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ABSTRACT 

It is proved to any finite order in (four-dimensional) chiral perturbation theory 

that the Wess-Zumino term and the chiral anomaly of the generating functional 

of-connected Green functions are not renormalized. This result is analogous to the 

Adler-Bardeen nonrenormalization theorem for QCD and shows that the effective 

low-energy meson theory correctly matches the QCD anomaly. All higher-order 

counterterms in the chiral Lagrangean are four-dimensional chiral invariants, even 

if they renormalize graphs with Wess-Zumino vertices. The proof is based on 

a manifestly chiral invariant perturbation expansion of the generating functional 

around a background field. The fluctuations of the Wess-Zumino term about 

the background field are shown to be chirally invariant four-forms. In order to 

preserve chiral symmetry and avoid ambiguities in the continuation of @“pa to 

d # 4, operator regularization is used rather than dimensional regularization. The 

divergent terms are explicitly computed to one-loop order and compared with the 

most general sixth-order chiral Lagrangean with an E tensor and flavor nonsinglet 

external fields. 
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1. Introduction 

. 

- 

Spontaneously broken chiral symmetry determines the low-energy strong inter- 

actions up to a few constants. These constraints may be conveniently summarized 

by an effective chiral Lagrangean for the octet of pseudoscalar mesons! In general, 

the predictions of lowest-order chiral perturbation theory (O(p2) in the expansion 

in powers of momenta and meson masses) are in fair or good agreement with ex- 

periment. Even though chiral Lagrangeans are not renormalizable, a well-defined 

and systematic procedure for calculating meson-loop effects[2’31 has been developed; 

unitarity is thereby restored to successively higher orders in the chiral expansion. 

The divergences arising in these calculations have to be absorbed by counterterms 

different from the original Lagrangean, but they are chiral invariants of higher order 

in the momentum expansion? The corresponding coupling constants have to be 

determined from experimental data. At the one-loop level, theory and experiment 

agree remarkably well.‘“’ 

: An exception to this picture are the anomalous meson processes like x0 + 

yy which are forbidden to O(p2) .and O(p4) by the naive Ward identitiesW while 

higher-order effects appear too small to explain the experimentally observed widths 

and cross sections. However, anomalous breaking of chiral symmetry by quark 

loops “-” provides a leading amplitude in good agreement with experiment. Wess 

and Zumino[” constructed a classical action of O(p4) for mesons and external 

gauge fields whose variation under chiral transformations exactly reproduces the 

fermionic anomaly; it correctly describes the anomalous meson processes to that 

order. Witten later gave an elegant topological representation of the Wess-Zumino 
IlO1 (WZ) action in Euclidian space through the five-dimensional Chern-Simons term. 

His work triggered the development of differential geometric methods11’-141 that will 

be extensively used in Section 3 below. 

Two questions then arise: Firstly, will quantum corrections and possible tree- 

level contributions at O(p6) ( no a variance with the Veltman-Sutherland the- t t 

orem”‘) significantly change the lowest-order amplitudes? Secondly, does the 

C 
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anomaly of the WZ action induce higher-order chiral anomalies through loop ef- 

fects? The first problem has been studied in some detail in Refs. 15-17; the result 

. is essentially that the higher-order effects are too small to be presently seen in 

7r* + yy while quite substantial in 77 decay, but -7 - 77’ mixing and the lack of 

knowledge of the singlet decay constant again preclude firm conclusions. 

These authors also found by direct computation that the chiral anomaly equa- 

tion is not renormalized to one-loop order and that the one-loop counterterms 

induced by the WZ action are chiral invariants. It will be shown in this paper 

that this result indeed holds to all orders of chiral perturbation theory (ChPT). 

In view of the topological interpretation of the WZ term and the quantization of 

its coupling constant, one might consider this outcome to be obvious. However, 

the theory is not renormalizable; radiative corrections contribute to the effective 

action through terms with additional derivatives. These latter pieces are not topo- 

logical in nature, so there is no a priori reason why they should respect chiral 

symmetry - to the contrary. The nonrenormalization theorem is a consequence of 

the particular structure of the fluctuation terms in an expansion of the WZ action 

around some background-field configuration (see Section 2). It does not imply that 

no divergences arise in loop graphs with WZ vertices; rather, these infinite pieces 

can be absorbed by renormalizing the coefficients of chirally invariant higher-order 

actions. 

_ _ ..T. 

A necessary ingredient in the proof is a regularization scheme that preserves 

chiral symmetry and - in contrast to dimensional regularization - does not lead to 

ambiguities in connection with the totally antisymmetric c tensor. In a separate 

papery’ an analytic regularization scheme - termed operator regularization “*’ (OR) 
- is discussed in detail and shown to have all the required properties. Section 3 

outlines the computation of the divergent parts of one-loop diagrams with one 

Wess-Zumino vertex and gives the general chiral Lagrangean of order p6 in the WZ 

sector for use in the phenomenological analysis of anomalous meson processes. A 

preliminary account of the present results appeared in Ref. 19. 
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- For the reader’s convenience, the external-field formulation of ChPTi2’ is briefly 

i =- reviewed in the remainder of this section. A unitary matrix field U represents 

. the octet of pseudo-scalar mesons 7r, K and Q; it transforms under local chiral 

U(3), x U(3)R rotations as 

(14 

where p(x) = -iX,cpa(x); th e singlet field is necessary for consistency (it may be 

set to 0 if the symmetry group is restricted to SU(3), x SU(3),). To lowest order, 

the constant j coincides with the pseudoscalar decay constant jr M 93MeV. 

