
SLAC-PUB-4937 Rev. 
August 1991 

(A) 

Tolerances to Limit the Vertical Emittance in 

Future Storage Rings* 

T. 0. RAUBENHEIMER 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94309 

Submitted to Particle Accelerator 

j; Work supported by Department of Energy contract DE-AC03-76SF00515. 



Table of Contents 

1. INTRODUCTION .......................... 3 

2. PRELIMINARIES .......................... 6 

2.1 Opening Angle . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.2 Equations of Motion . . . . . . . . . . . 7 

2.3 Perturbative Approximation . . . . . . . . . . . . . . . . . . . 9 

2.4 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

3. CLOSED ORBIT .......................... 11 

4. VERTICAL DISPERSION ...................... 14 

4.1 Vertical Dispersion . . . . . . . . . . . . . . . 15 

4.2 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . 17 .* 

4.3 Orbit Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 18 - 

4.4 BeamSize. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 - 

4.5 Simulations .......................... 22 

5. BETATRON COUPLING. ...................... 25 

5.1 Vertical Beam Size . . . . . . . . . . . . . . . . . . . . . . . 26 

5.2 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . 30 

5.3 Orbit Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

5.5 Non-Linear Coupling Effects ................... 35 

6. CORRECTION ........................... 36 

6.1 Vertical Dispersion . . . . . . . . . . . . . . . . . . . . . . . 36 

6.1.1 Global Correction - Emittance Correction . . . . . . . . . . 37 

6.1.2 Local Correction . . . . . . . . . . . . . . . . . . . . . 39 

6.1.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . 40 



6.2 Betatron Coupling . . . . . . . . . . . . . . . . . . . . . . . 40 

6.2.1 Global Correction - Emittance Correction . . -. . . . . . . . 41 

6.2.2 Local Correction . . . . . . . . . . . . . . . . . . . . . 41 

6.2.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . 43 

6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

7. DISTRIBUTIONS AND TOLERANCES . . . . . . . . . . . . . . . . 45 

7.1 Emittance clue to Vertical Dispersion . . . . . . . . . . . . . . . 46 

7.2 Emittance clue to Betatron Coupling ............... 49 

7.3 Local Beam Size ........................ 52 

7.4 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

8. SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 

9. APPENDIX A .......................... .56 w 

10. APPENDIXB .......................... .61 - 

11. TABLES ............................. .68 . 

12. FIGURE CAPTIONS ........................ 70’ 



ABSTRACT 

Future synchrotron light sources and future damping rings for linear colliders will 

need to have very small vertical equilibrium emittances. In the limit of low beam cur- 

rent, the vertical emittance is primarily determined by the vertical dispersion and the 

betatron coupling. In this paper, the contributions to these effects from random mis- 

alignments and from a corrected closed orbit are calculated. In particular, contributions 

to the vertical emittance are-carefully separated from contributions that only increase 

the vertical beam size; both of these effects are-important in synchrotron light sources, 

but only the first contribution is important in a damping ring. Finally, the effectiveness 
- _ 

of realistic correction techniques are calculated and their tolerances are derived to limit 

the vertical emittance with a 95% confidence level that are consistent these correction 

t.echniques. 
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1. INTRODUCTION 
- - 

Future synchrotron light sources and damping rings for future linear colliders require 

very small vertical emittances and beam sizes. A small vertical emittance is required 

in future damping rings to maximize the luminosity of the linear collider while keeping 

the e+/.e- beamstrahlung at a tolerable level. Small vertical beam sizes are needed in . 

future synchrotron light sources to maximize the brightness and the spatial coherence 

of the photon beams. 

In this paper, we discuss effects that contribute to both the vertical emittance and 

the vertical beam size in e+/e- storage rings; we differentiate between the two because 

it is possible to increase the beam size without increasing the emittance. Specifically, we 

consider contributions from the opening angle of the synchrotron radiation, the verti- 
e 

cal dispersion, and the betatron coupling; we will neglect the effect of synchro-betatron 

resonances and all current dependent phenomena which also constrain the ring perfor- - _ 

mance. The goal in performing this study is to illustrate how these effects contribute to 

the vertical emittance and beam size, and thereby determine the limitations that they 

impose on future designs. In particular, we will discuss alignment tolerances needed 

to limit the vertical emittance and beam size that are consistent with the inclusion of 

realistic correction techniques. 

Ideally, the low current equilibrium emittance and beam size in an e+/e- storage 

ring is determined by two competing processes: quantum excitation and damping, both 

of which result from the synchrotron radiation emitted by the particles in the ring. The 

quantum excitation is due to the discrete nature of the radiation whereas the damping 

is a result of the mere existence of the synchrotron radiation. 

The radiation of a photon changes the particle’s energy and gives a small transverse 

kick that depends upon the opening angle of the radiation. The transverse kicks due to 
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the opening angle directly change the amplitude of the particles betatron motion, and 
- - 

thereby the bunch’s emittance, while the change in energy due to- the radiation has a 

more subtle effect. The particle executes betatron oscillations about a closed orbit in 

the ring. Since this closed orbit depends upon the particle energy, the radiation of a 

.photon increases the rms amplitude of the betatron motion by displacing the closed orbit 
- 

relative to the particle’s position! In the horizontal plane, the increase in emittance due 

this second effect is typically much larger than the increase due to the opening angle 

of the radiation, but ideally, in the vertical plane there is no dispersion and thus the 

opening angle should determine the vertical emittance. 

In practice, this is not the case. First, vertical dipole errors and a non-zero vertical 

closed orbit in the quadrupole magnets will directly introduce vertical dispersion. Sec- 

ond, a non-zero vertical closed orbit through the sextupole magnets, vertical sextqole 

misalignments, or rotational misalignments of the quadrupoles couple the horizontal and 
- _ 

vertical planes. This coupling has two effects both of which increase the vertical emit- 

tance. It couples the horizontal dispersion to the vertical, increasing the vertical, and 

it couples the 2 and y betatron motion so that energy is transferred between the two 

planes. 

- 

In this paper, the effects of the coupling on the vertical emittance and beam size 

are analyzed perturbatively, assuming a large aspect ratio eZ/cy. In the next section, 

the relevant equations of motion are introduced. Then, in Section 3, we discuss the 

closed orbit and the closed orbit correlation function which will be needed to calculate 

the effects of a closed orbit. 

In Section 4, we calculate the vertical emittance and beam size due to the vertical 

dispersion caused by random errors and a corrected closed orbit. In previous work, the 

corrected closed orbit has been treated either as a series of uncorrelated offsets in the 
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magnets 2,3 435 or the same as an uncorrected closed orbit. Typically, the first procedure 
- - 

will overestimate the effect of the closed orbit and the second will underestimate the 

contribution. 

Next, in Section 5, we use analogy with the vertical dispersion to discuss the betatron 

coupling. As stated, in an e+/e- ring the betatron coupling causes both a local beam size 

increase and a fundamental dilution of the vertical phase space. The coupling has been 

treated both exactly6-’ 
9-11 and when close to the linear coupling difference resonance. 

Unfortunately, the first provides a formalism that is complex and does lend itself to a 

simple understanding of the problem and the second approach is not sufficient when 

far from the coupling resonances, i.e., weakly coupled. In particular, previous analysis 

of the betatron coupling suggests that the coupling can be corrected with a few (2-4) 

skew quadrupoles. This is not correct, one must correct the coupling’ at every bending 

magnet to fully correct the vertical emittance. 

In Section 6, we estimate the effectiveness of various techniques in reducing the 

vertical emittance and beam size, comparing the analytic results with the results of 

simulations. Then, in Section 7, we discuss the calculation of tolerances, consistent 

with the correction techniques, to limit the vertical emittance and the beam size in 

future storage ring designs. The results of both Sections 6 and 7 are important when 

- determining the tolerances to limit the vertical emittance with a specified degree of 

confidence. 

