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ABSTRACT 

“The Euclidean formulation of gravity is not a subject with firm foundations 

and clear rules of procedure; indeed it is more like a trackless swamp. I think I 

have threaded my way through it safely, but it is always possible that unknown to 

myself I am up to my neck in quicksand and sinking fast.” 

Sidney Coleman 
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1. Introduction 

According to some very recent speculations, the laws of nature as seen by an 

ordinary observer inside a macroscopic universe are at least partially determined 

by a background of “baby universe” or wormhole operators which act on a Fock 

space of universes [l-5]. Th us far the most widely known formulation of this idea 

is due to Coleman [4] and is based on a nonexistent euclidean path integral quan- 

tization. C 1 o eman’s theory seems to lead to the remarkable conclusion that the 

baby universes will always adjust themselves to exactly cancel the cosmological 

constant. 

Unfortunately, the unboundedness of the action 

IE = 
J 

d4x&j(A - - 
16kG R, 

makes it difficult to interpret the euclidean path integral of quantum gravity. In 

particular, Coleman’s mechanism for the vanishing of the cosmological constant 

relies heavily on the apparent instability with respect to nucleating arbitrarily 

large numbers of the Euclidean four-spheres each contributing -2/3X to the action 

(A = 16G2A/9). U n or unately, the same instability seems to lead to a catastrophic f t 

number of macroscopically or even cosmically large wormwholes in spacetime [6]. 

(Resolutions of this problem have been proposed in ref. [7], but it is shown in 

ref. [S] that these ideas do not work.) On the other hand, there are mathematical 

prescription which eliminate the instabilities. They involve rotating the contours 

of path integration for all or part of the conformal degree of freedom of the metric. 

The simplest and mathematically clearest prescription due to Gibbons, Hawking 

and Perry [9] rotates the entire conformal factor to an imaginary value, thus elimi- 

nating any negative terms in the action (we assume that the cosmological constant 

is positive). Such a procedure may define a consistent quantum theory of gravity, 

but it surely eliminates the divergences as X -+ 0 which drive Coleman’s mecha- 

nism. 
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Other prescriptions rotate the contour about the Euclidean saddle point or 

approximate saddle points associated with wormhole-connected four-spheres. In 

this case a careful analysis of the modes of fluctuation [lo] reveals a prefactor iDm2 

in front of the Baum-Coleman-Hawking amplitude exp(2/3X) [ll, 12, 41 associated 

with each four-sphere. The result is, once again, not favorable: in 4 dimensions 

(D = 4) the marvelous exp(exp(2/3X)) b ecomes a disappointing exp(-exp(2/3X)). 

Evidently, the Euclidean path integral is so ill-defined that it can be imaginatively 

used to prove anything. 

In this paper we will formulate the quantum mechanics of gravity with topology 

change by returning to the high dry ground of Hamiltonian Hilbert space quantum 

mechanics ultimately to be derived from the Minkowski space path integral. We 

construct a simplified quantum mechanics of a system -the googolplexus-which is 

rich enough to describe any number of spatially spherical universes as well as worm 

holes which mediate transitions between states. The procedure involves a “third 

quantization” which replaces the Wheeler Dewitt wave function by an operator 

which acts on a Fock space of universes. Worm holes induce nonlinear couplings 

and, as in refs. [4, 51, make the cosmological constant into a variable with a 

probability distribution. We find the following results: 

(1) The mean number of universes which are created by the dynamics is - 

exp(2/3X) h w ere X is the cosmological constant. In view of the known bound 

on X (A S 10-12’) th e mean number of universes is X 1010120. This is the 

origin of the name googolplexusf 

(2) The probability for a given X is flat at X = 0, with no enhancement of either 

the Baum-Hawking or Coleman type. 

(3) The Coleman double exponential does occur but in the form exp (-e2j3’). 

Furthermore, it does not have the interpretation of a probability for X but 

rather a transition amplitude from an initial state to an out-vacuum, i. e., it 

* The googolplex is the largest finite integer with a special name. It is equal to 10 lo’OO 

(Websters New Collegiate Dictionary.) 
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is the amplitude to create no universes. The exp(2/3X) universes are rather 

like the soft photons emitted in electrodynamics and the factor exp ( -e2/3x) 

is the analogue of the soft photon factor which suppresses individual exclusive 

states with a finite number of soft photons. 

(4) The e 2/3x of emitted “soft” universes are cold, empty and uninteresting. We 

do not live in one of them. The probability to find an interesting warm 

universe is like an inclusive probability which sums over the unobserved soft 

universes. For these inclusive probabilities no Coleman or Baum-Hawking 

factor appears. Thus we find no reason to think that wormholes drive X -+ 0. 

In fact with our present understanding it seems that worm holes make X a 

random variable. 