Em!ernaZ right- and left-handed vector gauge fields VL L = V@“fAp = -g XaV’$ , , 
are used to construct covariant derivatives: 

- 

vu = dfil!J + v-u - uv; ) 

VW+ = aw+ + v;u+ - u+v- . 
(14 

and 

VP0 = 8% - 2Tr (Ap) . (l-3) 

The abbreviations Rp = UtV~U = -VI”UfU and Lp = VpUUt will frequently 

occur in Sect. 3. In the lowest-order chiral Lagrangean, 

f2 & = TTr (V,UtVfiU + UtX + XtU) + hV,OVW , (l-4) 

__ the meson mass matrix is contained in the external (Hermitean) mixed scalar- 

pseudoscalar fields X and Xt which transform like U and Ut, respectively. From 

u, 0, x, Fi”L = ah& + v&v-l, and their covariant derivatives, chiral La- 

grangeans of higher-orde; in the’momentum expansion may be constructed. 
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- In order to correctly match low-energy QCD, the generating functional of con- 

i :- netted Green functions of ChPT must have the anomaly1201 

under infinitesimalaxial transformations gR(x) = g:(x) = exp[p(x)]. The gluonic 

contribution to the axial U(1) anomaly can be compensated by the shift O(x) t 

O(x) - 2i Tr [p(x)]. Note also that Abelian vector and axial-vector fields with 

nontrivial transformation properties are included here; thus the Abelian anomaly 

manifests itself not only in the nonconservation of the axial U(1) current, but also 

in the noninvariance of W. The Wess-Zumino action reproducing the anomaly 

(1.5) will be discussed in Sect. 2. 

Meson-loop effects are calculated in the framework of a saddle-point expansion 

about a background configuration Uo(x) that solves the classical equations of mo- 

tion derived from (1.4). Setting u(x) = U,“2(x), the fluctuations are parametrized 

as 

U(x) = u(x)e-t(z)/fu(x) , 5(x) = -ix,p(x) . (1.6) 

5 is pseudo-scalar and transforms as 

n4 = ~t(9d4 9&L cpo(x>>W qgL(x), a&), p*(x)) ) (1.7) 

where U*(x) = exp(-cpo(x)/ j) and 

_ ..-. q9LM9R(x), cpo(x)) = u(x) 9R(X) u’+(x) = u+(x) &) d(x) . (1.8) 

For the purpose of generating graphs in a perturbative expansion, it is convenient 

to couple t(x) t o a source J(x) with the same transformation properties as [ itself. 
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- One defines anti-Hermitean vector and axial-vector fields Pp and A,, where 

i %- the former is a connection and the latter transforms homogeneously: 

. P = 3 [tit, Pu] + + uv$L+ + f u+v-u --) ?Ltp, + a,)il , 

Ap = 3 {u+, d%) - 3 uV;u+ + f u+V/u 

= ; u+VpUo~+ = - f uW& b i+A,i 

The covariant derivative of ,$ is given by[21’21 

w-9 

(1.10) 

In expanding about Uo, one may use the formulae 

V,U = u(dpe-< + {A,, e-(}), , 

V,Ut = ut(dpeE - {A,, et})ut . 

Finally, the following quantity will frequently appear in Sec. 3: 

2. Nonrenormalization of the Wess-Zumino Term 

(1.11) 

(1.12) 

(1.13) 

__ 

The first part of this section proves that all fluctuation terms of the Wess- 

Zumino (WZ) action1g’11’141 are four-dimensional chiral invariants; only the zeroth- 

order term in the expansion of Swz is anomalous. The derivation closely follows 

the approach of Ref. 14 and uses the language of differential forms whenever useful. 

The conventions are essentially those of Ref. 11, except for V = -(i/2)&V’ instead 

of -i&V”, etc. Next, a naive argument is given why the anomalous variation of the 

fully unitarized generating functional of ChPT exactly equals the expression (1.5). 