Finally, it should be noted that many of the results in Sections 4 and 5, in particular, 

the effect of random errors, have been derived repeatedly over the last thirty years; 

references to the earlier sources are provided. The primary contributions in these sections 

are: the effects of a corrected closed orbit are calculated more precisely, the distinction 

between the local beam size increase and the emittance is emphasized, and a simple 
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form for the emittance due to betatron coupling is found which is analogous to the 
- - 

emittance due to the vertical disp.ersion. This later result is important for determining 

the effectiveness of the coupling correction which is discussed in Section 6. In addition, 

the distinction between the beam size and the emittance was obviously realized by the 

-author of Ref. 3, but it seems to have been neglected in much of the literature. Since 
. 

this is relevant in damping rings, it is important to emphasize the difference. 

2. PRELIMINARIES 

In this paper, we are interested in calculating both the vertical beam size and the 

vertical emittance; the beam size is the relevant quantity in some situations while the 

emittance is in others. We need to differentiate between the two because the vertical 

beam size is the projection of the beam’s six-dimensional emittance.onto the ver%ical 

- plane. Thus, in addition to depending on the vertical emittance, the vertical beam size 

is also a function of the local coupling between the vertical plane and the horizontal and 

longitudinal planes. In the limit of weak coupling, this relation can be expresses as 

a;(s) 0; local (4 
PY (4 = %I+ &(s) ’ (2.1) 

where cy local includes the effects of the local coupling. Notice that the local coupling 
- 

contribution to a;/&, is a function of the azimuthal position in the ring s, while the 

contribution from the emittance is (approximately) invariant. This occurs because the 

emittance represents a fundamental dilution of the vertical phase space while 01~~~1 is 

due to a coupling that can change from point-to-point. 

At this point, we can further subdivide the contributions to the vertical beam size. 

As mentioned in the introduction, we consider three effects that contribute to the low 

current beam size: (1) th e momentum dependance of the vertical closed orbit, i.e., the 
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vertical dispersion, (2) the coupling of the betatron motion, and (3) the opening angle of 
- - 

the radiation. Since these three contributions are statistically independent, the vertical 

beam size can be written as the sum of the contributions, 

. 

0; (4 2 

- Ix a; coupling + adispersion + Eopening ang 
. * 

P,(s) PY PY 

Here, the first two contributions have both a local coupling contribution and an emit- 

tance contribution while the opening angle only contributes to the vertical emittance. 

2.1 OPENING ANGLE 

The last term in Eq. (2.2), the term due to the opening angle of the radiation, is 

small; a derivation is presented in Appendix A. It directly adds a contribution to-the 

vertical emittance of 

E 
Y 

= SC .$P,(41G301~s 
55 q $G2(s)ds * (2.3) 

Here, C, = 3.84 x 10-13m, ,k$, is the vertical beta function, and G(s) is the inverse 

of the local bending radius. For comparison, in the damping rings currently being 

designedf2 the desired vertical emittances are the order of 0.1 A-rad and the opening 

- angle contribution tends to be over an order of magnitude smaller. Obviously, as the 

desired ring emittances continue to decrease, the opening angle contribution will become 

significant, ultimately limiting the achievable low current emittance. 

2.2 EQUATIONS OF MOTION 

To calculate the other two contributions to the beam size, we will begin with equa- 

tions for the vertical dispersion and the betatron motion. Neglecting the effects of syn- 
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chrotron radiation, the transverse equations of motion for a particle in a storage ring 
- - 

can be written 
13 

'2 (K1 + G2)x + k,y + $(x2 - y2) 1 = AG + (1 - A)G,, (2.4) 
y” - (I - A) ICly - &r + K2zy I = (1 - A)G,, . 

Here, primes are used to denote derivatives with respect to s, the azimuthal coordinate. 

In addition, A = (p - po)/p where ~0 is the reference momentum, G is the main bending 

field, G = l/p(s) where p is the bending radius of an on-momentum particle, and G,, 

and G,, are the inverse bending radii of the dipole correctors. Finally, K1, RI, and li’z 

are the normalized quadrupole, skew quadrupole, and sextupole fields. respectively:- 

e dB, 
ICI = -- 

e dB, j&1-- 1-2 = 
e d2By 

pot dx ’ pot ax ’ 
-- . 
pot dx2 (2.5) 

Note that with these definitions, K1 is positive in horizontally focusing quadrupoles and 

positive G,,( Gyc) increases I’. 

- Now, the motion can be separated into three portions: a periodic closed orbit, it’s 

first order energy dependance, i.e., the dispersion function, and the betatron motion. 

Thus, x = x, + xP + SQ, where S is the energy deviation from the design energy. Using 

this expansion in Eq. (2.4), we find equations for the closed orbit 

x; + (Kl + G”)z, + i&y, + 9(x; - Y:) = Gm 

y; - K,y, + &xc - K2x,y, = G,, . 
P-6) 
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- - 
Next, linear equations for the dispersion function and the betatron motion can be 

found by expanding about the closed orbit: 

7; + (16 + G”)q, + hvy + Ib(x,qz - ycqy) = 

‘2 
G - G,, + (I(1 + G2)2, + kyc + +(x; - y,“) 

7; - my + h, - ~~2(wy + y&J = 

(2.7) 

-G,, - Ii-ly, + i&x, - I~2x,y, . 

and 

x; + (ICl + G2)xp + &yp + ~~a(~3 - ycvp> = 0 

y; -K1yp+I(1xp 4~2(59Yc+GYp) =o 7 
(2.8) 

These equations are complicated. Although, we could solve for the coupled motion and 
6-8 

beam sizes exactly, unfortunately, these exact solutions do not provide simple insight .- .w 

into the weakly coupled (flat beam) case. Thus, this paper will be limited to discussing - 

flat beams and we will proceed by approximating these equations of motion. 

2.3 PERTURBATIVE APPROXIMATION 

In the limit of flat beams, one can solve the equations for the dispersion function 

and the betatron motion perturbatively. In this case, the horizontal dispersion must be 

much larger than the vertical 7, >> qy and the horizontal emittance is much larger than 

the vertical xp >> yp. Furthermore, without a loss in generality, we can assume that 

the horizontal closed orbit is zero: the effect of a non-zero horizontal closed orbit can be 

included by considering small changes of the focusing function Ii’1 due to the sextupoles. 

Now, with these approximations, the equations for the dispersion and the betatron 

motion are 

x; + (Kl + G2)xp = 0 

y; - Ii'1yp = -i&x, + 1(2ycq3 
(2.9) 

, 
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and 
- _ 

r&’ - IGqy = -G,, - IGy, - &qx + Ic,yc771: 
(2.10) 

. 

These equations are no longer coupled, the vertical motion is simply driven by the 

-horizontal, and thus they are simple to solve. 

2.4 ERRORS 

As has been mentioned, excluding the opening angle contribution, the low current 

vertical beam size is determined by errors in an uncoupled storage ring. In this paper, we 

will consider the effect of random vertical misalignments of the quadrupoles, sextupoles, 

and the Beam Position Monitors (BPMs). I n addition, we will also consider the effect 

of random rotational errors of the quadrupoles and the bending dipoles. The effect of e 

these errors is summarized in Table 1 where ym and 0 are the vertical and rotational - 

misalignments. As one can see from Eqs. (2.9) and (2.10), vertical dipole errors, due to - - 

rotations of the bends, vertical misalignments of the quadrupoles, or a non-zero closed 

orbit in the quadrupoles, directly introduces vertical dispersion. In addition, these same 

dipole errors create a non-zero vertical closed orbit which couples the x and y planes 

in the sextupoles. Finally, quadrupole rotations and sextupole misalignments will also 

couple the two transverse planes. We will discuss these effects in detail in Sections 4 

and 5 after discussing the closed orbit in the next section. 
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3. CLOSED ORBIT 
- - 

In this section, we calculate the closed orbit and the closed orbit correlation function 

resulting from the misalignments. The correlation function will be needed to calculate 

the beam sizes resulting from the vertical dispersion and the betatron coupling. Although 

this paper is primarily concerned with the effects of corrected orbits, we will derive 

expressions for both corrected and uncorrected orbits for comparison. 

