i2@i = $G@i. The correspondence 

between the TQFT and the related moduli spaces includes the obstruction as well. 

Recall that the dimension of the moduli space is equal to the index of the operator 

defined in (2.2) and (2.3). In the TQFT the kernel corresponds to the q zero 

modes. The cokernel is given by the zero modes of G and 84. Thus the number 

of obstructions is given by the number of the latter zero modes. The difference 

between the number of qi zero modes and the number of (%, ~$6) zero modes, is 

the index of an operator of the TQFT which is equivalent to 0. 

The TQFT h’ h w ic we described above has some general properties which are 

shared by most of the TQFTs: 

_ - -~ - (1) The correlation functions of BRST invariant operators are independent of 
Ill arbitrary variations of the metric . 

: -- 
bq3 < CJ >= L/3 J 

DXOei s ddXiZ = 
J DXei s ddx’2C3~[S,,, 

J 
ddz2] = 0, 

(2.7) 

where DX is the measure, 0 is an operator which is a BRST scalar and is indepen- 

dent on the metric. We used here the fact that a vev of any BRST transformation 

is zero. Note that, even though the original action is metric independent, a metric 

on M was introduced in defining scalar products in the gauge fixing, so that the 

result (2.7) is not a trivial one. 

The meaning of correlation function here is an expectation of the product of the operators 
since it is independent on the points on A4 where the operators are put”’ 
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(2) So far we considered only configuration which minimize the action. In 

particular @p and XPi configurations which are solutions to eqn.(2.2-2.3). This is 

justified only if the path integral is dominated by those configurations. As for 

<PO, this is obvious since this was the gauge fixing we used. As for the rest of 

the fields we can modify the BRST transformations i + i’ = ~8 such that the 

,C -+ K,C. In the same way we showed the independence on the variation of g,p it 

is straightforward to see that correlation functions are also K independent. Now in 

the large K limit it is obvious that the path integral is dominated by the minima 

of the action. Notice that both (1) and (2) are related to the fact that the action 

is a BRST variation of some operator since the original action is irrelevant. This 

property, obviously, is not shared by ordinary gauge fixed actions. 

(3) Due to the BRST symmetry, the fermionic determinant is equal to the 

bosonic up to a sign [‘I. Therefore, in the case of no ghost zero modes dimM = 0 , 

---the partition function is given by 2 = Cj(-1) ‘1 where the sum is over all isolated 

@f(j) configurations and Sj is the sign of the ratio of determinantes at the (j) 

configuration. 

_ - -~ - 

: -- 

(4) TQFT h h w ic corresponds to a moduli space. (dimM # 0) means that 

there are fermion zero modes for the KP system. Therefore the only non-trivial 

expectation values are of operators which can soak up those zero modes. This 

condition translates to a requirement that the ghost number of the operator will 

equal dimM. As in any BRST L g a ran g ian we have here too a conserved global 

U( 1) ghost number symmetry. In particular, the partition function vanishes in this 

case. 

(5) It was shown by Witten’llin the case of the TYM, that the BRST charge is 

in fact an exterior derivative on the moduli space. Related to this is the fact that 

an expectation of an operator has the form of an integral over the moduli space of 

a closed form on this space. These properties apply in the present case as well. 

CO>= 
J 

da1 . . . . da, d$l.... d$n wi,...i,, Gil . ..$i. = 
J 

w P-8) 
M 
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- where da;, d$i denote the bosonic and fermionic zero modes respectively and 
c 

Wil . ..i. dail . ..dain = w is an n form on M 
-- 

(6) Starting from a polynomial of the ghost for ghost IV0 = Tr[$“] which is 

invariant under the BRST and G symmetries, is independent on the metric and is 

not BRST trivial, one can generate a hierarchy of global invariants 1; with i = 0, . ..d 

( This conditions are not fulfilled in the case of (TG)[“‘). The invariants are given 

by: 

dWi = iWi+ly Ii = 
J 

Wi, 

Yi 

where 7; is a non-trivial z “’ homology cycle. Global invariants which correspond to 

non-trivial cohomologies on the moduli space. are expectation values of < IIi1i > . 
such that C; U(1); = dimM. In fact the gl 0 a invariants Wi are mappings from b 1 -- -- 
closed forms on M to closed forms on M. It is thus clear why the global invariants 

can be sensors only for topological properties on M but not local ones. 

_ - -~ - 

So far we ignored the necessity to gauge fix the G symmetry prior to any path 

integral computations. The gauge fixing and Faddev-Popov associated actions are 

also of the form: L&!,+,,) = &[EGGF(Q)] h A A w ere ST = S + &G and C is a new 

anti-ghost. In general the equation of motion which correspond to c may impose 

conditions on 9; which are incompatible with eqn. (2.2-2.3). However, it turns 

out that for local symmetries like gauge symmetries and diffeomorphisms (as can 

be checked in the examples of above) they are compatible. There are some other 

implications from the last stage of gauge fixing. Some of the global invariants which 

are BRST locally non-trivial become trivial under the BRST combined charge 

& = f? + f?G and vice versa. This will be further discussed in section 4, for the 

moduli space of flat connections. Another way to gauge-fix the G symmetry for 

the case of the TYM, was introduced in reference1201 . ,Cc3) is taken to be & rather 

then & of the functional given above. The quantum action is not invarinat under 

~8~) but the global invariants are. 
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3. Chern-Simons Theory, Flat Connections 
and Conformal Field Theory 

An application of the general procedure described in the previous section to 

the case of the moduli space of flat non-abelian gauge connections MSFC will be 

presented in sections 4,5. Here we summarize the relation between the MSFC, the 

three dimensional Chern-Simons theory, and conformal field theory[13’. The con- 

nection between the MSFC of the group ISO(2,l) and three dimensional Einstein 

gravity is also briefly discussed following ref.[14]. 

The Chern-Simons (CS) action in three dimensions is 

scs = - 8t/Tr[AAdA+iAAAAA] (3.1) 
M 

where A is a non-abelian connection of a compact group G, M is a closed compact 

three dimensional manifold, and the trace is taken in the representation of A. The 

coefficient k has to be an integer in order that eiscs will be single valued, since 5’~s 

is not invariant under homotopically non-trivial gauge transformations (for groups 

with Q(G) = Z)[211 . The classical configurations are flat three-dimensional gauge 

fields, namely those fields for which F = 0. In the case that M has a boundary, 

choosing one component of A to vanish on the boundary dfV and reducing the 

gauge transformation to the identity on dA4 guarantees that the equation of motion 

is not modified’161. 

The quantization mechanism proposed by Witten[131for an arbitrary three man- 

ifold M was to chop A4 into pieces, quantize on each piece and glue them back. 