This conclusion can be rigorously justified to any finite order in ChPT by using the 

operator regularization scheme described in Refs. 18 and 3. Renormalization of loop 

graphs thus never requires chirally noninvariant counterterms even if anomalous 

vertices from the WZ term are present. This result will be verified to one-loop 

order in Sect. 3. 
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2.1. PROPERTIES OF THE WESS-ZUMINO TERM 

. The-.Wi term by construction has the anomaly (1.5). If vector-current conser- 

vation is imposed, it may be expressed in Euclidian space as 

SWZ = Icd ’ - ?(I, @ @+1(h) - u:+#i) + dCd(VR, &,)) . (2.1) 

Bdtl 

- 

The integration is over the ball B d+l whose boundary is the (compactified) space- 

time manifold Md; the fields VH and U, where H = R, L, are assumed to be suit- 

ably continued into the interior of gd+‘. w~+~(VH) is the zeroth Chern-Simons 

form associated with the (d/2 + 1)-th Chern-Pontryagin density Tr [Fd12+r(VH)]. 

cd is Bardeen’s counterterm “” guaranteeing vector-current conservation. The op- 

erator F(~R,~JL) with gH E GH acts on functionals of VH as ?(gR, gL) ~[VR, VL] = 

f[gi’(vR + d)gR, gL’(VL + d)gL]. In d = 4, the coefficient led takes the value 

I& = -i/(247r2). 

Due to the group property 

the action (2.1) may be rewritten as 

_ . 

SWZ = I(d Ad+l(u) + dad(&, u> + dCd(Vk b) - dCd(h, u+(vr, + d)U)) . 

Md 

(2.3) 

All terms containing gauge fields are d-forms, i.e. local polynomials of VR, VL in 

d dimensions; only the pure meson term cannot be written as a d-form and is not 

polynomial when restricted to d dimensions. An exact d-form is usually added to 

obtain a more symmetrical appearance of the action, but this is irrelevant in the 
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present context. In four dimensions, the forms appearing in (2.3) are given by 

. 
As(U) = k Tr ((U+dU)“) , (2.4) 

~~(VL,U) = -f 'I'r ((dUU+)(VLdVL + dVLVL + Vi)- (dUUt)3VL 

- fr (dUU+)VL(dUU+)lQ) , 
(2.5) 

c4(Vk&) = &'r((V~VR-V~h)(FR+F~)+V~V~+V~V~+~(VLvR)2) , (2.6) 

C~(VR,U+(VL + d)U) 

= ~Tr((F~+UtF~U)(U+V~UV~-V~UtV~U) 

+ vgJ+vLu + v,u+v,3u + f (u+vLuv-)2 

+U+~U({VR,FR+U+F~U}+VRU+V~UV~ +U+VLUvRU+vLu 

- v-u+v;u - U+v-Uv~ - v-j) 

+(U+dU)2(V~U+V~U- U+VLUVR)+ i(U+dUVR)2 - (U+dU)3VR) . 

WI 

The forms discussed above are maps f : 6 x S + L2( M) , (g(x), V(X)) H 

f(g(z), V(z)) where S and B are spaces of gauge field configurations and of maps 

from M into G, respectively. Chiral transformations of such forms are naturally 

defined in terms of a nonlinear realization of the chiral group: Let the operator 7 

be defined by 

w$f(g, v> := w-ls, ww) , (h E G) . P-8) 
It is now very easy to show that 7 leaves functions with the special structure 

f(g, V) = f(g)!(V) invariant. 

Recall that the anomaly and the WZ action may be constructed geometrically 

from the Chern-Pontryagin density ?d+z(v) = Tr (Fdj2+l) in a fictitious (d + 2)- 

dimensional space-time [11,14,13] 
: pd+2 is closed and may thus locally be written as 
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the exterior derivative of a (d + 1)-form wi+r (V). Furthermore, since P is invariant 

under finite gauge transformations generated by some ,8(z) one infers from 

. 
0 = $pd+#) = +k~~j+,(v) = dsa”wi+r(V) , n>L cw 

that the n-th variation of wi+r may locally be written as the derivative of a d-form, 

q34+1w = d4m P) , (2.10) 

which for n = 1 is just the anomaly for left-handed or right-handed vector fields. 

The change in Swz under a chiral rotation with parameter P(X) may be com- 

puted from (2.1): - 

swz [u’, V’, A’] - Swz [u, v, AI 

= I’cd I( ep, e-p ) - 1) (1 - f&u)) (‘J$+#R) - W:+#‘?L) + dCd> 
Bdtl = 1-d Jc 7(&e-P) - 1 ) (‘d+#+d - ‘d+l(h) + dCd> 

Bdtl 

In the third line, the corollary mentioned after (2.8) has been used, and the fourth 

line was obtained by expanding I(e@, e-p) ’ m p owers of ,B and applying (2.10). 

From (2.11) one concludes that 

__ 
q(swz[vR, h, u21 - SWZ[VR, K &I) = 0 - (2.12) 

This corollary has an important consequence for computing quantum corrections: 

To that end, SWZ[VR, VL, U] is expanded in powers of 6 about some configuration 
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uo, 

. (2.13) 

SWQ contains the fluctuation field to the n-th power. From (2.12) one concludes 

immediately that only SWZ[VR, VL, Uo] h as anomalous transformation properties 

whereas all the fluctuation terms are chiral invariants. 

. Are the fluctuation terms in (2.13) p urely four-dimensional expressions, or do 

they contain five-dimensional parts as well? According to the decomposition (2.3), 

all parts of Swz with external fields are local in d dimensions, only the pure meson 

term lives in d + 1 dimensions. It is thus sufficient to show that - 

wi+l(U+dU) - w;+#J,tdUo) = 2 du;(UidUo, <) ; 
n=l 

(2.14) 

the expansion U(x) = exp( -c(cc))U ( ) 0 x is used for notational simplicity [the results 

of the following argument can immediately be transcribed for the expansion (1.6)]. 