The vertical close orbit is described by Eq. (2.6). A ssuming that the skew quadrupole 

terms are small, i.e., the weak coupling limit, Eq. (2.6) is easily solved with the periodic 

Greens function for the ring: 

Gx,y(s, s’) = J p;~~ys’) c4~x,y(s) - $x,y(s’)l - 7rux,y) 
) (3.1) 

X9Y 
.- .m 

where, ,B is the beta function, v is the tune, and $J is the phase advance: 1c, = Jds/,B. 

Using this, we find a solution for the vertical closed orbit, 

Yc(4 = 2Ey ~ti;;;r;‘os($,(‘i - $y(z) + ~uy)G(z)dz (3.2) 
9 

where G(s) = G,, + GOB + Kl y,. 

Now, we can calculate the expected rms magnitude of the closed orbit given an 

ensemble of random dipole errors, with a Gaussian distributions. One finds the well 

known result 14 

(Y,2(4) = py(s) c (G2L2)& , 
8 sin2 7ruy kicks (3.3) 

where the beta function at each kick is a,pproximated by the average beta function within 

that magnet and the angle brackets are used to denote the expected value which is found 

by averaging over the gaussian distribution of errors. 
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- - 
Next, to calculate the vertical dispersion and the coupling introduced by the errors, 

we need the correlation function for the closed orbit, (y,(s’)yC(s)). Using Eq. (3.2), this 

can be expressed as a double integral 

(Yc(S’)Yc(S)) = m “+‘dz’ s+cdz&?j?(G(z’)G(z) cos’ cos > 4 sin2 mu 
s s 

7 (3.4) - 
s’ s 

where ,B’ = ,B(z’), cos = cos($+) - ?+!qz) + 7ru), and cos’ = cos($(s’) - $(z’) + TV). To 

evaluate (G(z’)G(z)) th e integrals must be over the same portion of the ring. Assume 

initially that s’ > s, then 

an additional factor of 27ru must be added to the phase $(.z’). We average over the high 

frequency terms and, in the case of an uncorrected closed orbit, we are left with 

(yc(s’)yc(s)) = m [cosA$~&~(G~L~) 
Y i=s 

(3.6) 

+ cos( /A$[ - 2rvy) - cos A$ 
>I 

&3yi(GjL;) , 
i=S II 

where A$ = $I~(s’) - Gy(s) and the absolute values signs were used to include the case 

s’ < s. Note that terms of order 1/47rvy have been dropped from Eq. (3.6); these will 

be small corrections in high tune, low emittance rings. 

We consider two cases: an uncorrected orbit and the orbit after substantial correc- 

tion. Since the correlation function is periodic in As, we can express it as a fourier 
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series. Furthermore, it must be an even function of As and thus the fourier series will 
- - 

only contain cosine terms: 

(~c(s’)yc(s)) = Jap [T + 5 c, cos y] 
Y n=l 

W) 

To calculate the coefficients c, for an uncorrected orbit, we make a smooth approxima- 

tion 

where A$ = $J( s’) - g(s). The coefficients are then 

n = (2 + z$(l -.cos 27rVy) * 
c 

7r2(n2 - u,“)” 

.w 

(3.9) - 
- _ 

Here, only the two harmonics cn on either side of the tune, n = LvyJ, [yyl, will be large, 

and thus, we can approximate the uncorrected orbit with just these two terms. 

When the closed orbit is corrected its Fourier spectrum tends towards that of white 

noise. There are two reasons for this: first, most orbit correction techniques tend to 

- reduce the dominant harmonics on either side of the tune while increasing the other 

modes. The second, and more fundamental, reason is that the Beam Position Monitors 

(BPMs) are misaligned relative to the ring centerline. Thus, even with perfect orbit 

correction, where the measured orbit is zeroed at all of the position monitors, the actual 

‘: closed orbit will have a white noise spectrum. 

We can approximate this by assuming that the correctors “randomize” the orbit and 

thus points on either side of a corrector are uncorrelated. Furthermore, in the limit of a 
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very corrected orbit, i.e. one with many correctors, we can approximate the correlation 
- - 

function between correctors with just the first term of Eq. (3.6). Thus, 

cos A$, No correctors 

(~c(s’~s~co, = JEGii-Ziy between s and s’ 
Y 

0, Otherwise 

(3.10) 

Here, the term (yz)/p, is not equal to Eq. (3.3), t i is the square of the residual orbit 

after correction. In particular, for an orbit that is fully corrected, one can approximate 

(yz) with the estimated vertical misalignments of the BPMs (yk). 

4. VERTICAL DISPERSION 

The vertical dispersion increases the beam size in two ways: first, the vertical disper- 
.w 

sion results from a coupling between the longitudinal energy deviation and the vertical _ 

position. Since the beam contains a finite energy spread, the vertical dispersion directly . _ 

contributes to the vertical beam size. This will be referred to as the “local” contribution 

since the beam size increase only depends upon the local value of the vertical dispersion; 

the energy spread in the beam does not vary significantly around the ring. 

The second effect of the vertical dispersion is more subtle. Particles traverse the ring 

performing betatron oscillations about a closed orbit which is energy dependant; this 

energy dependance is the vertical dispersion. When a synchrotron photon is emitted, the 

particle’s longitudinal energy changes, causing it’s closed orbit to change. This changes 

the amplitude and phase of the betatron oscillation; the particle oscillates about the 

new closed orbit. Since the photons are uncorrelated, the radiation causes an increase 

in the rms amplitude of the betatron oscillation! This effect will be referred to as the 

“global” contribution of the vertical dispersion since the effect depends upon the value 

of the dispersion in all of the bending magnets. 
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- - 

. 

Although, both the local and the global contributions from the vertical dispersion 

increase the vertical beam size, there is a fundamental difference between the two. The 

local effect is simply due to a coupling between the longitudinal and vertical planes; it 

does not actually change the beam’s six-dimensional emittance. In contrast, the global 

effect of the dispersion does cause an increase in the beam emittance. In a synchrotron 

light source, the distinction between the local and global effects is irrelevant; one is only 

interested in projected beam size. But, in a damping ring, the distinction is important 

since there one is interested in the extracted beam emittance; in theory, any residual 

coupling can be removed. 

To calculate these two effects, we will first derive expressions for the dispersion 

arising from random errors and a non-zero closed orbit. Then, we will calculate the 

contributions to the vertical beam size and theemittance. Finally, the calculationsWwill 

be compared with the results of simulations. 

4.1 VERTICAL DISPERSION 

To find the vertical beam size contribution due to dispersion, we need to first solve 

for the vertical dispersion and it’s derivative. In the limit of flat beams, the vertical 
- 

dispersion is given by: 

7; + (I6 + G”)q, = G 
(2.10) 

7; - IClqy = -G,, - hYc - K% + I~2ycqx . 

These equations are solved in the same manner as the equation for the closed orbit, 

namely, by using the periodic Greens function for the focusing field of the ring, Eq. (3.1). 
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The solutions are 14 

- - 

rlxc4 = 2 sin *u m ~c&&b’@‘x(s) - $x(z) + ~u,)G(z)& 
X 

(4.1) 

where G(s) is the main bending function and F(s) = (11’217x - Kr)y, - grqx - G,,. 