2. Second Quantization of Minisuperspace 

Consider the minisuperspace model of quantum gravity. This model includes 

spatially spherical geometries with metric 

ds2 = g (-dT2 + a2(r)d#) (2) 

where dfli is the metric of a unit S-sphere. We also include a number of spatially 

constant scalar fields $;(r). The E ins ein-Hilbert t action with matter coupling 

becomes 

I = k J d7 [-ah’ + a - a3(X + V($;)) + a”(&)‘] 

This action defines a hamiltonian 

H = & -II2 - a2 + Xa4 + -$I$ + a4V(&) 
> 

(3) 

(4) 

which is the generator of translations in the parameter time 7. Since the theory 

is general coordinate invariant, this generator must annihilate the physical states. 
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This defines the Wheeler-Dewitt equation which the “wave function of the uni- 

verse” @(a, 4;) must satisfy: 

[ 
d2 1 d 8, - 

da2 - - a2 + a4(X + V(&)) @(a,$;) = 0 a2 84; 84; 1 ; (5) 

There is some ambiguity in eq. (5) d ue to operator ordering, but the results 

in Sections II and III are completely independent of assumptions about operator 

ordering. 

Sometimes eq. (5) is regarded as gravity’s Schrodinger equation, but it is obvi- 

ously more like gravity’s Klein-Gordon equation. Indeed, many authors, beginning 

with DeWitt[l3] h ave noted the similarity between the scale factor a and an em- 

bedding time. In 1 + 1 dimensional gravity this correspondence is precise [14]. As 

in the case of the Klein-Gordon equation, the lack of a positive definite probability 

density makes it more appropriate to think of @ as a quantum field rather than 

a state amplitude [5, 15-201. Of course, there is a second, independent, motiva- 

tion: in order to have a Hilbert space theory with spaces of arbitrary topology,’ 

we need an operator which connects sectors with different numbers of connected 

components. 

We will therefore consider a quantum field theory of the Wheeler-De Witt 

equation, guided by the analogy between eq. (5) and the Klein-Gordon equation. 

To emphasize this we rename 

a+t 

di ’ + Xi 
(6) 

so that eq. (5) becomes 

[ 
a2 1 d d -_- 
at2 - - - t2 + t4(X + V(Xi)) Q(t, Xi) = 0 t2 dXi dXi I 

; (7) 

In order not to confuse the reader we emphasize that the xi are not ordinary 

spatial positions and Q(t, xi) is not an ordinary field. @(t, z;) creates or annihilates 
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whole universes with scale factor t and field values z;. t and Z; are the coordinates 

in a new space - the googolplexus - where particles are universes. 

Eq. (7) is a Klein-Gordon equation with position-dependent mass-squared, 

m2(t,Lq = -t2 + t4X + t41/(i) ) (8) 

and time dependent metric gtt = -1, gZ, = t2. The Hilbert space consists of 

all functionals of @ at a fixed time to, IS) N !P(@(to,d)). The field @(to, 2) 

is a complete set of commuting operators, the time derivative &@(to,Z) is the 

conjugate operator II(to, Z), and the Wheeler-Dewitt equation (7), interpreted as 

a Heisenberg field equation, determines the field at all other times in terms of these. 

We now have two issues to consider: what determines IU), the wave function 

of the googolplexus, and, given 1 U) , what are the observables? A meta-observer, 

able to couple to the googolplexus via arbitrary sources, could determine a general 

expectation value (Ul@(tl, ~21). . . Q’(tk, ?k)lU). We, on the other hand, are inter- 

ested in single-universe observables: what is the probability that a universe will 

have given properties - for example, that the matter fields and energy density 

will have given values when the radius of the universe takes some value ao. We are 

using “universe” to mean a single connected spatial component, corresponding to 

a “particle” in the Klein-Gordon analogy. So, we have the problem of identifying 

these one-universe observables in the second quantized Hilbert space, analogous 

to the problem of identifying the position of one particle in quantum field theory. 

Now there is a subtlety: it is not in general possible to identify particles in a field 

theory, even in the absence of interactions, if the Hamiltonian is time-dependent. 

It will be possible only in regions where m2 is positive and if the variations of m2 

in eq. (8) and the metric are adiabatic. In the present case one verifies that this 

is the case. 

m2 > 0, $<l, *<1 (9) 
m gxx 

at sufficiently large t, provided that X + V(Z) is positive. For convenience, we 

will assume the latter to be true in this paper. Then at large t we can identify 
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universes, which we will refer to as “out-universes”. In particular, the late-time 

adiabatic vacuum state lout) is the state with no universes as t + 00, 

(Q, tlout) - exp {-+Jdim(t,;) ( m2(t, 2) - tb2V . d)li? Q(t) Z)} (10) 

for t large. The field Q(t) ) 2 is expanded in a complete set of solutions of the 