The vector field U+dU may be considered the gauge transform of UidUo, with 5 

playing the role of the generator of the corresponding left-handed rotation: 

U+dU = f(l, cc)(UJdUo) . (2.15) 

__ 

Substituting this in (2.10), one immediately obtains the desired result (2.14). 

The original construction leading to (2.1) assumed that the action does not 

contain Abelian gauge fields; hence, the generating functional Z[Q] is invariant un- 

der global U(l)v x U(~)A transformations only. (However, the functional measure 

of the underlying fermionic theory is not invariant!) In the presence of Abelian 

gauge fields, 2 also possesses the Abelian anomaly obtained from (1.5) when 

p(x) = /3’(x)Xo. Th e a 1 tt er is correctly contained in (2.1) if U has a singlet 

component. One may take U(z) = eiO(z)/3~(z) if 77’ is not dynamical, and U(x) = 

10 
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ei~“(aq~) ‘f 1 7’ is explicitly incorporated. One easily verifies that the singlet - 

i = - field does not contribute in As(U). Furthermore, from UtdU = O+dO + (i/3)d@ 

or Utdi =-l?do + (i/3g)dp” one obtains . 

Q4(VL, U) = a4(V’, fi)-i dO Tr (V~(2dV~+V~-(dOP)2-V~(d~~t))) 7 (2.16) 

C~(VR, Ut(V~ + d)U) = i dOTr ( - Vi + V’itf?(V~ + d)o - VR(O+(VL + d)0)2) 

+ C4(VR, o+(VL + d)o) 
(2.17) 

and analogous formulas if n’ is dynamical. Note that there are no quadratic or 

higher terms in the singlet field. 

- 2.2. ANOMALYOF THE UNITARIZED GENERATING FUNCTIONAL 

Consider the generating functional W[@] of the connected Green functions. 

The action is written as 

S = Sin,. + SWZ = 
J 

d4x [Gnv.(U,ISA,*--)+ Lwz(U,KA)] (2.18) 

where Sin”. contains all the chirally invariant pieces of the action. Disregarding for 

the moment the need for symmetry-preserving regularization, the variation of W 

under a chiral rotation with parameter p(x) is 

SBW[V, A, . ..I = -ie-iw(6peiw) 

= -ie-‘“Sp 
J 

[dU] e iSi,,.[U,V,A,...]+iSwz[U,V,A] 

. -iW = --2e 
J 

[dU](ihpSwz) eL%v.+isWZ 

= d4xTr [p(x)R(V,A)] , 
J 

(2.19) 

The last line results because SpSwz does not depend on U and ‘may thus be pulled 

in front of the functional integral. In conjunction with (2.12),(2.13) this argu- 

ment suggests that the anomaly of the unitarized generating functional is given by 

Bardeen’s expression’2o1 alone without higher-order corrections. 
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In order to make the foregoing argument rigourous, the generating functional 

W of connected Green functions needs to be regularized explicitly. This can be i : - 
achieved most conveniently if the background field:kxpansion method is combined . 
with the modified operator regularization scheme described in Ref. 3: In this way, 

the anomaly of the WZ term is isolated in the classical action and does not par- 

ticipate in quantum corrections. Operator regularization is ideally adapted to this 

situation and has the additional most significant advantage over dimensional reg- 

ularization that antisymmetric e tensors do not give rise to ambiguities. 

In the presence of the WZ term and higher-order actions Szn, W[Q] is expressed 

as 

- 
eiwPl = e 

i~~zl S2~[Uo,~]+Swz[Uo,V,A] . e$p(ln D) . ,~6(0)Sd4~Tr[Ing,b(i6/6J)] 

Xe 
-; j- d4~d4yJ”(z)D,-d(z,ylUo,~)Jb(y) . 

9 
J=O 

(2.20) 

the notation C’,“=, indicates that the summation starts only at n = 3 for Ic = 1. 

_ . _ ..-. 

The significance of the various terms in (2.20) is as follows: The first factor is 

the contribution of all tree graphs with at most one vertex of higher order than p2. 

All one-loop graphs with vertices from L2 are summarized in the second factor. 

Due to the curvature of the target manifold in the nonlinear 0 model, the invariant 

functional Haar measure is not just dp([) = n,,, dt”(x), but also contains the 

square root of the determinant of the target-space metric 
122-24) 

; the third factor 

expresses these contributions by means of extra vertices ‘251 that are multiplied by 

the factor S(4)(O). A s d iscussed in more detail in Ref. 3, these vertices are chiral 

invariants because the chiral transformations are precisely the isometries of the 

metric. Together with the remaining vertices in the fourth factor, they give rise to 

tree graphs with more than one higher-order vertex, one-loop graphs with one or 

more higher-order vertices and all graphs with more than one loop. 
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- This representation of IV has the distinct advantage that the objects to be 

i = - regularized, namely the propagator and the logarithm of its inverse along with the 

. S function from the target-space metric, appear in an explicitly covariant form. 