Any such piece was taken to be a C x R where C is a Riemann surface and the time 

direction is along the real line R. With this assignment of the time it is natural 

to gauge fix the Yang-Mills symmetry in the gauge A0 = 0. The action then takes 

the form: 

J Tr[A’ A ;A’dt] = $ d’x@Tr[A;;A;] (34, 
CxRl c 
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where A' = A,dxff is a connection on C. This Lagrangian, linear in the time - 
f derivative, leads to the Poisson bracket: 

-1 
{A:(x), A;(Y)} = $r,psD% - Y> (3.3) 

The “Gauss law” constraint is F = t@PF,p = 0. Witten advocates in [13] to first 

impose the constraint and then quantize the system! Therefore, 

The phase space of the CS theory in the A0 = 0 is the moduli space 

of flat connections on C. The role of the flat connections on C is apparent also 

if instead of first gauge fixing, we first integrate in the path integral over Ao: 

. Z= 
s 

DAoD,&iSCS = 
s 

DA'S(Fc)e 
i&s,,,, Tr[A’A&A’dt]. 

(3.4) 

--- _- 

The delta function implies the projection onto flat connections on C. 

Instead of gauge fixing in the Weyl gauge we can again use a covariant gauge 

and apply the BRST procedure of the last section: 

We decompose the gauge field to a classical and quantum parts A = AC' + Aq. 

The gauge fields in (3.5) are Aq apart from the covariant derivative which is taken 

with respect to the classical background. c, c and B, are the Yang-Mills ghost, 

anti-ghost and auxiliary fields respectively The covariant derivative is also with 

respect to the metric that was introduced in the scalar products in (3.5). The 

Euler Lagrange equations of the combined system (3.1) and (3.5) are now not of 

t In it was shown that for the CS theory quantization and the application of the constraints 
are non-commuting operations. The expectation value of an abelian Wilson loop in flat 
space-time is different in the two procedures of calculation by a universal vacuum holonomy 
factor. 
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flat three dimensional configurations but rather 

‘F + DB, = ;@7F,p + DYB, = 0. (3.6) 

This point will be addressed in the TQFT construction of the three dimensional 

MSFC in section 5. 

The gauge fixing that led to (3.5) can be done only locally (see appendix) 

around a given flat connection which we denote by A:). The contribution to 

the path integral from the region in A space around the flat connection+(A 

was calculated by A. Schwarz Iz3’ , for the abelian case. Following the later, Wit- 

ten[13’derived ,u(A(“)) f f or non-abelian CS theories in the large k limit: 

p(A:“)) = ei( y)Ssc(A, ) (8) I@ziq 
detn ’ (3.7) 

where n is the Laplacian, C2 is the second casimir operator of G in the adjoint 

representation. The determinants can be defined using a zeta function regulariza- 

tion[231. The operator L- is the restriction to odd forms of the self adjoint operator 

*D + D* which is the kinetic operator for the (AQ, B,) system. The ratio of the de- 

terminants was shown to be the Ray-Singer torsion of the flat connection Ay’ Thus 

it is a topological invariant. The phase factor is also metric independent .t Similar 

to the discussion following (2.3) th ere are two possibilities for summing up the 

contributions of the p(Ay)) factors depending on M and the flat bundle Ef. One 

case is that there are only finitely many isolated flat connections (Hr(M, Ef) = 0) 

in this case the partition function of the CS theory in the large k limit is given by 

2 = Cci)p(Ay)). F or a non-trivial first cohomology the sum has to be replaced by 

an integral over moduli space.* The observables of the CS theory are the Wilson 
SA lines, we = PTrR e 7 , where R is the representation of the group, y is a 

t In fact the expression in (3.7) has to b e multiplied by an additional phase factor which is 
not metric independent ‘W . 

* It was assumed here that the B,, c C do not have zero modes which means H’(Ef, M) = 0. 
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loop and P denotes a path ordering. Witten’131proved that correlation functions of - 
5. the Wilson lines are indeed topological invariants and that they correspond to the 

Jones polynomials. . . 

A specially interesting case of a CS theory is the one for the non-compact group 

ISO(2,l) (k is not quantized) which was shown to be equivalent to the Einstein 

gravity in three dimensions[141. The CS action now has the form: 

SW = J taPr[e,,(tlpw~ - t+wE + eabcWpbW7c)] 

M 

(3.8) 

where the ISO(2,l) gauge field is parametrized as A, = e:P, + w:J, with Pa 

being the translation generators, and J, is connected to the Lorentz generator Jab 
- . via J, = +cabcJbc. The classical configurations here are the flat SO(2,l) and flat 

.__ JSO(2,l) connections which are (for the case of infinitely many flat connections) the 

total space of a tangent bundle over the moduli space of flat SO(2,l) connections. 

_ - -~ - 

: .- 

Integrating over e in the path integral obviously introduces a delta function S(F) 

for F the S0(2,1) field strength. .Th is e a d It f unction will again be modified to an 

expression like (3.6) (with F and B, the Lagrange multiplier of D,em = 0 ) once we 

gauge fix around flat w connection. The absolute value of the partition function 

is now given by the sum or the integral over the Moduli space of flat ISO(2,l) 

connections of the ratio of determinants [151 detA 2 
=T Idet’L- where det’ denotes the product 

of the non-zero eigenvalues. 

3.1. CS THEORY AND CONFORMAL FIELD THEORY 

The canonical quantization in the Weyl gauge is a quantization of a compact 

finite dimensional phase-space ( since this is the property of the MSFC as is clarified 

in the appendix). Using the holomorphic polarization A = Al + iA2, A = A1 - 

iA the Hilbert space ‘l-t is a space of holomorphic sections of a line bundle on 

M provided there is a Kahler structure on M. To get such a structure Witten 

introduced[13]a complex structure J on C. This turned the MSFC into MJ a 
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- 
complex manifold which is the moduli space of holomorphic vector bundles on C 

c which are topologically trivial and have for the structure group the complexification 

of the gauge group G. The symplectic form is the first Chern class of L” the kth 
-- 

tensor power of the determinant line bundle. The Hilbert space denoted now as 

IFlg) should be independent of J, which means that the vector bundle ‘Fig) on M 

must be a flat bundle. Flat vector bundles on the moduli space of the complex 

structure are very essential in conformal field theories ‘241 In the CFT the analog of 

Eg) is the space of the solutions of the Ward identities for the descendents of the 

identity, the space of conformal blocks. This is the source of the statement that’13] 

The quantum Hilbert space of the three dimensional CS theory is 

identical to the space of conformal blocks in rational CFT. 