Wheeler-Dewitt equation (6)) 

The division into raising operators Af- and lowering operators AI is made using 

the out-vacuum (lo), 

AIlout) = 0 . (12) 

The fl are orthonormal, 

where the Wronskian 

w(.f-,g) = / dZ f(t, z’>i(t, 2) - f(t, 4dt, 2) 

(13) 

is time independent. Then 

[AI, A:] = &J . (15) 

Let 0 be an observable defined in a single universe, and let 01 be its expec- 

tation value in the universe described by solution f~. Then its expectation value 
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is 

wherenI = (UIA~AIIU) isth e number of out-universes of type I. More generally, 

if 0 is not diagonal in the basis I, this would become 

where PIJ = (UIA~AJIU) is the effective density matrix for single universes. Fi- 

nally, we will usually be interested in conditional expectations values - conditional, 

in particular, on the presence of cosmological conditions suitable for our existence. 

Thus, (0) N tr OWp/tr Wp, where W is some appropriate weight operator. 

Next, what determines IU)? The M in k owski nature of the googolplexus field 

equations (7) suggest that 117) is determined at t = 0. It is possible that IV) 

is determined at t = 0 by a smooth match on to short distance physics (this is 

similar in spirit to the Hartle-Hawking idea [22] extended to the many-universe 

context). The idea is that the universes at t = 0 are the “baby universes” whose 

state determines the local lagrangian of our world. We shall consider a number of 

hypotheses for IU). H owever we will see that the main features of the physics we 

are interested in is largely insensitive to the details of (U) so long as IU) does not 

have a fine tuned singular dependence on X. The interesting features arise from 

evolution between t = 0 and large t. We will discuss 117) in more detail in Sec. IV. 

We now apply these ideas. We specialize to pure gravity (with X > 0) for 

which second quantized minisuperspace reduces to a harmonic oscillator with t- 

dependent frequency. The striking feature of the dynamics is this: the generic 

in-state IU), with few or no universes at t = 0, may contain a large number of 

universes as t -+ co. The point is that the frequency-squared (8) is negative at 

small t, changing sign at t = Xm1i2. Before t = Xm1j2, the potential is upside-down 

and the wave packet spreads. As a result, the wavefunction (@,tlU) is a highly 
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excited state of the Hamiltonian in the late time, adiabatic, region. This state 

contains a large number of quanta, which are the out-universes. 

We see this quantatively as follows. With no matter fields, the index I takes 

only one value; the solution f(t), normalized as in (13)) is found in the WKB 

approximation to be 

j(t) - (4P)- 1/4e-i(tw2/3 +6). 
7 t > N2 . 

There is a single lowering operator, 

A = iW(f* , a) . 

(18) 

(19) 

The number of universes in the adiabatic region is 

n = (UIAtAIU) . (20) 

This number is readily estimated by using the time-independence of the Wronskian 

to express A in terms of the t = 0 Heisenberg field, 

A = if*(O)II(O) - if*(O)@(O) . (21) 

For small A, the behavior of f(t) is determined near t = 0 from the WKB approx- 

imation. For convenience, we choose the phase S in eq. (18) so that Ref(0) = 0. 

The solution Ref(t), being fixed by a t = 0 boundary condition (but normalized 

at large t by eq. (18)) is O(1) . exp[(l - Xt2)3/2/3X] in the region 1 5 t 5 X-1/2, 

while Imf(t), being fixed at large t (by the condition that it is 7r/2 out of phase 

with Ref(t)) is O(1) . exp[2/3X - (1 - Xt2)3/2/3A]. In all, 

f(0) = -,;l&~ + icle113A 

f(O) = +ic2e1/3A ) 
(22) 

where cl and c2 are of order 1 and we have used the conservation of the Wronskian. 
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Then from eqs. (20), (al), and (22), 

n _N e2/3A(uJ {c2@(0) + clII(o)}2 IU) - e2’3x (23) 

By our assumption about the nature of IU), th e matrix element is non-singular 

in X, and so the number of universes diverges as e 2/3x for X + O+. This is the 

large exponential factor of Baum [ll] and Hawking [12]. While refs. [ll] and [la] 

were in the context of a single universe (single connected spatial component), in 

our approach this large factor is interpreted as the average number of universes - 

that is, as the average number of connected components of space. In the following 

sections we will discuss the relevance of this factor to the determination of the 

cosmological constant. 

After obtaining these results, we have learned that many of them have been 

obtained previously by other authors: Kuchar [15], Rubakov [18], Hosoya and 

Morikawa [ 191 and McGuigan [20] h ave observed the analogy between the Wheeler- 

Dewitt equation and the Klein-Gordon equation in a time dependent background, 

and have noted the resulting distinction between in-universes and out-universes. In 

particular, Rubakov [18] g ave the interpretation of the Baum-Hawking factor as the 

number of out-universes. There is also some similarity with discussion of Dewitt 

[13], Vilenkin [23] and St rominger [24], although these were all in a one-universe 

context. 