The modified operator regularization scheme guarantees that both the finite and 

divergent parts of graphs built from covariant vertices and covariant propagators 

wx, YIUO, a> are chirally invariant. Moreover, Ref. 3 shows how to regularize the 

S function in a covariant way that is based on, and compatible with, the regular- 

ization of In D and~D-‘; the regularized expression turns out to be proportional to 

the divergent part of Sp In D, but to stay finite in the limit & + 0. OR introduces 

Uo and Q dependence not present in the unregularized determinant. 

- 
Note that all actions in (2.20) except S2, SZ,~, Swz and SWZ,+ contain infinite 

as well as finite pieces as E t 0. The divergent parts of S2k,+ cancel subgraph 

divergences while those in S2k eliminate primitive divergences. The Bogoliubov- 

Parasiuk-Hepp-Zimmermann subtraction program can thus be implemented in a 

manifestly invariant way. 

The chiral transformation properties of the regulated IV may now be deter- 

mined from Eq. (2.20). IV2 = &[Uo,@] is a chiral invariant; IV4 contains the 

anomaly due to Swz[Uo, V, A]. All contributions to w6 containing WZ vertices are 

chiral invariants because the SWZ,~, n > 1, are invariant; so are the terms from _ 

the target-space metric. Accordingly, the counterterms of order p6 and thus also 

$5 and all S6,n can be chosen to be invariant. This reasoning can be repeated for 

any successive order in the momentum expansion. 

The conclusion is that the anomaly of the generating functional of connected 

Green functions is given by the variation of the Wess-Zumino term alone: 

SpW[Q] = J d4xTr [P(x)fi (V(x),A(x))] . (2.21) 

As in the two-dimensional nonlinear ~7 model with WZ term, the coupling constant 

of the WZ term is not renormalized. In contrast to the two-dimensional case, 

the theory is not renormalizable in four dimensions, but only chirally invariant 
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terms would have appeared in the general higher-order chiral actions S2]c even if 

there were no anomaly. 

Three remarks concerning the foregoing argumentation are in order: (i) The 

proof applies to both the Abelian and non-Abelian anomalies. (ii) Using an appro- 

priate expansion of U about Uo is crucial: The [ defined by (1.6) have reasonably 

simple transformation properties and admit covariant derivatives [21’21 to all orders. 

This property lets one immediately conclude that each term in the expansion of 

a .chirally invariant action is again a chiral invariant. (iii) The precise relation 

between the actions &]i[Uo, @,I and Szk,,[Uo, 0, t] is not clear at this point. Evalu- 

ation of the divergent pieces in &J(UO, S) h s owed that they equal the expression 

obtained by expanding &(U) t o rs order in [, but no general proof for such a fi t 

relation could be giver? 
- 

3. One-Loop Counterterms Induced by the Wess-Zumino Action 

This section verifies the general statements of the previous section at the level 

of all O(p6) one-loop divergences in the Wess-Zumino sector and also gives the 

corresponding general chiral Lagrangean to that order. 

3.1. EXPANSION OF THE WESS-ZUMINO ACTION 

According to the power counting of ChPTt”” each propagator is O(ps2), ver- 

tices from &k count as O(P~~) and each loop adds O(p4). Three categories of 

graphs thus contribute to the Wess-Zumino sector of w6: (i) One-loop graphs with 

a WZ vertex in the loop; (ii) one-loop graphs with a WZ vertex outside the loop, 

and (iii) tree graphs with either a sixth-order counterterm, or with a WZ vertex and 

a fourth-order non-anomalous vertex, or with two WZ vertices. If Ul(x) solves the 

equations of motion derived from S’s4 = S;! + S4 + Swz, all graphs in category (iii) 

are contained either in S54[Ul], truncated at O(p6), or in Sf5[Uo], where Uo solves 

S2. The graphs in categories (i) and (“) n may be extracted from i Sp (In Dreg.). 

One obtains the differential operator D by expanding S<4 to second order in the - 
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fluctuation field [(x) (see below). H ere again, the resulting expression is to be eval- 

: - uated at..Ur- and truncated at O(p6). A d s iscussed also in Ref. 3, Ul contains terms ,_ 

. to all orders in p because it solves an equation that is not homogeneous in p. The 

graphs in category (ii) amount to mass and decay-constant renormalization of the 

meson fields and can be obtained from the calculation in Ref. 2 by substituting Ul 

for Uo. Hence it suffices to calculate the divergent pieces of the graphs in category 

(9. 