Now, the derivative of qy with respect to s can be found directly from Eq. (4.1). 

Unfortunately, this is complicated by the beta function which is also a function of s. 

Instead, the function vi, which is a function of r/Y and its derivative, is introduced:3 

- - This function is convenient since it both simplifies the expression for the vertical emit- 

tance and has a solution that can be expressed in a form similar to (4.1): 

V;(S) = -2zy TJzsin(tiy(s) -+y(z) +rv,)F(z)dz. (4.3) 

S 

_ Because the two equations have similar forms, the calculation of qi2 will parallel that of 

7;. In particular, we will see that for random errors the expected values of 7; and ,i2 

are equal. 
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4.2 RANDOM ERRORS 
- - 

To estimate the beam size contribution, we need to calculate the expected values 

of 11;/PY and 7/i2/py for the various error distributions. The square of the vertical 

dispersion, Eq. (4.1)) is a double integral 

- 
@I;) _ 1 

s+C 

Py- 4 sin2 7rvy JS 
dzdz’m( cos cos’ F2(z, 2’)) 

s 
(4.4) 

where ,B’, cos, and cos’ are defined as they were in Eq. (3.4). In addition, since the 

errors considered, quadrupole rotations, sextupole misalignments, and dipole errors, are 

all assumed to be statistically independent, the function F2(z, z’) contains five terms 

(F2(z, 2)) F 41r’177xIi-;7j~(oo’) + Ic-2$J--;r/x’(ymy~) 

+ (GyG;) - ?~‘(G,Y::) + ff’(yc~:> ) 
(4.5) 

. .w 

where the primes are used to denote functions of z’ instead of Z. In addition, f(z) is 
- _ 

proportional to the local chromaticity, f(z) = IC2q1: -1r’l. The chromaticity is given by14 

It is important to notice that the vertical dispersion due to a closed orbit can be reduced 

by using local chromatic correction which reduces f(z); this will be discussed further in 

- the next section. 

Since the errors are uncorrelated, the first three terms of Eq. (4.4) are calculated in 

the same manner as (yz)//3,, Eq. (3.3)) yielding the results14 

(vi)quad rotation 

,&J = 8 sin’ 7rvy qvad 
c (ICI L)“40”py77; 

(vi )sext misalign 

& = 8 sin’ 7ruy sext ~(lia~)2Yi&l~ , 

(4.7) 
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($)dipole kicks (YC2) 

PY =z * 
(4.8) 

All of the above equations are applicable for both corrected or uncorrected orbits. The 

first two do not depend upon the closed orbit and the term (Y:)//?~ in the third equation 

. is equal to Eq. (3.3) f or an uncorrected orbit or the square of the residual for a corrected 

. 
orbit. Notice that this third term is not a result of a non-zero closed orbit; it results 

from the errors that create the non-zero closed orbit. 

Finally, note that we have calculated the expected value of ($)/p,, but to calculate 

the emittance we will also need to calculate (qG”)/,B,. As mentioned, this is quantity 

calculated in an analogous manner; it differs from (r$/py in that cos and cos’ become 

sin and sin’, but with the same approximations, the results are identical. 

.- .w 
4.3 ORBIT ERRORS 

The fourth and fifth terms of Eq. (4.4) are functions of the closed orbit. We will - - 

treat each of these terms in turn. First, we express the fourth term as an integral of the 

closed orbit correlation function: 

s+c 

-2 / f’&i-%s (yc(s)yc(z’))dz’ , 
2msin7rv s 

(4.9) 

where the subscript 4 is used to denote that this is the fourth term of Eq. (4.5). 

Next, using the fourier expansion for the closed orbit function, Eq. (3.7)) we calculate 

this integral. In addition, since we are not interested in the explicit dependence on 

position, we can average over s. This yields 

( > 
blJ UC cn 

PY 4 = 2ty PY n,f vyfn ’ 
(4.10) 
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where tY is the chromaticity defined in Eq. (4.6) and the f is used to represent a sum 
- - 

over both ~/(v~+Iz) and l/(z+, -n). N ow, if we only keep the most significant coefficients 

cn for an uncorrected orbit, this becomes 

(4.11) 

where AvY is the fractional part of the tune and sine z = sin X/X. 

We can calculate this term for a corrected orbit in a similar manner. This yields 

Here, N,,, is equal to the number of correctors which we have assumed are uniformly 

distributed. Notice that, although the corrected result is smaller by l/N,,,,, the forms 

of the corrected and uncorrected results are similar. In particular, note that both results e 

depend linearly upon the chromaticity ty which is usually adjusted to be small and thus - 

both Eqs. (4.11) and (4.12) will tend to be small. - _ 

Now, we turn to the last term in Eq. (4.4). Th is contains the closed orbit correlation 

function, Eq. (3.6). T o solve for the effect of an uncorrected orbit, we again use the 

fourier expansion for the correlation function. This yields 

s-kc 
1 &J 

4 sin2 7rVy Py 
dzdz’f f ‘/?y& cos COS' C Cn COS @$ ) (4.13) 

S n 

where A+ = G(z) - +(.z’). Th is expression is evaluated in the same manner as the 

previous case; we first calculate the integrals and then average over s. We find 

c 
(4.14) 

+ 
&j-P +(l+d'Y) 

Ye 

0 
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We can approximate this by assuming that the fractional tune Avy is small and thus we 
- - 

keep only the most significant coefficient c,. This yields 

1 (Y3 -sine 4,1rAvy 
16 sin2 rvy & 

(47r&J2 + (~TA)~ > (4.15) 

where A is 

(4.16) 

and is sometimes referred to as the width of the off-energy stop band. This result is 

similar to the result found in Ref. 5. The primary difference is in the appearance of the 

coefficients although they actually have the same value over much of the range. 

Finally, we solve for the effect of a corrected orbit in a similar manner, finding 
e 

where nc denotes the position of one corrector and nc + 1 denotes the position of the next 

corrector. This result differs significantly from the uncorrected case. The uncorrected 

case depends on the avera.ge values of fPy and f,Dye i2*. In general, these will be small; 

the former, the chromaticity, is usually small by design while the later tends to be small 

because of the oscillating term e i2@ In contrast, the corrected case depends on what is . 

referred to as the local chromaticity and the local A. Both of these will typically be much 

larger than the average values. The local chromaticity is usually positive in regions of 

dispersion to compensate the negative values in the dispersion free regions. While the 

average may be zero, the local values are not. In addition, the local value of A will tend 

to be much larger than the avera.ge since the oscillating term does not vary significantly 

over a short region. 
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Of course, despite the larger values of &-al and Alocal, the dispersion of the corrected 

orbit will usually be smaller than that of an uncorrected orbit; orbit correction reduces 

the residual orbit (yz)/p. F ur th ermore, if the closed orbit is comparable in magnitude 

to the misalignments yc x ym, the contribution to the vertical dispersion from the closed 

.orbit will usually be much less than that from the misalignments. This occurs because 
- 

the orbit, even after correction, is still correlated for short segments and some of the 

quadrupole and sextupole deflections cancel. 

4.4 BEAM SIZE 

At this point, we can solve for the beam size increase due to the vertical dispersion. 

As mentioned, the vertical dispersion has two effects: (1) it directly increases the beam 

size by coupling a particle’s energy deviation to it’s vertical position, and (2) it causes 
w 

the vertical emittance to increase. The first effect is simple; it causes a local contribution _ 

to the expected beam size of 

(4.18) 

where CT, is the rms energy deviation in the beam. 