For the case that A4 has a boundary, Moore and Seiberg Il4 t derived an explicit . 
expression for the partition function which was identical to the one of a two dimen- -- -- 
sional WZW theory with the sigma term on dM. In particular, for C taken to be 

a disk, they showed that the basic representations of the loop group emerge. For 

the case of an annulus, due to the holonomy, the other integrable representations 

may be derived. 

4. TQFT Construction of MSFC in Two Dimensions 

: -- After the long detour, we present now the TQFT which correspond to the 

moduli space of flat connections of a given non-abelian* group G over a Riemann 

surface C. The construction of the theory follows the lines described in section 2. 

Starting with the gauge fields A of the group G which are connections on 

the principle bundle P ( see appendix) we invoke now the “topological symmetry” 

&A(x) = 19(x). S ince we have in mind to project onto flat gauge configurations 

which are not characterized by a topological number which is expressible as a two 

t Upon completion of this work we received ref.lzJ1 where the connections between the CS 
theory and the conformal field theory are further elaborated. 

* The abelian case was presented in ref. [17]. 
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dimensional action, we take the action to be zero (modulo possible auxiliary fields 
- 

c that can be eliminated). The gauge fixing procedure will involve three stages of 

gauge fixings as follows: 

p) = L(1) GF+FP = $‘h+j A F] = ph-[ca~$F,g] 
= ;np A F - i7j A D$] = eab[g?Fap - i7jD&] (4.1) 

L(2) = L(g+,, = ~1(2kr[-~(cjDa?p + i@)], 
2 

= @‘r[$JD,Daqb - iqDa$ff - iJ[$, , $“I + iB2 - $J[$. $11. 

(4.2) 

. (4.3) 
-- -- 

L(3) = p GF+FP = @[--iTr(~(d,A~ +ib)] = Tr[~d,D”c- ib&A” + b2 - i~D,$~yl 

(44 
The BRST variations 8(r), 8’) and 8 correspond to the gauge fixing of the “topo- 

logical symmetry”, the ghost symmetry and the Yang-Mills symmetry respectively. 

,Cc2)’ is an additional BRST and gauge invariant renormalizable term that can be 

addedn2’. The various BRST transformations are: i(l = $a, h(l)+ = B and 

the rest of the fields are inert under i(l), i(2) = 8(l) + b,, where the only fields that 

transform under igh are igh$cy = i(Da4) ighB = i[$, 41 and 6 = 8t2) + 8~ which 

is the total BRST variation is given by: 

8Aa = $Q + iD,c, kja = iDa$ - i{c,Ga}, 

iII, = B - i{c, ?p}, k3 = -i[$, $1 - i[c, B], 

CL = -(b - i{c,c}, 8qs = -i[c,$], 

ii = 27 - i[c, $1, 811 = t[$, $1 - i{c, q}, 

ii? = b, ;b = 0. 

(4.5) 

As for the algebra of the BRST charges, 8c2) is not nilpotent, however, it is closed 
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up to a G gauge transformation with 4 as the parameter of the transformation. - 
c The total BRST variation is generated by a charge which is nilpotent, i2 = 0. The 

total Lagrangian JC = ,C(r) + ,Cc2) + ,C’c2) + ,Cc3) is invariant under a U(1) global 
-. 

ghost number symmetry under which the fields (A,$, $, B, c, 4, 4, 17, C, b) 

carry the charges (0,1,-1,0,1,2,-2,-l, -1,0 ) respectively. As usual the auxiliary 

fields B and b can be elminated leading to the terms F2 + i(&Aa)2 in the final 

action. By redefining the fields $J, B, q5 and 7, the BRST algebra can be recast in 

the form of a locally vanishing cohomology algebran8’. An interesting geometrical 

interpretaion of the BRST transformation was given in [“I. Following the later 

reference, the BRST transformations of A, $,c, $ in eqn. (4.5) can be rewritten 

as JA + +[A, A] = F and th e associated Bianchi identity Bp = 0 where d” = d + c?, 

A = A + ic and p = F + $ + i$. Th e object A is a connection on the space 

P x d/G. The orbit space d/G is described in the appendix. 

--~ 
Note that the Euler Lagrange equation of c is compatible with the kernel of the 

operator 0, deduced from the equation of motion of II) and 7, which determines 

the classical + configurations. 

_ - Dr,y5pl = 0 D,$” = 0. (4.6) _~ -~ 

: -- 

These equations are identical to (A.4). A s explained in section 2, the obstruction 

to the solutions of this system is the co-kernel of D and therefore: 

indezD = #(II, zero modes) - #($, 17 zero modes) = (2g - 2)DimG (4.7) 

where the underlaying space-time is a genus g Riemann surface. This obviously 

matches the dimension given in (A.5). In th e case that the Riemann surface g > 0 

is punctured in n points then instead of 2g we have 2g + n in eqn. (4.7). 

Let us now proceed and discuss the observables of the theory. As was ex- 

plained in section 2, the invariants are metric independent and hence topological. 

Furthermore, from (2.7), it follows that the invariants can be expressed as inte- 

grals over closed forms on df/&T. Such invariants lji”), i = 0, 1,2 (the pair of 
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superscripts are the degrees of the form on M and df/G respectively) obey the - 
c following properties: 

-- I(4 = a I 
w(iJ) 

2 
Yi 

j$2)wji,‘-i) =dw(j-ljz+l-i) i(2)wo(‘4 = 0 dw,(2T’-2) = 0 
(a-1) 

(4.8) 

For BRST invariance the BRST variation of IV; has to be globally an exact form 

on M. In a complete analogy to the way Witten introduced the invariants of the 

Donaldson theory[“we present now the global invariants of our theory 

IO = wi0,2k) =Tr(cp), 
I1 = 

I 
W,(‘W =k 

I 
TT(#-~$) = k 

I 
Tr($,&ldxa), 

. 
Y Y Y 

--__ I2 = 
I 

JJV,(~‘~~-~) =k(k - 1) 
I 

TT@~-~~!J/\ $)= (4.9) 

c c 

k(k - 1) 
I 

Tr(q5k-2&$pdxa A dzP), 

c 

where k = 2 , . ..r. r being the rank of the group G, and y is a non-trivial cycle. 

Terms which depend on F were obviously ommited. Thus the only forms are those 

of degree 2 up to 2r on df/G , whereas the dimension of df/G is (2g - 2)dimG. 

Notice that whereas IV0 and IV2 are in a non-trivial cohomology class Wr is locally 

in a trivial cohomology class since IV1 = d(‘)[kTr( qS’-lA)]. Recall that the non- 

trivial topologically invariant correlation functions are only those that can absorb 

the fermion zero modes and hence are expectation values of operators whose ghost 

number is equal to the index of 0, namely following eqn. (A.8) equal to the 

dimension of df/G. Th is is a strong constraint which leaves only a small number 

of non-vanishing invariants. For example, it is obvious that for any g < 1; >= 0, 

for powers of 11 < 11” >= 0 for odd n, < 1; >= 0 for even g, etc. For SU(2), the 

possible invariants are: < 10012 > for g = 2 and < I$ >, < It >, < I,6 > and 

< (1012)~ > for g = 3. 
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So far our discussion of the observables followed the one of reference [l] where 

t computations were considered prior to the gauge fixing of the gauge symmetry. 