. Finding the second variation of the WZ action (2.3)-(2.7);s tedious because 

Swz is not a sum of invariant terms; non-invariant contributions from all pieces 

of the action must properly combine into a chiral invariant. However, one easily 

verifies that the second variation of As(U) is indeed a total derivative and may thus 

be written as a local polynomial of [, IP and A,. With the convention 5 = -i&t’, 

one obtains 

Lwz,:! = -; ( +:b(f-pt* - datuCb) + &b(“~” ) . (34 

$:b and s&, are matrix fields in the adjoint representation of the group Gv, defined 

in analogy to I’, and & (see Ref. 2): 

i),“b = CePupaTr [&,&]({A,,F&} - SA”A,A,) 

- (ha&h, - &,&&)(3& - f&Au)) , 
(3.2) 

_ . 

where C := 4Vc/(96r2f2). Note that th ese expressions are chirally covariant 

[compare (1.9), (1.10) and (1.13)]. It is also easy to check that each term is sepa- 

rately parity invariant if one keeps in mind that A and 3- are odd under parity 

while 3+ is even and that &“p” leads to an additional minus sign. 

4 

One may distinguish four different treatments of the flavour-singlet degree of 

freedom: (i) If it is disregarded altogether, the indices a, b in (3.2) and (3.3) take 
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the values 1, . . . ,8 and one sets Tr (R,) = 0 in (3.15). The construction of &,s 

i ,:.- in Sect...33 proceeds on these assumptions. (ii) If the external field O(X) is not 

. zero but 7’ is not treated as dynamical, or if loops of q’ are neglected, the formulae 

(3.2) and (3.3) 11 a ow one to extract the O- or q-dependent terms with ease (cp” 

is the singlet component in Uo): Use the fact that the singlet component of A, is 

given by iv,@ and $V,@, respectively, to obtain 

(3.4) 

g(o) _ iC 
ab 

--- 
6 &‘YpuV,0tr([X,,A,][x,,3~~] + [~a&;][~b,&]) . (3.5) 

If the equations of motion are solved for S2 + S4 + Swz in the presence of O(x), 

no linear terms in 5 will appear and the calculation described in the following 

subsection goes through unchanged. The result (3.15) is also valid for this situation 

(use Tr (R,) = iv,@ or iv@“). (iii) If 7 ’ is treated like the octet Goldstone bosons 

- going beyond the present framework - (3.2) and (3.3) imply that $‘[o = &J = 0. 

To O(p6), singlet fluctuations contribute through n - 7’ mixing in L:! t21 combined 

- 

:. 

with certain terms in the WZ vertex (3.1): 

&O = -: - f . Ppu Tr (X, [3;, , 3& - 2A,Ag]) . (3.7) 

The factor l/3 is due to the normalization of the singlet field. 
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3.2. THE DIVERGENT TERMS OF & 

i : - 
The -evaluation of the divergent terms in Sp (In D) in operator regularization 

. 
is straightforward. One may, however, take a little short-cut here by noting that 

D has the same structure as the corresponding operator Oc2) = d,d” + 6 which is 

derived from 5’2 alone and whose determinant has been calculated previouslyt2’: 

D = d,dp + S + Dt4) + (dpijp + 2i&d’l + Z?) 

= d;d’” + &’ + Dc4) + O(p6) , 
(3.8) 

where DC41 is derived from L4 and is not relevant for the present purposes. d: is 
A 

again a covariant derivative because V, is covariant under chiral transformations 
- 

and &’ is a chirally covariant scalar: 

(3.9) 

c2, which is contained in the operator dhd”, is of O(p6) and does not belong 

to D. However, its effects in the determinant appear only at O(p8) and can be 

discarded later. It has been verified that OR and DR give the same expression for 

the divergent part of i Sp (In 0)) namely* 

1. 

(3.10) 

I?LV is the field strength associated with the covariant derivative d’: 

Evaluation of the traces proceeds in the usual manner and is tedious. The 

-k The symbol Tr denotes the flavour trace in the fundamental representation while Tr refers to 
the adjoint representation. Sp in addition implies the trace over the continuous space-time 
label. 
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relation 

i : - F-TV - 2 ALPA,] = 2 l$ (3.12) 
. 

is useful in conjunction with partial integration; besides R, = U+V,U, the follow- 

ing abbreviations serve to make the result more legible: 

:= FR f U+FL U w Irv ’ (3.13) 

:= VxF; f U+VAF,L,U. (3.14) 

The final expession for the terms of order p6 is: 

T6= 1.1. -iN, 
e 167r2 96r2 f2 J 

d4 x EPVPU x 

x{ -qTr((H +r,rp + $ [R’, FrJ + 3 [R/i, V’-Rr] - $ [R’, V&j]) 

* U-L, F& - R&j)) 

+ % Tr ( (R2 - UtX - XtU)[Fiv, F$ - 2R,R,]) 

-I- & Tr ((utX + X+U)[F;, , F& - R,R,]) 

- +Tr ((R2 - U+X - XbJ)R,) Tr (RvFp;) 

+ $ Tr (&R,) Tr (Rr{& , Fmpo}) 

+ 5 Tr (H%,‘,) Tr (&(F& - &AL)) 

+ 5 Tr (F$) Tr (Rp(H+r,‘, + $ [R’, J”ri] 

- a [R’p V{,R,)] - 3 [VrRr 7 &I) ) 

- # Tr (Rp) Tr ((H+r,‘V + a [R’, Fri] - $ [R’y V{r&)I 

- 3 [Vr& 3 &I) (J’s - 2RpRu)) 

- $Tr (R,) Tr ({Rv, Fpi}(R2 - UtX - XtU)) 

(3.15) 

- iTr (Rr) Tr (Rr[F;,, Fp+b - 2R,R,]) . . 