3. Topology Change in Minisuperspace 

We now introduce topology change. We will do this in two different ways. The 

first is to introduce a baby universe field cy into the action, following the method 

of refs. [2, 3, 4, 17, 21, 251. The free Klein-Gordon action is 

co 

S free = dt 
J { 

; 62(t) + $(t” - Xt4p2(t)} . 
0 

(24) 
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Consider an interacting theory 

co 
1 

SBU = -----a2 + 
2g2 J 1 

dt f &2(t) + ; [t2 - (A + a)t4]fD2(t)} . P-9 
0 

Here CY is a dynamical parameter, independent of t. Just as in refs. [2, 3, 4, 17, 21, 

251 the Feynman graphs resulting from such an action will correspond to spacetimes 

in which the spherical spaces described by @ are connected by wormholes (the o 

propagator). In order to keep a Hamiltonian interpretation, we make the action 

local in time by means of a Lagrange multiplier p(t): 

sf3u = & cY2(0) 

00 
+ J { dt f i2(t) + 3 [t” - (A + a(t))t4]Q2(t) + P(l)&(t)} . 

0 

(26) 

The fields (Y and p are a new pair of conjugate variables, so the wavefunctions can, 

be taken to be functions of @ and o. The argument of o in the first term of eq. (26) 

is arbitrary, since du = 0; this first term can be absorbed into the wavefunction IO). 

Again, we assume that the wavefunction \-Iu(Q, o; t) = (a, oy; tlU) is some smooth 

function at t = 0, determined by coordinate invariance and Planck scale physics. 

Since d! = 0, the Hilbert space breaks up into sectors labeled by (Y, which is 

independent of time. Each sector has an effective cosmological constant X,ff = 

X + a!. What can we say about the probability distribution for the cosmological 

constant? As given by the ordinary rules of quantum mechanics, this is 

we,,> = (WV + a - X,,,)lU) 
(27) 

By our assumption about IU), th is is a smooth function of X,ff: the probability 

distribution for the cosmological constant is determined by Planck scale physics 
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and is not peaked at 0. This is in clear constrast to the quantity calculated by 

Coleman[4], which has a double exponential peak 

‘exp (e2/3Aeff) . (28) 

In the sec. 4 we will discuss the Hilbert space interpretation of Coleman’s calcula- 

tion. 

Let us next consider the total number of outgoing universes 

n= (w+w) 

= Jdn jL@ exp [‘&)] 
-A --oo 

(29) 

We see that for a smooth matrix element this has a nonintegrable peak at X + LY =. 

0 = X,ff . Thus in a certain sense the overwhelming number of universes has 

x eff = 0. It is tempting to speculate that this in itself solves the cosmological 

constant problem. We do not think that this is so. 

First of all the factor e2/3(x+(y) in eq. (29) is not the probability for a given 

value of X in the same sense as Coleman’s more singular double exponential. It 

represents the number of created universes, given that X,ff has a certain value. In 

Coleman’s theory the number of created universes is also e 2/3(x+4. 

However, Coleman has an additional probability function for X + o to have 

a given value, namely, the double exponential of eq. (28). No such additional a 

priori probability appears in (29). 

Nevertheless, the reader may be tempted to invoke some sort of “weak an- 

thropic” ideas to say that, since so many more universes are created with X,ff = 0, 

we are overwhelmingly likely to be in one of these. Unfortunately, when matter 
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is included one finds that the e2/3Xeff universes are all empty, cold and devoid of 

matter. A preliminary study of the theory with matter, presented in section 5, 

indicates that the number of “habitable” universes is not peaked at X = 0 if the 

state of the googolplexus ]U) is specified by a generic boundary condition at t = 0. 

Let us now give a somewhat better treatment of wormholes. It is not really 

satisfactory to introduce an independent baby universe field CX, since the intermedi- 

ate states are just small @ universes. We therefore try something different, adding 

a CF3 interaction [5, 17, 191: 

Scubic = 3 mdt ~2(t) + (t2 - Xt4)~2(t)} J { 
0 

cm 

+ ; J dt dt’dt” @(t)qt’)qt”)p(t, t’, t”) . 
0 

We have added a term which allows for the possibility that a universe of radius’ 

a splits into universes of radii u’ and a”. We now make the standard assumption 

that this is negligible unless one universe is microscopic, and that the amplitude 

for emission of this small universe is proportional to the local operator of lowest 

dimension, the cosmological constant: 

co 

S;ubic = ; dt ii2(t) + t2fD2(t) 
J{ 0 

(31) 

- t4Q2(t) (A+gidt’p(t’).(t’)) } . 