To calculate the second effect, the emittance increase, we use the Courant-Snyder 

_ invariant 7-&, which can be expressed 

(4.19) 

where we have used the function 7; introduced in Eq. (4.2). The contribution to the 

emittance from the vertical dispersion is1 

’ 
co2 s IG13Ws 

Y = T $G2ds 
(4.20) 
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where C, = 55fi/(32&mc) = 3.54 x lo-r3 meter and Jy is the vertical damping parti- 
- - 

tion. For a ring in the horizontal‘ plane Jy = 1; the change in Jy -clue to errors in the 

weak coupling limit is negligible. 

Since the expected values of (qi)/,B, and (qi2)//?, are equal and are independent of 

*s, the expected value of the emittance can be written 

Q” h;) j- IG13ds = 2 J b& (ey) = 2-- 
Jy ,by S G2ds ’ py ’ ’ 

(4.21) 

where, the relative energy spread’ has been used to simplify the expression and J, is 

the longitudinal damping partition. Since J, is typically between 1 and 2, one can see 

that the emittance increase has a larger contribution to the beam size than the coupling 

- increase of Eq. (4.18). 
1, 

At this point, we will again emphasize the distinction between these two effects. As - 

mentioned, the first effect, Eq. (4.18), is due to a coupling between the energy deviation - - 

and the vertical position; it does not change the beam’s six-dimensional emittance. 

In contrast, the second effect, Eq. (4.20), causes a fundamental increase in the phase 

space volume occupied by the beam. In a synchrotron light source this distinction is 

irrelevant, but in a damping ring it is important because, unlike the first effect, the 

emittance increase cannot be corrected once the beam has been extracted from the ring. 

Of course, both effects can be corrected by correcting the vertical dispersion in the ring; 

this is the subject of Section 6. 

4.5 SIMULATIONS 

To verify these results, the computer program CEMIT8 has been used to simulate 

various errors in the Stanford Linear Collider (SLC) North Damping Ring (NDR). I5 

The NDR is designed to operate on the coupling difference resonance, but for these 
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simulations the tunes were shifted to V, = 8.375 and vy = 3.275; this lattice will be 
- - 

referred to as the NDRl. Finally;in this comparison, we will only-discuss the increase 

in the vertical emittance due to the vertical dispersion. 

The results of simulating rotational misalignments in the quadrupoles and vertical 

*misalignments in the sextupoles are listed in Table 2. The misalignments were generated - . 
from gaussian distributions with an rms of 0.5 mrad and 150pm, respectively. The 

calculated values are found using Eqs. (4.7) and (4.21), while the measured values are 

found by averaging the results from 1000 different random error distributions. Finally, 

the measured errors are the standard errors of the averaged values. In both cases, one 

can see that the approximate formula agree well with the simulations. 

In addition, Table 2 lists results from simulating the effects of a corrected closed orbit. 

Here, the results are the average of twenty simulations. The simulations included verGca1 

quadrupole misalignments with an rms of 150pm and vertical BPM misalignments, also, - _ 

with an rms of 150pm. The resulting orbit was corrected using the twenty vertical dipole. 

correctors in the NDR to minimize the rms of the measured orbit. Before correction, the 

rms magnitude of the actual orbit was roughly 1.5mm; the correction reduced this to 

140pm, roughly the accuracy of the BPM alignment. In this case, the calculated result 

was found from Eqs. (4.8), (4.12), (4.17), and (4.21), although the dominant contribution 

- comes from Eq. (4.17). Ag ain, the calculated estimate agrees well with the average of 

the simulations. Finally, notice that the contribution from the corrected orbit is less 

than the contribution due to similar misalignments in the sextupoles; as mentioned, this 

occurs since the orbit is still correlated over short segments. 

To further study the effect of a corrected closed orbit, the average ($)/& has 

been plotted versus the chromaticity of the ring. In Fig. 1, the closed orbit was not 

corrected while in Fig. 2 the orbit was corrected with twenty correctors. Again, the data 
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and errors were found from the results of twenty simulations. The lines are calculated 
- - 

using Eqs. (4.8), (4.11), and (4.15) and Eqs. (4.8), (4.12), and (4.17) for Figs. 1 and 2, 

respectively. 

As one can see, the character of the dispersion changes when the orbit is corrected. 

‘In the uncorrected case (Fig. 1) the dispersion has a sharp minimum close to Ey = 0, - 

while in the corrected case (Fig. 2), the minimum occurs near Ey = -4.5. We can 

understand this change in the following manner. The insertion regions in the NDR do 

not have local chromatic correction; they are compensated with sextupoles in the arcs. 

When the orbit is corrected, the minimum value of the dispersion occurs, not when the 

global chromaticity is corrected, but when the local values of t and A are the smallest. 

This occurs when the sextup-oles are used to locally compensate only the arcs and not 

both the insertion regions and the arcs. - e 

Thus, when the chromaticity is zero, correcting the orbit will tend to increase the 

vertical dispersion relative to the closed orbit since <local and Alocal grow. This is illus- 

trated in Fig. 3; here, the vertical emittance, normalized by the square of the closed orbit, 

has been plotted versus the number of correctors used to correct the orbit. Notice that, 

initially, the normalized vertical emittance increases rapidly as the orbit is corrected; it 

then peaks and slowly decreases. The initial increase occurs when, in Eq. (4.17), the 

- insertion regions are separated from the arcs. Further correction then just subdivides 

the arcs which has little effect. The line in Fig. 3 is calculated using the estimates for a 

corrected orbit. Finally, again notice that Fig. 3 is a plot of the vertical emittance nor- 

malized by the closed orbit; the actual vertical emittance tends to decrease as the orbit 

is corrected. 

Before concluding this section, it is useful to contrast the behavior seen in Fig. 3 with 

an example from the ALS r6 lattice. The ALS lattice differs from the NDR in that the 
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ALS has twelve dispersion-free insertion regions rather than just two. Fig. 4 is a plot of 
- - 

the vertical emittance due to quadrupole misalignments versus the number of correctors 

used to correct the orbit. Here, the emittance contribution continues to increase rapidly 

with the number of correctors. There are two reasons for this: first the fractional tune 

. in the ALS is lower than in the NDRl, vY = 8.18 as compared to vy = 3.275, and thus 
- . 

the ALS is more sensitive to errors. Second, as mentioned, the ALS has twelve insertion 

regions and the chromatic correction is performed in the arcs between these insertions. 

As the orbit is corrected, this non-local chromatic correction continues to be broken, 

causing the dispersion to increase relative to the closed orbit. 

5. BETATRON COUPLING 

In a conservative system, such as a proton storage ring, betatron coupling lea& to 

“beats” where energy is transferred between the two transverse planes. An e+/e- storage _ _ 

ring is not a conservative system; the synchrotron radiation provides both a source of 

noise and damping. Neglecting the vertical dispersion, only the horizontal plane is 

coupled to the noise source, while both planes are damped. Thus, in an uncoupled ring, 

only the horizontal emittance is driven. Unfortunately, in the presence of coupling, the 

eigenvectors of the betatron motion rotate from the z and y axes so that both eigenmodes 

couple to the noise in the horizontal plane. Thus, in the case of weak coupling, the 

vertical beam size is determined by both the projection of the “horizontal” emittance 

in the vertical plane and the contribution to the “vertical” emittance from the noise in 

the horizontal plane. 

Much like the beam size due to the vertical dispersion, we can separate this increase 

into two contributions, one clue to a coupling which increases the projection of the 

six-dimensional emittance into the vertical plane, and the other due to a fundamental 
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increase in the vertical emittance. As before, the former effect will be referred to as the 
- - 

“local” contribution since it depends upon the local value of the coupling. In principal, 

this local coupling can be corrected at one location in the ring with four independent 

skew quadrupoles; the four magnets can be used to uncouple the one-turn transport 

.matrix at a specified location. Unfortunately, this does not remove the second effect 
- . 

which arises from the “global” coupling; one would need skew quadrupoles next to every 

bending magnet to completely remove this contribution. 