One may verify that the expression (3.15) g a rees with the one obtained by Bij- 

nens, Bramon and Cornet WI if the differences in the normalization conventions are 

accounted for. 
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Several properties of the counterterm Lagrangean listed above should be noted: 

i s - First, it -is manifestly a parity and chiral invariant.. One may also check that it 

. is Hermitean and symmetric under time reversal (see the following subsection). 

Second, all of its terms contain the e tensor and thus never emerge from loops 

without WZ vertices. They are, however, perfectly legitimate terms that should be 

included in & even if there were no anomaly. Third, many of these counterterms 

exist only if there are flavour-singlet external fields V$i or if U contains a singlet 

component, i.e., if either the QCD vacuum angle 0 is non-zero or 7’ is a dynamical 

field. Finally, by far not all admissible O(p6) t erms are required for cancelling 

divergences; this will be clearly seen in the following susbsection. 

3.3. CONSTRUCTION OF ,& 

For phenomenological applications it is important to know which kind of higher- 

order tree graphs can contribute to a specific process. As noted above, the one-loop 

divergences connected with the WZ action do not represent the most general La- 

grangean of U and the external fields which is chirally symmetric and invariant 

under space inversion, time reversal and charge conjugation. Below, the portion 

of J$, is listed which contains the Levi-Civita tensor (only such terms may pro- 

vide corrections to the anomalous processes at this order). Included are only the 

terms that do not vanish when the flavour-singlet vector and axial-vector fields are 

switched off and the vacuum angle is set to zero. 

The parity transformation properties of the various elementary and composite 

fields are easily obtained. Under time reversal, xp + x’p = -xP and aP + d’p = 

-P, c-numbers are complex conjugated and the external fields transform like the 

corresponding quark currents: 

S(x) + SW, P(x) + -P(x’), VP(x) -+ -Vp(x’), AC”(x) + -Ap(x’) 

(3.16) 

(recall that S and P are Hermitean while V and A are anti-Hermitean). It follows 
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that F* is I-even. The exponential meson field is even under 7 while R, is odd: 

(3.17) 

R, = U+(x)V,U(x) ---) U+(x’)(-V’P)U(x’) = -RC”(x’) . (3.18) 

If a Hermitean expression is separately invariant under P and 7, CP7 invariance 

automatically guarantees charge conjugation invariance. 

Let the terms in the Lagrangean be grouped according to the number of field- 

strength tensors: 

L t;:’ = @ + J$J + @ + @ ) ) , , - (3.19) 

The term without field strengths is given by 

L(O) = i &‘“pa Tr 
6,~ f2 ( 

]ci”) (u+X - X+U)R R R R P v P rY 
+ kr)VrRrR R R R P v P fY 

+ kr) V{rRp} [R’, &Rp&] 

+ k?’ V{rRp) R,[R’, R,]&) - 

To lowest order in the meson and external fields, these terms contribute to five- 

meson scattering. Comparing them with the counterterms found earlier, one sees 

that only k$o) and k(O) 3 are needed to absorb divergences. 

The terms with one field-strength tensor are much more numerous: 

Lrj = $ ,F’pa { kj’)Tr (F&{RPRb , UtX - X+U}) 9 

+ k$‘)Tr (F&,RpRc) Tr (UtX - XtU) 

+ k$‘)Tr (F&R,(U+X - XtU)R, 

+ kp)Tr (FpL [R,R,, UtX + X+U]) 

+ k$‘)Tr (FivRp) Tr (R,(U+X + XtU)) 
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+ @)'Tr (FFv [Rp& , RrRr]) 

+ k$‘)Tr ( Fip (Rp Rr R,&’ - Rr RpR’Rcr )) 

+ $)Tr (FFv {Rp , Rr}) Tr (RrRr) 

+ kh’)Tr (FFvRp) Tr (RgRrR’) 

+ $,‘Tr (FL {Rp& , Vr&}) 

+ ki:‘Tr (F$,RpV’RrR,) 

+ k~f”I’r (J’ri [Rr, &Rp&]) (3.21) 

+ k$)Tr (Fr; (R,R’R,R, - R,R,R’R,)) 

+ k$:)Tr (F,$ (RpV{r&}R’ - RrV{r&}Rp)) 

+ k~:)Tr (FL (V{rRp}R,R’ - R’RcV{rRp})) - 
+ k$)Tr (F& (V{rRp) RrR” - R”RrV{rRp})) 

+ k$)Tr (F+pr{VIrRv}, Rph}) 

+ k[i’Tr (F+~~R~v~,R,)R,) 
1. 

The constants subjected to renormalization are k (I) k(l) k(l) k(l) k(l) k(l) k(l) 
4 7 5 7 6 7 8 9 9 7 10 ) 11 7 

k(l) k(l) k(l) k(l) and k$). [The first term in (3.15) can be expressed through 12 7 14 7 16 ) 1’7 

the terms proportional to k$,), k$‘, ki:), k$2) and kf).] 