Here p(t) is a function which falls rapidly for large t, such as eet2. In order to 

make the theory simpler to analyze, we will make a slight modification: we will 

require p(t) to vanish identically for t > t,, where t, is some cutoff radius. Also, 
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we replace t4 in eq. (31) with 

f(t) = t40(t - tc) (32) 

so that the support of p(t) and c(t) does not overlap. The modification (32) should 

make no difference, since it amounts to neglecting the cosmological constant of 

very tiny universes. One may imagine t, - (lev)-‘, so that wormholes which are 

large compared to the Planck scale are still included, while the modification (32) 

only affects universes which are very small in a cosmological sense. With a bit 

more effort one could analyze the theory without these modifications, and we are 

confident that the physics would be unchanged. 

As before, we introduce an auxiliary field to make the action local in time and 

allow a Hilbert space interpretation: 

cc3 

S” cubic = 
J 

dt + k2(t) + f {t2 - @)(A + p(t))} Q2(t) 

0 (33) 

+ PM (i(t) - s4v(~)) . 

In order to recover S~ubic from Sorbic, q(t) must satisfy q(0) = 0, while q(m) iS 

unconstrained. Intergrating over p(t) then gives 

t 
fwdt> = 95(t) J PvPD(t’Pt’ 

0 

03 

= g<(t) J p(t’)@(t’)dt’ . 

0 

the last equality following from the cutoffs on the support of 5 and ,LL. 
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The theory (33) is solvable. The Heisenberg equations of motion are 

@qt) + {t2 - ( x + n(t))C(t)) W) - 94t)Pw = 0 (35) 

&l(t) - 9Pww> = 0 (36) 

&p(t) + ;c(t)Q2(t) = 0 * (37) 

Note that by (36), q(t) is constant for t > t,. Thus, in the large - t analysis, 

q is a constant q(oo), and the Hilbert space breaks up into q(oo) - sectors with 

independent dynamics and with cosmological constant X,ff = X + q(o). Thus q is 

almost identical to the earlier CL We can form the same observables as in the cx 

model: the probability distribution for X,ff, 

ptAeff> = (UlS(X + q(m) - X,ff)lU) (38) 

and the total number of universes, 

n = (UIAtAIU) . (39) 

The state IU) is given by 

(Q, !?; OIU) = emc2> > (40) 

the q-dependence following from the remark below (33). 

From (36) and (37) we have 

and so 

q(t) = qbL 

PM = P(O)? 

t > t, 
(41) 

t < t, 

-@qt) + (12 - ( x + qt4)Ctt)) w - 9/4)P(O) = 0 . (42) 

We define a function g(X,ff, t) which satisfies 

-@g(X,ff, t) + (t2 - LffCtt)) g(‘eff, t, = O ’ (43) 

with the same boundary condition as the function f(t): the large t behavior is 
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(18), with X + X,.f and Re S(X,,f,O) = 0. Th is is essentially the same as the 

function f(t), except for the minor modification t4 -+ c(t). Thus, at t = 0, 

g(X,ff, 0) = -c~1,(Xeff)e-1'3xeff + iCl(Xeff)e1'3xerr 

jr( X,ff, 0) = ic2( Xefj-)e1/3Xeff 
(44) 

Also define gr,2 (t) satisfying 

-&&2(t) + t2g1,2(t) = 0 

91(O) = 1 h(O) = 0 (45) 

92(O) = 0 42(O) = 1 . 

Comparing (45) and (43), one sees that 

9Cxeff, t, = 9(xejf7 0)91(t) + b(&jj,O)gz(t)for t < t, . (46) 

We can now proceed to solve eqs. (35, 36, 37). The parts of the solution that we 

need are: from (42)) 

w> = w%n(t) + II(cJ)g2(t) t 
- 9P(O) J dW’) {91(t’)92(t) - 92(t’)g1(t)} (47) 

0 

for tct, . 

Using this in (36), 

q(m) = q(0) + @(O)h + H(O)hz + P(W3 

where hi are the constants 

tc 

h,2 = 9 J dt’4t’)gdt’) 

0 
(48) 

L tc 

h3 = g2 JJ dt dt’p(t)p(t’)gl(t)gl(t’)sign(t - t’) . 

0 0 
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Also, 

A = iW(g*(X + q(m), t), a(t)) - ig ] dt’&‘)g(X + q(m), t’)p(O) (49) 
t 

where the second term appears because of the source in (42). Evaluating (49) at 

t = 0 gives 

A = ig*(X + q(m), 0) {n(o) - hp(O)) 

- ii*(A + q(m), 0) {Q(O) + hzp(O)} 
(50) 

. 