In this section, we will calculate the beam size increase due to both the local and 

the global coupling. Paralleling the discussion of the vertical dispersion, we will then 

calculate the effects of random errors and a non-zero closed orbit. Finally, these analytic 

results will be compared with the results of simulations. 

5.1 VERTICAL BEAM SIZE w 

To calculate the rms vertical beam size due to the linear betatron coupling, we _ _ 

will start from the equations of motion for a single particle, calculate the rms betatron 

motion, and finally, average over the ensemble of particles to find the rms beam size. 

Alternately, one could use the Fokker-Planck equation: but in many ways the more 

intuitive approach is appealing since it allows one to explicitly see the cause of the 

various contributions. 
_ 

We will analyze the motion assuming that the coupling is weak and the vertical 

motion is much smaller than the horizontal. Thus, we can use the unperturbed horizontal 

motion to calculate the vertical. The equation for the vertical betatron motion was 

calculated, for the weak coupling limit, in Section 2: 

where the effects of the synchrotron radiation have been neglected. 
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We want to calculate the change in yp. Treating the magnets as delta-functions, 

the coupling adds a kick Ay’ = zp(K2y, - 3r)A.s to the vertical motion which is then 

exponentially damped by the radiation damping process. Thus, we can express the 

vertical motion as a sum over the kicks Ay’ 

s 

YP(4 = 
s 

dzg(Z)Z~(z)e(z-s)a,‘c * (5.1) 
--03 

Here, g is the coupling coefficient g(z) = (K2y, - kr), cuy is the vertical damping 

rate, and c is the speed of light. In addition, the function enclosed in the brackets is 

the standard Rl2 betatron matrix element which transforms a deflection Ay’ at z to a 

position Ay at s. 
.- w 

At this point we need an expression for the x betatron motion. The horizontal - 

betatron motion is driven by energy fluctuations due to the synchrotron radiation; these - - 

are coupled to the horizontal plane through the dispersion. When a photon of energy 

u is radiated, xp and xb change by Axp = ~u/Ea and Ax> = &u/Ea. For brevity, 

we will let r&, and thus Axb, equal zero in the next two equations, but this assumption 

will be removed thereafter. In this case, the horizontal betatron motion is just a sum of 

displacements Ax0 which are exponentially damped: 

xP(4 = + Q%(.&) sinA$X)] . (5.2) 
ix-m 

{photons} 

Here, [; is a stochastic variable equal to the relative energy (u/&) of a photon radiated 

at z;. In addition, A& = +2(s) i&(2;) and th e f unction in brackets is the RI1 betatron 

matrix element which transforms a change in position Ax at 2; to a Ax at s. 
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Now, we can use Eq. (5.2) to express Eq. (5.1) as a sum over photons I;, 

Y@(s) = f: ti77z(zi> ] dze(Z”-Z)“~/Cfill z(z;, Z)e(Z-S)“Y’Cg(Z)~12y(Z, S) + (5.3) 

k-03 
{photons} 21 

The vertical beam size is now found by averaging the equilibrium value of y$/P, over - . 
the ensemble of particles. The calculation simplifies since the radiation is a stochastic 

process, ([i(j) = ([“)Sij. I n addition, when performing the ensemble average, we can 

express the sum over photons as the integral of a rate of emission.’ Thus, 

2 (“‘f) * j ?JV(Ua(zi)) , 
i=-03 

{photons} 
-CO 

where n/ is the rate of emission. This yields a.-beam size of 

a; (4 -= 
s 

’ *N(U”(zi)) 

P,(s) --03 c *,2 

dzg(z)e(zi-t)~~/ce(z-S)ay/C 
JT=n y p ( )p ( ) * A+ 

Zi (5.5) 

where AG, = GZ ( Z) - $Z (z;) and A$, = G,(s) - $J~(z). Notice that we have included 

the both the contribution from 7, and 7;. 

To evaluate this, we separate the integral over z into a portion over an integral 

number of turns of the ring and a portion over the remaining segment. Thus, the result 

has the form: 

] dzi[jdz-.I’+ $,1 driE j dz...+ ‘7”dz...1’, (5.6) 

-CO ti j s-c z,-nC 

where 1. . is used to represent the integrand. 
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At this point, we assume that the tunes are far from the coupling resonances, Y, f 

vy = n, and damping per turn is small compared to the tunes, 27~(v, fvy) >> cr,To, cu,To. 

Now, we can perform the integral over z; and the sum over the turns. After some algebra, 

that is explicitly displayed in Appendix B, we find contributions to the vertical beam 

size and emittance from both the sum and difference resonances of 

. 
c IQ~s)/~ _ 2Re Q+b)QW 

f sin27rAv* sin ~Av+ sin 7rAu- 1 

Here, g = (Ir’zy, - z 1 and the sum over f denotes a sum over both the + term (sum ) _ _ 

resonance) and the - term (difference resonance) while Av+ = u,+vy and Av- = Y, -vy. 

In addition, the * is used to represent the complex conjugate and the operator “Re” 

yields the real portion of the expression. 

Equation (5.7) explicitly displays the physics described in the beginning of this 

section. The first expression represents the projection of the “horizontal” emittance 

into the vertical plane and the second expressions describes the contribution to the 

“vertical” emittance from the horizontal dispersion. This is analogous to the situation 

with the vertical dispersion where the local beam size is increased by the local value 

of the dispersion while the vertical emittance is increased by the average value of the 

dispersion. 

This analogy can be taken further by noticing that the real part of &*I/ sin 7rAv* 

is analogous to the vertical dispersion or the vertical closed orbit with a phase advance 
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of til: f $y instead of lcly. In addition, the imaginary portion of Q*(s)/ sinrAv* is 
- - 

analogous to q;(s), Eq. (4.2). Thus, \Q*(s)12/ sin2 rAu& is completely analogous to 

X(s), defined in Eq. (4.19). Th is analogy will be used in Section 6 when we discuss 

correction of the coupling. 

At this point, we should compare our result with the results of others. Equation (5.7) 

is similar to the result found in Ref. 9 where the expression was derived by solving the 

Fokker-Planck equation when close to the difference coupling resonance. The results 

differ in that (1) the effect of th e sum resonance and the cross terms between the sum and 

difference resonances have been included, (2) th e contribution to the vertical emittance 

involves the average of the coupling coefficient around the ring while the contribution 

to the local beam size just depends upon the local value of the coupling, and (3) the 

explicit form of the coupling coefficients differ slightly. In many references, including 

Refs. 2, 9, 10, and 17, the coupling coefficient is found by Fourier analyzing the coupling 

and only choosing the coefficient closest to the difference resonance. This is not valid in 

our case since we have assumed that the ring is far from both coupling resonances. 