“. 

- 

Even more terms with two field-strength tensors exist: 

L$fi = ~E’YP”{k~2)Tr (F$F,+,(U+X - Xk)) , 

+kF)Tr (F&F&) Tr (U+X-XtU) 

+kp)Tr (F,-,F,-,(U+X-Xk)) 

+ kr)Tr (FFVFp;) Tr (UtX -XkJ) 

+kF’Tr ([FFV, F$](U+X + XtU)) +kp’Tr([FPL, F&]RrR') 

+ kp)Tr ({F& F- .T)R,R,) + kr)Tr (F$RpF-/Rb) 

+kr)Tr (F&F,-,R'R, -Fp;F,+,R,Rr) 

+ k[i)Tr (FirF,+,RrR, - F&FirRyRr) 
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(3.22) 
i : - 

The one-loop graphs renormalize the couplings lcf), kr), lcp), Icf) , lcii), kii) and 

ki;’ . 

Finally, there is no renormalization of the single cubic term in F*: 

,Cfj = + .$‘“f”’ k$3) Tr (F${F$, Fegr}). 7 (3.23) 

All 45 constants appearing in (3.20)-(3.23) are real and dimensionless. Note 

that partial integration and the Bianchi identity E~~~@‘V~F~~~ = 0 as well as 

V[,VvlU = F$J - UF; were used to find the maximum set of independent 

terms. However, no use was made of the equations of motion. In a calculation 

to O(p6), the equations of motion derived from ,Cz may be imposed on U(X); for 

O(x) = 0 they areL2’ 

UtV2U - V2UtU + U’X - XtU - i Tr (UtX - XtU) = 0 . (3.24) 

It follows that k(O) kil) k(l) kt2) and kt2) 2 ) 8 ) 9 ) 15 r6 can be absorbed in some of the remaining 

40 couplings at the present level of phenomenological analysis. 
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4. Discussion 
i : - 

The--main purpose of Ref. 3 and of the prese& work was to show that the 
. 

external-field formulation of ChPT, as given by Gasser and Leutwyler, can be 

consistently extended to all orders in the momentum expansion. If operator regu- 

larization is used, chiral symmetry can be kept explicit at all levels. The formalism 

thus represents a convenient, systematic and theoretically well-founded method 

for exploiting the constraints that chiral symmetry imposes on low-energy hadron 

interactions. The nonrenormalizability of the model does not lead to particular 

theoretical problems within the perturbative expansion in powers of the external 

moment a. 

The chiral anomaly explicitly breaks chiral symmetry at the tree level within 

this approach. Quantum effects generally enhance the effect of symmetry breaking 

terms in the Lagrangean; an example is furnished by the meson mass terms in 

ChPT itself: At tree level, they lead to the Gell-Mann-Okubo mass formula, but 

one-loop graphs produce deviations from this simple pattern. This paper has shown 

how the anomalous chiral Ward identities avoid such a fate by virtue of the special 

properties of the Wess-Zumino term; ChPT and QCD have the same anomaly to 

all orders in perturbation theory. The result obtained in this paper may be viewed 
(261 as the analogue in ChPT of the Adler-Bardeen nonrenormalization theorem. 

It should be emphasized again that this nonrenormalization theorem does not 

forbid quantum corrections to anomalous processes like r” --f yy. They produce 

two kinds of effects: On one hand, the meson masses and decay constants etc. 

are renormalized as usual; on the other hand, the point couplings due to the WZ 

term develop form factors. The nonrenormalization theorem for the chiral anomaly 

asserts, however, that the corrections respect chiral symmetry. 

_ . As mentioned in the Introduction, the one-loop corrections to anomalous meson 

processes have recently been discussed in detail~‘5-171 in view of improved experi- 

ments at e+ - - e colliders. The main difficulty facing a phenomenological analysis 

is the lack of predictive power due to the host of uncalculable coupling constants, 
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as exemplified by Eqns. (3.20) to (3.23). Clearly, some additional dynamical input 

i ,:.- is needed. at-this point. Recently, Ecker, Gasser, Pith and de RafaelL2” showed that 

. vector meson dominance, implemented in a way that respects both chiral symme- 

try and the power counting of ChPT to order p4, accounts to a large extent for the 

values of the couplings in &. One may thus expect that analogous estimates [1‘51 of 

the parameters in &,~ are similarly accurate - a hope that may be put to a test 

only by significantly more precise and detailed measurements. 

- 

. On a more theoretical level, this approach leads to two related problems: 

(i) How can ChPT be extended to non-Goldstone bosons without incurring the 

problem of double counting? (ii) Do these additional fields directly participate in 

anomalous interactions? (The long-standing controversy over this point may be 

traced, e.g., fromRef. 28.) M oreover, the question that was answered for the pure 

pseudoscalar-meson theory in this paper then arises anew: Is the chiral anomaly 

still protected from renormalization? 
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