We now determine the observables (38) and (39). The following identities, 

obtained using the integral representation of the delta function and the Campbell- 

Baker-Hausdorf Lemma, are useful: 

(q = qqq + xp + y)lq = 0) = 1/x 

(q = OK7 + “P + Y>Plcl = 0) = -Y/X2 

(Q = OlP% + XP + Y)Pl!I = 0) = Y2/X3 * 

Then 

‘tAeff> = jfq 

and 
m 

n= J dXeff (ulS(X + q(m) - X,ff)A+AIU) 
-03 

co co 
N J dX effe 2/3AeJf d@ J 

0 -03 

(51) 

(52) 

(53) 

iQ~O(ct2(Xeff)~ + ic;(xeff)‘%)2QlI(@) . Ih3l 
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where 

4 txeff> = c1 (Xeff) ( !!g) 1 + 2 
+ QtXeff) G 

42txeff) = C2(Xeff) 1 - ( $$) +cZ(X,ff)$ . 

As in the case of the o-model, the probability distribution for X,ff, eq. (52), is 

. smooth. There is one pathology here: the integrated probability is not normalized, 

diverging as X,ff t foe. This traces back to the non-normalizable wavefunction 

for q, eq. (40). W e assume that this is an artifact of our model, since we do not 

trust it in any case for IX,ffl ;3 1 and we will proceed on the assumption that the 

model is reasonable for X,ff << 1. The number of universes, eq. (53), is almost 

identical to that found in the o-model, and has the same non-integrable singularity 

at X,ff -+ 0. The matrix elements in eqs. (29) and (53) differ slightly because 

the wormhole physics has gotten mixed up with the small-t evolution of @, but 

the physics is the same. The agreement between the Q3 model and the o-model is 

the Hilbert space analog of the clean separation between large spheres and small 

wormholes in the euclidean path integral. Incidentally, the Q3 model can also be 

analyzed by shifting @ so as to eliminate the linear ppQ’ term from S,!:,;,, leaving 

a model very similar to the o-model. 

To conclude this section, we summarize the results: in both models of worm- 

holes, the probability distribution for X,ff is smooth, with no preference for X,ff = 

0. One universe observables, on the other hand, are dominated by X,ff = O+, the 

divergence being the single exponential peak of Baum [ll] and Hawking [la]. Again 

we emphasize that this is not a solution of the cosmological constant problem, for 

reasons that will be explained in sec. 5. 
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4. Correspondence with the Path Integral 

Coleman [4] f ound that the Euclidean path integral has a double exponential 

peak (28) as X,ff + 0. In this section we discuss the Hilbert space interpretation 

of Coleman’s calculation. 

In general, path integrals represent transition amplitudes. In the special case of 

a time-independent Hamiltonian, the initial and final ground states are the same, 

and so the ground state to ground state transition amplitudes are also ground 

state expectation values. In a time-dependent background, as we have here, there 

is no correspondence between expectation values and the path integral (unless the 

latter is generalized in a rather complicated way). Thus, Coleman’s expression 

should represent something of the form (outI..* Iin). The lout) vacuum is given 

by eq. (10). Th e in s a e e en ] ) t t d p d s on the t = 0 boundary conditions on the path 

integral; we assume that this is to be identified with IU). 

Given a quantum theory in Hilbert space, it is a standard exercise to derive the 

corresponding path integral representation. In the present case, this is complicated 

because a contour rotation is necessary, and because this rotation can be done in 

several ways [al]. We will therefore not discuss the path integral directly, but will 

calculate (out I . . . IU) expectation values and compare with Coleman’s result. 

We need to discuss IU) somewhat more explicitly now. In the case that the tri- 

linear universe coupling9 is small, a connected matrix element (outI@( - - ia(t,)lU), 

is of order gnm2. Neglecting n > 3, since these go as positive powers of g, the wave- 

function IU) is therefore a gaussian with width of order 1, centered on a value of 

order 9-l: 

IU) 21 ,;(ro(o)+J’n(o))lgll) (55) 

where J and J’ are O(1) and 

WI) = 0 
B, E H(0) + i7jqO) . 

(56) 

For convenience we ignore wormhole effects and work at fixed X; afterwards, one 
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can add the a-field and introduce an arbitrary smooth a-dependence into IU). 

Then (we set J’ = 0 for simplicity - the more general case works out the same), 

(0ut)U) = (out~~)e-JZG(o~o)~2g2 (57) 

where 

From eqs. (11) and (56)) 

B, = ctA + PA+ 

where 

Q = f(0) + ivf(O> 

p = f’(0) + +f*(O) e 

Then 

iv) = ,-PA’A’I2~ lout)( 1 - jp2/cY2 l)1’4 

and 

G(t1, t2) = f(t>> f*(k) - ~ftk)} . 

(58) 

(59) 

(60) 

(61) 

(62) 

where t, is the larger of tl and t2 and t< is the smaller. 