5.2 RANDOM ERRORS 

Now we evaluate Eq. (5.7) for specific errors. The quadrupole rotational errors, 

sextupole misalignments, and the closed orbit are all independent. Thus, the square of 

the coupling function g is 

(g(z)g(z')) = 4&(2)1r'1(z')(00') + li'2(@-2(4((Y1ILYk) + (YCYL)) (5.9) 

where primes have been used to indicate functions of Z’ rather than Z. In the case of 

uncorrected coupling, we can quickly evaluate Eq. (5.7) to find the contribution from 
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random quadrupole rotations and random sextupole misalignments. Specifically, we find 

expressions similar to those quoted in Ref. 3: 

4 (cos 27rV, - cos 27rVY)2 
quad 

(5.10) 

(ay2hocal = 2 (1 - cm 27% cos 24 

PY 4 (cos 27rV, - cos 27W,)2 ~v--2q2Ya% 
sext 

Here, the sum of l/ sin2 ~(v, & vy) has been written in terms of COS~YW, and COS?~V~ 

and we have simplified the expression with the equilibrizlm horizontal emittance. - - 

Finally, notice that the cross terms have not been included in Eq. (5.7). These terms 

add contributions of 

- 
CX QX sin ~TVX Cqund 

EY=-- 
(w424@2PxPy + C,,x,(li’2L)2Y12nPxPy 

16 cuy 27ru, sin r Au+ sin 7r Av- 

Since these contributions are at least 1/27r~,,~ smaller than the contributions from the 

individual resonances, they will be neglected in all future calculations. 
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5.3 ORBIT ERRORS 

To calculate the effect of a closed orbit, we use Eq. (3.10) or Eqs. (3.7) and (3.9) for 

the correlation function of a corrected or uncorrected orbit. For an uncorrected orbit, 

we find 

. s+c 
(Y3 

n av,~n 32 sir? TAv Ken c , (5.13) 
, 

where the contribution to cy is similar, but it has as additional coefficient of ox/oy and 

must be averaged over the ring. In addition, the sum over AV and &, is a sum over four 

terms: the two values of AV = V, -f vy and the two values of $+, associated with each 

value for Av. The values of gn are 

$n = $x + 
i 

Cl+ EM, and (1 - $My, 

-Cl+ $,&, and - (1 - EM,, 

Au = u, + uy’ 
.m 

Au=ux-uy * 
(5.14) - 

- _ 

In the case of a corrected orbit, we find a form similar to Eq. (5.13) except the 

integral is broken into segments by the correctors 

(a; hocal ~ EX 
g> Nccm nc+l 

PY 
c - C / J av * 32 sin2 TAu ,& 

(5.15) 
, n, 

nc 

where, again, the contribution to ey is similar. Here, the sum over Au and $ is the same 

as in the uncorrected case except $ is now 

II, = $x + 2$y and $J~, if Au = ux + uy 

’ tiz - 2Gy and tix, if Au = ux - uy 
(5.16) 

The integrals in Eq. (5.15) are the same integrals one finds when using time depen- 

dant perturbation theory to calculate the effect of sextupoles on the betatron motion. 
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The similarity arises because, over a short segment, the closed orbit oscillates like a free 
- - 

betatron oscillation. It is important to emphasize that Eq. (5.15) describes an effect due 

to linear coupling - notice the resonant denominator in Eq. (5.15); it is not an effect 

of the third order resonances. Specifically, Eq. (5.15) is only valid when the closed or- 

bit is broken into short segments (by correctors). Notice that if the orbit is broken at 
. 

every sextupole, Eq. (5.15) reduces to Eq. (5.11) h’ h w K es imates the effect of random t 

sextupole misalignments. Thus, for comparable orbits and misalignments yc M ym, the 

contribution to the beam size from the orbit will usually be less than the contribution 

from the misalignments since the orbit is typically correlated across many sextupoles. 

Typically, when correcting the dynamic aperture, one adjusts the sextupole strength 

and placement so that the first order aberrations will cancel over the ring. For example, 

in the NDR, the cell phase advances are u,,,ll z 0.37 and uycell M 0.12. This causes the .- T 

first order geometric aberrations due to the sextupoles to cancel over an arc of roughly - 

8.5 cells. Unfortunately, when correcting the orbit, we break this cancellation scheme, - - 

and thus a://?, normalized by the square of the closed orbit tends to grow. 

5.4 SIMULATIONS 

To verify the analytic results, the betatron coupling contributions to the vertical 

emittance were determined from simulations of random alignment errors. Again, the 

NDRl lattice was used; this is a lattice of the SLC NDR where the tunes have been 

changed to u, = 8.375 and uy = 3.275. Table 3 lists the results of simulating rotational 

misalignments in quadrupoles and vertical misalignments in sextupoles in the NDRl 

lattice. As before, the misalignments are generated from a gaussian distribution with 

an rms of 0.5 mrad and 150 /lrn respectively. The calculated values are found using 

Eq. (5.11). Th e measured values are found by averaging the result of 1000 different 

random error distributions and the errors listed are the standard error of the average 
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of the 1000 simulations; again, there is good agreement between the estimates and the 
- - 

simulation results. 

In addition, Table 3 also lists results from simulating the effects of a corrected 

closed orbit where the results are found from twenty simulations. Here, the simulations 

included vertical quadrupole misalignments with an rms of 150pm and vertical BPM 
. 

misalignments, also, with an rms of 150pm. The resulting orbit was corrected using 

the twenty vertical dipole correctors in the NDR to minimize the rms of the measured 

orbit. Before correction, the rms magnitude of the actual orbit was roughly 1.5 mm; 

the correction reduced this to 140pm. In this case, the calculated result was found from 

Eq. (5.15). Ag ain, the calculated estimate agrees well with the average of the simulations. 

Finally, notice that the contribution from the corrected orbit is less than the contribution 

due to similar misalignments in the sextupoles; as mentioned, this occurs because the - 

orbit is still correlated over short segments. 

- - Finally, in Figs. 5 and 6, the betatron coupling contribution to the vertical emittance, 

normalized by the square of the closed orbit, is plotted versus the number of orbit 

correctors used. The points plotted are generated by simulating random quadrupole 

and BPM misalignments in the NDR and the ALS as was done in Figs. 3 and 4. The 

line is an approximation of Eq. (5.15) w ic we evaluated by assuming that correctors h h 

were evenly distributed in the ring. Notice that initially the normalized contribution 

increases roughly linearly with the number of correctors. As mentioned, this occurs 

since the cancellation is broken by the correctors. Of course, since the residual orbit is 

decreased by the correction, the actual beam size contribution tends to decrease as the 

orbit is corrected. 
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5.5 NON-LINEAR COUPLING EFFECTS 
- - 

We can also estimate the effects of the higher order coupling resonances. In this 

case, the equation for the vertical betatron motion is 

(5.17) 

wherep = m+n. Using perturbation theory, we would find a similar form for the 

increase in the vertical emittance except that the increase would depend upon higher 

powers of E, and the unperturbed vertical emittance. Because E, and cy are small, these 

effects will be negligible unless one is very close to the non-linear coupling resonance. A 

detailed analysis of these higher order coupling resonances can be found in Ref. 17. 

Actually, there is one case where this higher order coupling could be signifis,ant. 

This occurs if the beam is very large when it is injected into the ring. Because of the - 

large beam sizes, the widths of these higher order coupling resonances are larger. In - - 

simulations of a future damping ring 18 
lattice, coupling has been observed after injecting 

the beam into the ring which was operating close to the sextupole difference resonance, 

ux - 2uy E 0.03. This is actually advantageous in this design since the vertical emittance 

damps faster when the beams are coupled; this occurs because Jx = 1.6 while Jy = 1.0 

and thus there is more damping in the horizontal plane. Of course, one has to be sure 

that the beam becomes uncoupled before the horizontal emittance reaches its equilibrium 

value or the vertical emittance will never damp beyond this point. 
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6. CORRECTION 

In this section, we will discuss reduction and correction of the vertical dispersion 

and the betatron coupling. The simplest way to reduce these effects is to decrease the 

sensitivity of the ring to the errors. The most obvious method of doing this is to reduce 

the resonant denominators l/ sin2 7ruy or l/ sin2 rAu* which appear in all the dispersion 

and coupling formulas. 

In addition to decreasing the sensitivity to the errors, one can correct these effects 

directly. Specifically, we will first calculate the amount one can correct the vertical 

dispersion with a pair of correctors, typically skew quadrupoles, separated by ninety de- 

grees in phase. Then, using the analogy between the vertical dispersion and the coupling 

functions that was noted in Section 5.1, we will apply our results to the correction of the 

betatron coupling. Finally, we will compare these analytic estimates *with the res&s of 

simulations. 