(The BRST transformation in (4.8) is i(2) rather than 8.) The question is whether 
.^ 

the third stage of gauge fixing can alter the previous results. Since the observables 

in (4.9) are both ic2) and gauge invariant, they are also 8 invariant. However, the 

issue of triviality[201 under the total BRST cohomologyiis different for the 8 and 

32) operators. The various Wi can now be written as a sum of an exact form on 

n/l and df/G in the following way: 

wo(“‘4) = BTr(--cqS + ic”) 

~(~7~) = ’ &‘r( -A# - ic2A + cG> + dTr( ic3 - ic$)] 
1 z[ (4.10) - . ~(~1~) = iTr(icDA + A$ - ~A’c + iAD + iAdc) 
0 

-- -- 
+ d’J’r(-iA$ + icll) + iAc2 - icdc + ic$ - cD4) 

where for simplicity we took here k = 2. This can be verified easily by using the 

generalized curvature”“, $‘;, defined above and realizing that the global invariants 

IV; are the (0,4),(1,3),(2,2) components of 

Tr(F A F) = d[Tr(A A JA + !A A a A a)] (4.11) 

The last equation is borrowed from the TYM in four dimensions and that is the 

reason for the three dimensional CS term in the r.h.s of (4.11). Nevertheless we 

can still use this formula for the present two dimensional case but now obviously 

the (4,0) and (3,l) components of both sides of the equation vanish. Moreover we 

can use (4.11) t o clarify the issues of invariance under the BRST and the BRST 

triviality. Following (4.8) the BRST variations of the various W; are given by 

exterior derivatives on IM of IV;-1 which according to (4.11) are derivatives of 

components of a second Chern class. Therefore these relations are also globally 

valid. On the other hand (4.10) t e 11 s us that the Wi are given by a combination of 
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the exterior derivatives on both M and Af/B o some functional of the connections f - 
c over those spaces. Thus in general these local properties cannot be simply extended 

into global properties (see appendix). The I; are therefore BRST invariant but not 
--- 

trivial. So far we only pointed out that the correlation functions are not necessarily 

trivial. Very little has been done on the explicit calculation of the observables in 

all the TQFT that were proposed so far. A derivation of the observables for the 

topological quantum mechanical case was given in referenceLz6] using Morse theoy. 

In [17] we showed that < nd’mG(g-ll SC Tr(ll, A $J) ># 0 and that it is independent 

on the conplex structure on C. This issue of field theoretical calculation of the 

observables of the TQFT in general and in particular for those related to the 

MSFC and the MSSDC is under current investigation”“. 

. 
In conformal field theories for which there is a current algebra, most of the 

interesting results are related to the level, Ic, of the associated Kac-Moody algebra. 

-- Xiihe picture of the MSFC the level correspond to the symplectic structure on M 

vi.aeqn. (3.3). Th e o servables of the TQFT depend solely on the topological prop- b 

erties of the moduli space and hence are independent on the sympletic structure. 

Hence the correlation fuction of the TQFT should be associated with properties 

of the conformal field theories which apply for any allowed k. It is not clear to us 

what are those properties. (Recall that the TQFT ‘s of here are meaningful mainly 

for g > 1). in the CFT. 

An especially interesting case is when the gauge group is SU(2,l). This was 

discussed by us in reference [17]. The flat connection condition in this case takes 

the form: 

D[,e;j =d[,e$ + y&l = 0, 

d~,wpl = - det(e), 
(4.12) 

where (eaa, L+) are the two dimensional analogs of the fields defined in eqn. (3.8). 

The first equation in (4.12) states that e,, is covariantly conserved and the second, 

when translated to metric notation, means that the curvature scalar R = -1. This 
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condition of a constant negative curvature metric is characteristic of a Riemann 
- 

c surface with g 2 2. We therefore concluded that the MSFC for the SO(2,l) group 

is equivalent to the moduli space of reimann surfaces with g 2 2. Similarly, the 
-- 

MSFC of ISO( 1,l) and SO( 1,2) correspond to the torus and the sphere respectively. 

Inserting dimG = 3 in eqn (4.7) one obtains dim df/B = 6g - 6 which is known to 

be the dimension of the moduli space of Riemann surfaces. The question is, how- 

ever, whether the MSFC corresponds to the moduli space or the Teichmuler space. 

The Teichmuller space M, and the moduli space M, are related in the following 

way: M, = $j$ h w ere rs is the mapping class group. The latter is the group 

of diffeomorphisms modulo diffeomorphisms which are connected to the identity. 

In the SO(2,l) MSFC the equivalence classes are defined modulo SO(2,l) gauge 

transformations which include the transformations C + G that are not contin- 
. iously connected to the identity. Thus the question is whether the transformations 

--CYa, wcx defined over a genus g C under the later transformation, correspond 

to transformations of the metric under the maping class group. The answer is 

negative. On the other hand it is known that M, is topologically trivial. In [17] 
(WI some non-trivial cohomologies were identified. In particular IV, , which leads to 

_ _ the global invariant < (12) 3g-3 >, was believed to correspond to the first Mumford 
_~ -~ 

class on M,. Hence the precise identification of the TQFT of the SG(2,l) MSFC 

is still not completely clear to us 

: -- Two last remarks concerning the SO(2,l) group. Following the general discus- 

sion in section 3.1 the MSFC for the SO(2,l) is related to the SG(2,l) conformal 

field theory which was analyzedLz7’ recently. It was found that all unitary represen- 

tations of N=2 superconformal algebra (c > 3) may be obtained form representa- 

tions of SO(2,l) current algebra by substructing and then adding free boson. The 

CS formulation of 3 dimensional gravity on C x R once quantized in the Weil gauge 

(or after integrating out eo, wo) is related to the moduli space of flat SO(2,l) flat 

connections. 
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4.1. THE TQFT WHICH CORRESPOND TO THE MSSDC 
- 

f 
The generalization of the MSFC to the MSSDC is introduced briefly in section 

I. (A.4) of the appendix. THe “self-dual” fields on C are the fields which emerge 

from dimensional reduction of self-dual Yang-Mills gauge fields in four dimensions. 