The interesting part of eq. (57) is the exponential factor. This factor is given 

by the sum of graphs shown in figure 1. This is a sum over disconnected spheres: 

each line represents a universe which is created with zero radius by the source, 

propagates for a while, shrinks to zero radius, and is annihilated by the source 

(figure lb)). Thus, 

tout lu> N e-J2WJ9/2g2 
(63) 

represents the same graphs that give rise to the double exponential (28) in the 

work of Coleman [4]. Naively it appears that we must have G(0, 0) - e2i3’. This 
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is not generically the case, however. Rather, 

-if (0) 
G(o’ O) = j(0) + @f(O) 

Cl + 25 . -1 e-a/3X 
= -f, 

c2 + i7jcl - 7jcz1 e-2/3x 

icl 
=- 

c2 + iqcl 
+ O(e-2'3X) . 

(64) 

This result, which at first sight seems to disagree with Coleman, was found pre- 

viously from an analysis of the minisuperspace path integral in [al]. It can be 

interpreted as follows. The minisuperspace model, even in the free case (no (ra2 

or Q3 interaction) already contains a subset of wormhole configurations. These are 

configurations, in the path integral over a(r), in which a vanishes at one or more 

values of T: these are zero-size wormholes attached to the north and south poles 

of large 4-surfaces. Thus, G(tl, t2) gets contributions from all of the paths shown 

in figure 2. Note that eq. (64) can be formally rewritten 

G(O,O) = -: + i ye2i3’) (I + [iclq + $1 e213’ + .-*) , (65) 

the series being geometric. One sees roughly the correspondence between eq. (65) 

and figure 2, with each large arc representing a euclidean four-sphere which gives a 

contribution of order e / 2 3x. The formal sum of these multiple bounces is the O( 1) 

result of eq. (64)[21]. 

However, this result is not consistent. It applies neither to the theory without 

wormholes nor to the theory with all wormholes turned on. Indeed when wormholes 

are accounted for, let us say by introducing the wormhole field cy, we will overcount 

the worm holes connecting north to south poles. 

Is there a way to turn off these minisuperspace wormholes? Evidently. Varying 

q in the initial state changes the weighting given to bounces at a = 0. Setting 
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17 = &/cl, we see from eq. (64) that 

G(O,O) M c12e2/3x 

(0utlU) - exp - J2c12e2/3X/2g2) . 
6-w 

This is rather close to the double exponential of ref. [4]: only the minus sign in 

the exponent differs. It has already been noted [lo] that the plus sign assumed in 

ref. [4] was not justified, but the result (66) does not agree with ref. [lo] either: 

the phase found for the exponent was (-i)d+2, which happens to be -1 in d = 4, 

but the minus sign in eq. (66) is d-independent. It seems that we are on the 

right track in identifying the path integral with (out1 . . . IU) amplitudes, but some 

details remain to be sorted out. 

How are we to interpret the fine-tuning needed to produce the double expo- 

nential form (66)? We offer three possibilities: 

(i) It is possible that the correct answer for G(O,O) is eq. (64)) of order 1,’ 

and that the path integral for euclidean quantum gravity does not pass over the 

spherical saddle of large negative action. This is plausible: there are contour 

rotations which make the euclidean action positive [al] and eliminate the large 

saddle point. In this interpretation the fine-tuning which gives eq. (66) happens 

to correspond to a contour which does pass over the saddle, but this finely tuned 

object is uninteresting. 

(ii) The condition q = icz/cl may be necessary to eliminate minisuperspace ar- 

tifacts and give the correct correspondence with the full theory. Thus, this de- 

termines in part the state IU). W e note that this choice of 77 can be described 

in another way. It corresponds to the boundary condition i(O) = c2@(O)/cr in 

the second quantized path integral. With this boundary condition, the Wheeler- 

Dewitt equation has a normalizable solution at X = 0. 

(iii) One problem with a purely imaginary 7 is that the state IU) is not normal- 
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izable. This can be cured by adding an exponentially small real part: 

7 = iC2/Cl + O(e-2/3X) (67) 

An example of this kind of fine tuning is 77 = if*(O)/f”(O) which sets ,B = 0 in eq. 

(60). According to eq. (61)) this results in 1~) = lout): as the source J is turned 

off, the fine-tuned state of the googolplex IU) contains no outgoing universes. In 

this case a “fine-tuned” boundary condition at t = 0 is equivalent to a “natural” 

boundary condition at late times. 

Further analysis, probably going beyond minisuperspace, is needed to decide 

between these alternatives. 