The motivation for this generalization, as was explained in the introduction, is the 

conjecture that the MSSDC might correspond to some field theories which in a 

certain limit (which correspond to the limit p + 0 in the present case) turn into 

conformal field theories. Here we outline the construction of the TQFT of the 

MSSDC. One approach is to follow the steps taken for the MSFC and replace the 

condition F = 0 with eqn. (A.8). A no th er route is to dimensionally reduce the 

construction of the TYM with the following renamings pr = A3, p2 = A4 $,, = 
- - - . $3 + ~$4 $p = $3 + $4, B, = B13 + iB14 and 83 = 34 = 0. Using this notation 

in the derivation of the TYM it is straightforward to verify that the classical -- -- 
configurations of $, tip are the solutions to equation (A.9) where 1c, is replacing 

SA and GP is replacing Sp. 

The invariants of the present TQFT are different from those of the MSFC. 

_ _ Again the easiest way to derive the observables is to dimensionally reduce the global 
- - 

invariants of the TYM. The set of observables for k = 2 are given in the generalized 

second Chern class given in (4.11). If we reduce the four dimensional forms we have 

in general Wi, I) + E~W’(i-~~r) where appriori i=O,...,4 provided that i-j = 0, 1,2. 

This leads to the observables given in (4.9) plus possible additional ones. For 

example for the case of k=2 one gets the invariant IV0 ‘(OT3) = Tr[$ Re($p)]. 
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5. TQFT of Flat Connections in Three and Higher Dimensions -- 
f 

The field theoretical description of the MSFC in three and higher dimensions 

admits some new features in comparison to the two dimensional case. In particular 

new “ghost symmetries” emerge. We address these features in this section as well 

as the relation to other generally covariant theories. 

The basic field here again is a connection A on a principle bundle whose base 

space is now a three dimensional manifold. We assume invariance under a “topo- 

logical symmetry” which is identical to the one in section 4. The quantum action 

follows the gauge fixing of the topological symmetry choosing a flat connection 

gauge condition: 

--- C( 1) 
GF+FP = 8(1)2(1) = 8;!!?~[$ A F] = iTr[B A F - i$ A &!,I] 

= BT~[~tap7$,Fp7] = eUP’Tr[~B,J’p7 - it,J,Dp$y] 
(5.1) 

_ - - - where now $ E w1 and B E w1 (see appendix). Unlike the functional 2(l) in the 

two dimensional case here 2(r) is invariant under an additional local symmetry 

S$ = DO. This leads (as for the Yang-Mills invariance of 2(r)) to two additional 

symmetries of (5.1). So altogether the action is invariant under the following three 

ghost symmetries (written in the BRST formulation): 

c?(~)‘T+!J~ = i D,qS $(2)“$e = iL),d(l) i(‘)“‘B, = iD,$B 

i(2)‘B, = i[qa, q5] 82)“B, = i[$@, q5(1)], 
(5.2) 

and the non-Abelian gauge symmetry. As was mentioned in section 2 one can use 

II) A (F + o(l)* B) instead of 2(l) given in (5.1) and then a ghost symmetry can be 

realized once the BRST transformation of B is changed. We fix the three ghost 
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symmetries as follows: 

&9 = L(2) GF+FP = &j82)Tr[;($Dm$u + $(l)Daqa + i$aBa)], 

= J;~TI-[$$D,D~c$ - iqDa+@ - ;$[$a ,$“I 

+ L$(l)~~p~(l) - ig(1)D,t+6a - ~$[qba , q!~“] 
(5.3) 

2 

+ i(B,B” + i$“(&, $I+ [h, 4(‘)] + hh))] 

where i(2) = i(2)’ + i(2)” + i(2)“‘. Th e new ghosts just as the old are all in the adjoint 

representation of the group G. The ghost numbers of the new ghosts 4(l), 4(r) and 

q(l) are (O,O,l) respectively. We can add interaction terms similar to those intro- 

duced in the case of four dimensional instantons ‘121by replacing $Da$)” in equation 
. 

(5.3) with $(Da$P--a[$, 71) and th us g enerate terms of the form +4[~, q]- :[4, $12. 

---Similar treatment for the SUSY-Yang-Mills-Higgs was presented in ref. [6]. If we 

neglect such terms and the interaction terms in (5.3) the Euler-Lagrange equations 

for 1c) that follow from l = L(r) + Lc2) are 

_ - @Dp& = -D’lrl(l) Da@ = 0 (5.4) -~ - 

Eventhough the first equation looks different from the condition on SA, derived 

from the of preservation the flatness property, it is in fact identical to the latter 

due to the Yang-Mills ghosts. The “linearization” of equation (3.6) is the same as 

(5.4) with $ pl re acing SA. Since both the two dimensional and three dimensional 

TQFT’s of the MSFC are claimed to correspond to the three dimensional Chern- 

Simons theory, do we mean that the two TQFT are equivalent? The answer is, of 

course, no, except for some special cases. For M = C x R, as is shown below the 

MSFC over iPl is the same as over C, and therefore the topological field theories 

are also the same. 

-. ._ 

~. 

We proceed now to examine the BRST algebra. The fields A, $, 4 c and c 

have the same algebra as in the two dimensional case, eqn. (4.5). The rest of the 
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- 

ghosts transform  as follows: 

8(“)$, = B, + iDaqS (l) 8c2)B, = iDa$B + i[qa, $1 + i[$a, qb(l)] 

(p)(p) = +B &!IB = -i[$(l), qS] 

($(2)$(l) = q(1) 

(5.5) 

The algebra is closed up to a G-transformation with $ as the parameter of the 

transformation. Just as in section 4, nilpotency of the algebra is achieved when 

the Yang-Mills symmetry is fixed. 

In the case where there are no ghost zero modes and hence the moduli space 

has a zero dimensionality, then the partition function is a topological invariant. As 

explained in section 2, the contribution to the partition function is given in such a 

. case by the ratio of the ferm ionic over the bosinic determ inants This ratio is equal 

--til. Thus the partition function is 2 = Cj(-1)‘~ where Sj is the sign of the 

ratio at any isolated “flat” connection. As was discussed in ref. [15] this global 

invariant correspond to the Casson invariant in the mathematical literature. 

- -- 

Most of the discussion of the global invariants of the TQFT of flat connections 

on two dimensions applies also to the present case . The only differences are the 

following: 

(i) Starting with the head of the hierarchy w,(“““) = TT@ one can generate 

here a three form  on M , W(3’2k-3) = kk(k - l)(k - 2)Tr(&311) A 1c, A $) with the 

corresponding BRST global invariant 13 = sM W3. (ii) Obviously the dimensions 

of df/G is now different then in eqn. (4.7). Therefore the requirement on the 

ghost number of the operators in the correlation functions has to be respectively 

changed. Here are some examples: (a) for A4 = C x R, since rl(M ) = rl( C), the 

dimension of M  is the same as the one for C. (b) For a “handle body”, which 

is a three maniflod whose surface is a Riemann surface C, the dimension is half 

the one on C namely d imM = dimG(g - 1) for g > 1. (iii) Notice that the new 

ghost fields 4(l), J(r), +B and q(l) are all non-singlets under 8c2) and thus cannot 

generate a new hierarchy of invariants. 
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The TQFT which is related to the three dimensional gravity is obviously the - 
c one with G = ISO(2,l) for th e case of zero cosmological constant and SO(3,l) 

and SO(2,2) for the cases of de-Sitter and anti de-Sitter spaces respectively. To get 
-. 

the TQFT which correspond to the Poincare symmetry, we just have to substitute 

F in eqn. (5.1) with 

Fap = [Da, Dp] = D[,.$Pa + (dp$ + ~abcewaewd& (5.6) 

which is the field strength that correspond to the ISO(2,l) connection. In addition 

we parametrize @ which stands for any of the fields in (5.1) and (5.3) by: @ = 

fDaPa + @Ja. The ISO(2,l) g enerators Pa and J, obey: [Pa, Pb] = 0, [Pa, Jb] = 

E&PC and [Ja, Jb] = E,b,JC. The trace is taking now as follows TT(P&) = 

Tr(JaJb) = 0 and Tr(J&) = Sab. The flat ISO(2,l) is identical to the total 
. 

space of the tangent bundle of the SO(2,l) MSFC”“‘. In a similar way the ISO(2,l) 
-~ 

MSFC modified by the Poincare ghosts F = *Dq(l) is the total space of the 

tangent space of the corresponding SO(2,l) space. The TQFT thus probes the 

topology of this total space. This space is identical to the one derived from the 

_ - 
Euler-Lagrange equations of the quantum (including the ghost and gauge fixing 

terms) ISO(2,l) CS theory. 

As a generalization of the ISO(2, l), one may consider a semidirect product 

g x G of the group G and its Lie algebra g denoted by IG. This means simply 

that the algebra of IG is given by the generators (Pa, Ta) a = 1, ..dimG with the 

following commutation relations [Pa, Pb] = 0, [Pa,Tb] = fabcPC and [T,,Tb] = 

fabcTC. In [15] Witten presented a “twisted” N=2 supersymmetrization of the IG 

group. Denoting by 81 and 192 the fermionic coordinates, a connection A’ on the 

super IG bundle was written as A” = A + 8r$ + 024 + 81&B. Substituting this 

connection to the Chern-Simons form one gets: 

SC, = JS d&d&Tr[A” A dA” + iAs A AS A As] = 
J 

Tr[B A F - $ A $11 (5.7) 

M M 

which is identical to the first stage of gauge fixing of the topological symmetry in 
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(5.1). Thus the CS super IG theory is in fact exactly the same as the TQFT for 
- 

c the MSFC which corresponds to the group IG. 

--- 
5.1. TQFT CONSTRUCTION OF MSFC IN HIGHER DIMENSIONS 

Higher dimensional space-time manifolds M with q(M) # 0 have non-trivial 

flat connections (see appendix) and hence one can write down TQFT which cor- 

respond to the MSFC over M. The TQFT in three dimensions has a larger ghost 

symmetry than the two dimensional case, and correspondingly a larger set of 

ghosts. There was no need to introduce further generations of “ghosts for ghosts 

for ghosts...“. It turns out however, that for dim A4 > 3 one faces such situation. 

This can be realized very easily. The gauge fixing is again introduced with a La- 

. grangian of the form (5.1)) but now II) and B E wDm2, and correspondigly, $(ll and 

$B are D-3 forms (for dimkl = 0). By construction the gauge fixing lagrangian 

is invariant under a$(‘) = D+(l) with $(l) E wDV4 and similarly for I,L,B. This 

invariance will repeat itself until one reaches ghost for ghost which are zero forms. 

There are thus D - 2 (for D > 2). g enerations of ghost symmetry. Note, however, 

that the classical configurations of 1c, are still of the form of (5.4) and hence corre- 

spond to the MSFC in the presence of Yang-Mills ghosts. The bosonic part of C(l) 

which again has the form of Tr[B A F] w h ere B is a D-2 form, is identical to the 

covariant theories introduced in P31 . 

As mentioned in the introduction, a straightforward generalization to the the 

case of MSFC in two dimensions is the moduli space that emerges for the MSFC 

in higher dimensions. In general dimensional reduction of F = 0 in D dimensions 

leads F = 0, Dpi = 0 and [pi, pj] = 0 in D’ dimensions with pi being real scalar 

fields in the adjoint representation and i,j = 1, . . . . (D - 0’). For example in 

analogy to the MSSDC one gets for the dimensional reduction from four to two 

dimenisions F = 0 and Dpl = Dp2 = [pl, ,921 = 0. 

A different generalization in higher dimensions is when the gauge connection 

is replaced by a d dimensional form whose corresponding field strenght F which is 
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a form of degree d + 1 vanishes. Introducing the largest possible transformation of 

A, namely the topological symmetry will lead to the quantum action by applying 

the procedure of section 2. 

6. Summary and Conclusions 

The main message of this work is that it is straightforward to attach to any 

moduli space its TQFT partner. By invoking the “topological symmetry” it is 

possible to project onto a space of configurations which admit some topological 

properties. The zero modes of the ghosts, which appear in the gauge fixing of the 

topological symmetry, serve as the coordinates of the moduli space. In ordinary 

field theories the observables are expectation values of fields which describe the 

system, such as gauge fields, matter fields, etc. In TQFT most of the observables 

areexpectations of ghosts (in the case of the MSFC only ghosts appear in the 

observables). This phenomena may seem as indicating some inconsistency of the 

theory. But it is in fact natural that the ghosts play the important role in the 

observables since they span the moduli space whose topological properties are 

probed by the observables. 

Self-dual gauge bundles were found in the work of Donaldson to be very effec- 

tive for the investigation of the topological properties of four manifolds. It turns 

out that flat gauge bundles can play an important role when defined over Rie- 

mann surfaces. E. Witten has shown ‘131that rational conformal field theories are 

intimately related to quantization of a MSFC where the level of current algebra 

representation is related to the symplectic structure on the moduli space. This is 

exactly what emerges in the quantization of the three dimensional CS theories over 

C x R. TQFT’s which correspond to the MSFC over C probe the topology of this 

space which is the space of conformal blocks. It is insensitive to the level. Thus 

any information from the TQFT about the RCFT (for g > 1) should apply to any 

level. The observables of the CS theories are the Wilson lines which are derived by 

taking the trace of gauge holonomies. The equivalence classes of flat connections 
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over any manifold are determined by homeomorphisms of mappings from the fun- -- 
t -. damental group of C to the group G. This is the source of the relations between 

the MSFC and its TQFT partner and the CS and its RCFT relatives. Using a ^ 
covariant gauge in the CS theory (for example when it4 is not C x R) leads to a 

moduli space of gauge connections in three dimensions which depend on the Yang- 

M ills ghosts. The same moduli space appears in the construction of a TQFT for 

flat connections in three dimensions. Quantum gravity in four dimensions is one 

of the most important puzzles of field theory. However, it turns out that in three 

dimensions Einstein theory is solvable once it is formulated as a CS of the isometry 

group of the space-time. Therefore even in this case the flat gauge configurations 

are important and presumably the related TQFT may be helpful. 