5. Matter and Heat 

Let us return to eq. (7) which d escribes universes with some number of matter 

fields and restrict it to the case of one scalar field x. For simplicity let us choose 

V(x) = 0 in which case we have x-translation invariance. As usual, we can Fourier 

expand Q(x) and find that the dynamics of the Fourier modes &( Ic) decouple. Thus 

a given universe can be characterized by a “wave number” k and the Wheeler 

Dewitt equation for such a universe is 

&(t; k) = 0 (68) 

We see that for k # 0 there are two oscillatory regions of t. In addition to 

the de Sitter region of large t (t ;L l/a), a second classically allowed region 

appears with t ;S fi. Th is is the region of Friedman-Robertson-Walker expanding 

and recollapsing universes. These universes have enough matter to cause them to 

recollapse, never appearing as outgoing universes at large t. We will assume that 

these are the “interesting” universes which are similar to our own. 

24 



In the FRW region creation and annihilation operators can be introduced [18]. 

To do this we find two oscillatory solutions of the Wheeler-De Witt equation which 

behave like 

4 . h*(t; k) = 3 exp(fzklogt) (69) 

and expand 6(t; k) as 

&(t; k) = B(k)h+ + B+(k)h- (70) 

B(k) and B+(k) can be regarded as annihilation and creation operators for FRW 

universes. 

Since the FRW universes typically collapse before X becomes important, the 

evolution of the wave function from t = 0 to t z & will not significantly depend 

on X as X + 0. Therefore, no Baum-Hawking enhancement will occur if the wave 

function of the googolplexus is specified by a generic boundary condition at t = 0. 

We are thus led to the negative conclusion that the probability for an interesting 

universe is not peaked as X,ff + 0. 

6. Conclusion 

We have given a Hilbert space analysis of quantum gravity with topology 

change, using a second quantized minisuperspace model whose Feynman diagrams 

are wormhole-connected specetimes. This theory has a natural probability inter- 

pretation which results in a smooth probability distribution for the cosmological 

constant. 

Path integrals in this theory represents transition amplitudes, not expectation 

values. In particular, the double exponential of Coleman appears only in ampli- 

tudes of the form (o&l. -- Ill). This is an exclusive amplitude: the amplitude 

for IU) to contain exactly zero, (or, with insertions, some small number) of out- 

universes. There is a close analogy with the soft-photon divergence of QED. With 
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a small photon mass m, an external time-dependent current will produce a num- 

ber ny of soft photons which diverges as m + 0. Any exclusive amplitude then 

vanishes as e-“7. The large cold universes produced by the mechanism of sec. 2 

are much like the soft photons of QED, with ny + e2i3’. 

However, these “soft” universes are as uninteresting as the divergent cloud of 

soft photons produced by an accelerated charge in QED. When matter is included, 

say by eq. (7)) then warm excited universes will be like hard photons. A meaningful 

question will go something like this: for each value of X,ff, what is the number 

of universes with a given amount of heat (and other relevant properties) summed 

over all possible numbers of the unobserved cold empty de Sitter universes. By 

analogy with QED, the suppression factor (66) will not appear in this expression. 

In conclusion, we seem to be left in the following unhappy predicament. Worm 

holes do influence coupling constants and give rise to a probability distribution as 

claimed by Coleman. However this probability is not given by either the Baum- 

Hawking or Coleman function but is defined by unknown short distance physics 

which has no reason to prefer X,ff = 0. Thus, even if X were tuned to zero, worm 

holes, if they occur, would still make X,ff a probabilistic quantity with no peak at 

x eff = O- 

Is there an escape. ? One possibility is that worm holes do not exist at all 

and X = 0 for other reasons. We have nothing new to say about this option. A 

second possibility is that we have the boundary conditions on the wave function 

of the googolplexus all wrong. To see how this might affect the conclusion, let us 

suppose that the boundary conditions on IU) are given at t -+ oo instead of t -+ 0. 

Specifically we assume that, for each k, the wave function at late times is the out 

vacuum lout) or any other wave packet whose width has no sharp dependence on 

x eff. Reversing the argument in section 2 we then find that the Fock space of 

FRW universes must be highly excited. Indeed, for each k the average number of 

FRW universes is N exp(2/3X,ff). 

Such a speculation represents a radical departure from the usual thinking about 
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naturalness. We usually assume that the laws of nature are specified at small 

distances (early times). Here we have done the reverse. At the moment we see no 

way to decide if this is reasonable. 
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FIGURE CAPTIONS 

1) a) The sum of Feynman diagrams representing the exponential of eq. (63). 

The vertical axis is the scale factor a, the horizontal is parameter time 7. 

Each line represents G(0, 0)) th e sum over all paths from a = 0 back to a = 0. 

b) G(O,O) is a sum over minisuperspace geometries with the topology of a 

sphere. 

2) The euclidean trajectories of the form u(r) = 1 sin(fir)l/fi, with 0 < 

T < rzr/fi, that need to be included in the semiclassical approximation 

for G(O,O). The reflections off the barrier at a = 0 are the minisuperspace 

wormholes that attach to the north and south poles of the large four-spheres. 
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