TQFT is a bridge between quantum field theory and topology. Two directions 

are possible on this bridge. One suggests using field theoretical techniques for 
-~ 

the calculations of topological properties, and the other is to apply topological 

methods to describe physical systems. Apparently both directions deserve some 

new developments. It is not clear that TQFT’s can lead to direct descriptions of 

a physical systems’71and on the other side, thus far, field theoretical techniques 

have yet to yield new topological results. Other interesting open questions are 

under current investigation: (i) TQFT as the theory of Gribov ambiguities. (ii) 

The dependence of the quantum actions on the gauge condition that is imposed on 

the topological symmetry. (iii) The passage from local trivial BRST cohomology 

to a global one. (iv) The implications of the results form TQFT’s of MSFC on 

conformal field theories. 
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APPENDIX A 

Geometrical Properties of Flat Connections 

-. The MSFC, the CS theory and rational conformal field theory are related to 

each other as was explained in the last section. Thus, geometrical properties of 

the MSFC may shed light on CS and the conformal field theories. In this section 

before, describing the TQFT which correspond to the MSFC, we summarize sev- 

eral geometrical features of the MSFC. We start with some geometrical properties 

of the space of gauge connections and the orbit space, proceed to the parametriza- 

tion of flat connections and then present some information from the mathematical 

literature on the MSFC and the MSSDC. The reader who is interested mainly in 

the TQFT, may skip this section. 

. 
A.l. GEOMETRICAL PROPERTIES OF THE ORBIT SPACE 

-- -- 

Consider a gauge theory’ defined over a compact, boundryless space-time M. 

The gauge group is a compact Lie group G, with the lie algebra g. The gauge 

fields A are connections on a principal bundle P(M,G). One can construct two 

additional bundles: P’ = P XAd g which is a vector bundle a fiber g with the 

adjoint action of G on g, and P” = P x,d G where the group is the bundle with 

the adjoint action. We denote by wp forms of degree p on M which take their 

values in P’ . We define the scalar product in wp using the Hodge * operator 

Vwr E wp Vw2 E wJ’ (WI, ~2) = JM Tr(wr A* ~2). A gauge transformation g E G 

of the connection A is given locally by the well known expression: 

AtAg=A+g-lDg (A-1) 

where D is the covariant derivative. This transformation is in an automorphism on 

P which induces the identity mapping on the base space. Note that the difference 

of two connections A, = A - A’ is not a connection since its gauge transformation 

+ We follow here ref.[z9’ 
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is A, + A? = g-lA,g . Thus, A, E w ‘. Therefore the space of gauge connections - 
c A is not a vector space but an affine space modelded on wl. This property leads to 

the inability to define connections in a global way. This is significant for the proof 
.-- 

of the non-triviality of the global invariants of TQFT’s as is expalined in section 

4. The infinitesimal gauge transformation is A ---+ A + Dt, t E w”. This gives 

the elements of TA(d) the tangent space to A at A (tangent to the fiber through 

A) which span the vector space of vertical vectors VA(d) at A. A metric on A is 

given by the scalar product ( , ) on w1 E TA(d). This is a gauge invariant flat 

metric since it is independent of A. 

Gauge fixing means choosing one representative from each equivalence class 

(orbits) namely drawing a surface in A which cuts all orbits once. This can be 

done only locally around a given connection A0 in the following way: We define 

a subspace do around A0 by requiring that any point on it ( apart from Ao) is 

orthogonal to the orbit through A0 namely for A, = A- A0 we demand Df4, A, = 0 

where D* is the covariant divergence which is related to the covariant derivative by 

VW1 E wp,vwz E w (P-‘)(wl, Dw2) = (D’ WI, ~2). do is the affine space generated 

by Km which is the space of solutions of the horizontality condition D’A, = 0. 

To introduce a connection on A one defines XA = Ai’ Df4 where Ai’ denotes the 

inverse of the laplacian AA = DIDA. XA : w1 + w” is a l-form on d with values 

in the Lie algebra of s. The tangent space can now be split into two orthogonal 

subspaces TA(d) = HA $ VA. HA is a horizontal subspace which is the kernel of 

XA. There is a horizontal projection IIA = 1 - DAXA. 

The space of non-equivalent gauge connections is obtained by quotienting the 

space A by the action of 6. The quotient space d/G which is a manifold modulo 

certain restrictions[2g1’ IS often called the orbit space. We denote by p the projection 

p : A + d/G. A scalar product in the tangent space Ta(d/6) at a point a E d/G 

is defined as the one induced by ( , ). Th e metric on d/G can be defined as follows. 

At a point A on the fiber p-r(u) above a, X, Y E Ta(d/G) have horizontal lifts 

r~,r~ then the metric on A/&? is given by g(X,Y) = (‘rx,ry). This metric is 

independent on the choice of A in p-‘(u). If we denote by ax, cuy the coordinates 
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of X and Y such that D&ax = D>ocxy = 0 then the metric can be rewritten as - 
c g(x,Y) = (n~O!x, n~ay). It can be shown [“‘that the Lagrangian of the Yang- 

Mills theory has the following form L = +(IIAA, IIAA) + V. Thus the kinetic term 
-. 

is constructed with a metric in the orbit space. 

A.2. FLAT CONNECTIONS 

- 

Flat connections Af are connections for which the associated 2-form F is zero. 

Geometrically these are connections which correspond to a zero curvature on the 

principal bundle. Physically of course those are gauge potentials with zero field- 

strength. As is well known quantum mechanically the filed strength does not 

completely describe electromagnetic effects and their non-abelian [301 generalizations. 

The most important physical system that admits such structure is the Aharonov- 

Bohm effect’311 In this system an electron beam is affected by the electromagnetic 

potential in a doubly connected region R3 - { 1) ( or in fact R2 - { 0) after dropping 

the irrelevant direction parallel to the flux line { 1)) w h ere the field-strength is zero. 

An interference pattern is observed which depends on the phase factor exp(J7 A) 

around y which is an unshrikable loop around the flux line. The Yang-Mills analog 

of the Aharonov-Bohm effect is dominated by the holonomy 

yh = P[ezp( 
J 

A)] = P[ezp( 
s 

A,dz”)] (A4 
Y Y 

where P denotes path ordering It transforms under the gauge transformation (A.l) 

as follows: vh -+ g-r (xs)vhg(xo) where 20 is a point on y. The Wilson line 

mentioned above is just the trace of ph in a given representation. So that v is 

determined by the gauge fields up to conjugation. 

Gauge equivalence classes of flat connections for any manifold A4 correspond 

to equivalence classes of homomorphism 

4: ~l(M) + G (A4 

up to conjugation. 
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Since we will be interested mainly in Riemann surfaces C, we proceed now - 
C to discuss the parametrization of flat connections Af on C. On the sphere with 

no punctures it is straightforward to check that F = 0 correspond to the trivial -- 
“pure gauge” A = h-‘dh ;i = h-‘dh h E G. For higher genus or in 

presence of punctures on the sphere the flat connections are determined, following 

(A.3) by the holonomies & given in (A.2) in C. Consider the parallel transport 1321 

40 = PbPJ; 41 h l-l w ic is a map from the universal covering of C to G. The 

fundamental group rr(C) acts on ‘p in the following way: cp(pt) = qh(p)qz(J) where 

m(C) 3 P + W(P) E H is the holonomy of Af. Af is given by 

Af = cp-l&p, (A4 

up to the left multiplication of ‘p by a constant element of GC which is the complex- 

-&cation of G. The conjugacy classes of the holonomy representations ph of rr(C) 

can be used to parametrize the flat connections. For the torus, the two commuting 

holonomies around the two homology cycles p( z+l) = ~;v(z) v( z+r) = piv( z) 

where r = 71 + i~2 is the period of the torus can be written, using conjuga- 

tion, as yi = e-2xe1 9; = e -2xe2 In the last expressions 61 , and 02 are 

specific elements of the Cartan sub-Algebra ‘321. We can then express Af in terms 

of v = ezp[$(?t - r.?)& - (z - z)&]. Substituting y = p’h, eqn. (A.4) now has 

the form A = h-‘d/z + h-rMwh where Mu = q’-‘d’p’ is a Cartan sub-algebra 

one form. This expression can be generalized to higher genus as well. Denoting 

by wi and Wj th e abelian differential around the a and b cycles, we now have: 

A = h-ldh + hmlMiwih an d similarily for A where A4 and &? are now in the Lie 

algebra with [&!,A?] = 0. ( Th is expression is of flat connection prior to moding 

out the gauge transformations.) 
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A.3. ON THE MSFC OVER RIEMANN SURFACES - 
c 

MSFC, the space of flat connections on a fixed principle bundle P(C, G) modulo 
-- the group of gauge transformations, is determined by the equations: 

DSA = 0 D*SA = 0 

DL,SApI = 0 D&A” = 0. 
(A4 

. 

Here SA E wl(C, P’) is an infinitesimal variation of the connection. This equation 

is of course a special case of the general discussion of section 2. In the math- 

ematical literature[331’341 eqn. (A.5) is referred to as the linearization of the flat 

connection equations. An elliptic complex related to (A.5) is constructed and an 

application of the Atiyha-Singer theorem yields the dimension of the lineariza- 

tion. Then using slice theorems it is shown that the MSFC is a manifold with 

- &same dimension. The flat connections generate a flat bundle Ef( C, G) over C. 

According to eqn.(A.5) the flat connections can be classified in two cases: (i) No 

non-trivial solutions to (A.5) th en the space of flat connections consist of finitely 

many isolated points that cannot be connected by a finite deformation. This is the 

situation when the fundamental group of M, 7rr(C), is a finite group. (ii) In case 

that H1(C, P) # 0 then the flat connections are not isolated but are in a moduli 

space of gauge inequivalent flat connections, df/G. 

The space dimensions of the moduli space for a Riemann surface of genus g > 1 

is given by: 

dimM = (29 - 2) x dimG (A-6) 

where dimG is the dimension of the group G. This can be easily shown in the 

following way: There are 2g homology cycles denoted by ai and bi with i = 1, . . . . g. 

Correspondingly there are 2g holonomies of the connections denoted by (vk)i and 

(9;);. These holonomies have to obey the restriction 

(~~)~((p~)l(cp~)~1(~~)~1...((p~)g(’p~)g(’p~)~1(~~)~1 = 1. There is a further 

redundancy related to conjugation. Thus eqn. (A.6) is verified. 
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Other geometrical properties of Af/G are briefly summarized: (i)Af/g inher- - 
c its a symplectic structure from the symplectic structure of d/S the orbit space. 

(ii)df/S is a compact space (with some singularities). Its volume, with the natural 
.-- 

symplectic volume element, is finite. (iii) df/G is connected and simply connected. 

(iv) There is a way to obtain a Kahler structure on df/&7. Taking a complex struc- 

ture J on C, namely turning C into a Riemann manifold df/G can be regarded 

as the moduli space of holomorphic vector bundles which are topologically trivial 

and have for the structure group the complexification of G. (v) df/G for the case 

that a complex structure was introduced is a complex Kahler variety. 

A.4. THE MODULI SPACE OF "SELF DUAL" CONNECTIONS 

A generalization of the MSFC over a Riemann surface is the moduli space of 

“self dual” connections which is the space of solutions of the equations 

F - $I, p*] = 0 D# = 0, WV 

modulo gauge transformations. Here F = E”PJ’~~ and p is a complex two dimen- 

sional scalar field in the adjoint representation (mathematically p E w’(C, P’ x 

C))and D, = Dr - iDz. Th e source of the name “self dual” is the fact that eqn. 

(A.8) is just a dimensional reduction of the four dimensional self-dual configura- 

tions F = *F with & = 84 = 0 and p = A3 + iA4. Obviously by setting p = 0 

the case of flat connection is recovered. The moduli space which is defined by the 

following linearizing equations 

D&A - ;([6p, p*] t [p t bp'] =O 
D& + [&AZ, p]) =O 

D*SA •t Re[p*, Sp] =0 

was investigated thoroughly by Hitchin [34]. 

(A.8) 

Here are some of the geometrical properties of the MSSDC: 
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(i) The dimension of the MSSDC is dim M = 4(g - I) x dimG. (ii) M 
- 

c is non-compact. (iii) M is connected and simply connected. (iv) df/G has a 

natural metric which is complete. This is a hyperkhaler metric which means that 

the metric is khalerian with respect to three complex structures which satisfy the 

algebraic identities of the quaternions. (v) The Betti numbers b; of the M vanish 

for i > 6g - 6. The expressions for the non vanishing Betti numbers are given in 

ref.[34]. 
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