6.1 VERTICAL DISPERSION 

As mentioned, one can also correct the vertical dispersion directly with either skew 

quadrupoles in regions of horizontal dispersion or orbit bumps in the quadrupoles.rg Un- 

fortunately, this is complicated because the skew quadrupoles and orbit bumps in the 

sextupoles also contribute to the betatron coupling. Thus, one has to either compen- 

sate the betatron coupling or use orbit bumps in regions without sextupoles; this will 

effectively limit the number of correctors one can use. 

Regardless, the correction of the dispersion itself is relatively simple; the dispersion 

generated by random errors, much like a closed orbit, will primarily have harmonics near 

the vertical betatron tune. Thus, as when correcting a close orbit, only a few dispersion 

correctors are needed to cancel these dominant components, thereby significantly reduc- 
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ing the dispersion. We will consider two cases: (1) correcting the vertical emittance, i.e., 
- - 

the global effect of the dispersion, .and (2) correcting the local dispersion at one location. 

6.1.1 Global Correction - Emittance Correction 

The vertical emittance due to the dispersion is proportional to the average of G in 

the bend magnets. For this estimate we will assume that this is equal to the average of 

Xy around the ring. Using a few trigonometric identities, along with Eqs. (4.1), (4.3), 

and (4.19), we can express ‘Hy as the squared absolute value of an integral over a complex 

exponential; this is very similar to the coupling coefficients [Q-J-[~/ sin2 7rAuk. Thus, the 

average of l-ty in a ring with two correctors can be written 

S-I-C 

7iy = 1 [I-./ z/iy(T)e 4 sin2 7ruy 
i~Y(z)F(z)dz I2 + CL2 + b2 

S .- 

s+c 

- 2bIm J ~~e”(2’Y.-~y(z))F(r)dr] , 
S 

where the bar is used to denote an average around the ring and a and b are the strengths 

of the two correctors which are separated by 7r/2 in phase and are arbitrarily assumed 

to be located at $ = 0 and 1c, = --i/2. 

To minimize ‘H,, and thereby the emittance, we solve for the a and b which zero the 

first derivatives of Eq. (6.1). The solutions are 

ssc 

(6.2) 
ssc 

b = +Im / ~~e”(2~“y-“.(z))P(*)dZ , 

S 
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and these yield a residual dispersion of 
- - 

s-kc 

l-ty = ’ 
4 sin2 7ruy 

[I / J~e+(%)F(.z)dz~2 - a2 - b2\ . 

S 

(6.3) 

Now, we can solve for the expected value due to 

Assuming that the errors F; are uniformly distributed 

I J 

a distribution of random errors. 

in the ring, we find an expected 
. 

value of 

, (6.4) 

where L; is the length of the element at position i. This result should be compared with 

the uncorrected expected values, Eqs. (4.7) and (4.19). W e see that using two correctors 

reduces the residual dispersion 3-1, by a factor of 2/3 sin2 xuy. 
.- w 

Strictly, this result is only valid for the vertical dispersion due to uncorrelated errors, - 

but because orbit correction effectively randomizes the orbit, we can also apply the result - 

to the dispersion due to a corrected orbit. Thus, global dispersion correction will reduce 

the expected values of the beam size and the emittance as 

(a;Ld = 2 sin2 71u (Wo 

PY 3 y PY 

2 
(cy) = 5 sin2 ~u~(E~)~ , VW 

where the subscript 0 is used to denote the values before correction. 

Notice that the correction cancels the resonant denominator. We will also find 

this when we estimate the effect of local correction. The resonant denominator occurs 

because the vertical dispersion is a periodic function that must close upon itself. When 

the dispersion is corrected, the boundary conditions are satisfied by the correctors; thus, 

the resonant denominator no longer appears. This is analogous to correcting the closed 

orbit or the coupling functions Q+ and Q-, which are also periodic functions. 
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6.1.2 Local Correction 

Here, we use the two correctors to zero vy(s) and V;(S) at one location in the ring; 

this is equivalent to zeroing WY(s). From Eqs. (4.1), (4.2), and (4.3), we find the required 

corrector strengths 

ssc 
a=-Re / JG& i(2”“Y-v5Y(“),qz)& 

b = +Im , 
S 

(6.6) 

where s is the point that qy and $, are to be corrected to zero. Notice that these 

solutions are similar to the corrector solutions for global correction; they differ in that 

the solution for global correction is averaged while this is not. 

Now, we need to know how this correction affects the global contribution, i.e., ‘H,. - 

Here, we use Eq. (6.1) with the corrector strengths just calculated. Assuming random - - 

errors, we find 

(6.7) 

which differs from the uncorrected result by a factor of 2fcor sin2 ruy. Here, fcor is a 

function that depends upon the location of the correctors relative to the location that 

- qy and $, are corrected. In particular, 

fcor = (1 -c)2($)2 ) 

and A$ is the phase difference from the correctors to the correction. This function 

varies between one and l/2, having a minimum when the correctors are separated from 

the correction point by half the ring and having a maximum when the correctors are 

immediately adjacent to the correction. 
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Applying this result, we see that at most positions around the ring, 

(&xal = 2f (40 
PY 

car sin2 7ruy- 
PY 

(cy) = 2fcor sin2 ~uy(~y)O , W) 

while at position s: (a~(s)jlocal/,Dy N 0. Finally, notice that after local correction the 

emittance is between one and a half to three times larger than after global correction, 

Eq. (6.4); in the worst case, local correction actually increases the global contribution if 

the fractional tune is greater than 0.25. 

6.1.3 Measurement 

Of course, to correct the vertical dispersion, one needs to measure it. If the BPMs 

are sufficiently accurate, one-can measure the vertical dispersion directly by changing 
.w 

the beam energy. Alternately, if the BPMs are not sufficiently accurate, one can observe _ 

the effects of the vertical dispersion in the beam size. In this case, the vertical emittance _ _ 

is simply minimized with the correction elements. There are two problems with this 

approach: first, it is hard to decouple the local effect of the dispersion from the increase 

in the emittance, and second, the finite resolution of the beam size measurement will limit 

the convergence of the minimization; this will effectively limit the number of correctors 

that can be used in the minimization procedure. 

6.2 BETATRON COUPLING 

In this section, we will estimate the amount one can reduce the betatron coupling 

by directly correcting it with skew quadrupoles or orbit bumps in the sextupoles. In 

Section 6.1, we calculate the reduction in l-ty after both global and local correction using 

just two correctors. The situation for the betatron coupling is similar, except we need 

four independent correctors to correct both Q+ and Q-. 
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To perform the calculation correctly, we would need to solve four coupled equations 
- - 

for the skew quadrupole strengths. Instead, we will make use of the analogy, noted 

in Section 5.1, between Q* and the vertical dispersion. This will allow us to use the 

results of the previous section. Of course, in treating the sum and difference resonance 

.separately, we will neglect the effect of the cross term in Eq. (5.7). This is valid since, 

. as was noted in Section 5, the cross term will tend to be small because of the rapidly 

oscillating phase. Furthermore, by treating Q+ and Q- separately we assume that the 

correctors for Q+ do not affect Q- and vise-versa. Obviously, this is not true of the 

individual skew quadrupoles, but linear combinations of the four skew quadrupoles will 

have this property. 

6.2.1 Global Correction - Emittance Correction 

To estimate the global correction one can perform with four sketi quadrupoles; we 

use the global coupling result of Section 6.1. Thus, global correction will cancel the - _ 

resonant denominators, reducing the expected values of the emittance and the beam size 

by 2/3 sin2 rAu&. Specifically, if four skew quadrupoles are used to correct the global 

coupling contribution, we use Eqs. (5.10) and (5.11) to find an expected residual due to 

uncorrelated errors of 

~(~~,L)24@2PxPy + ~(J~2L)“YQ3xP, 

quad sext 1 
(631) = g$c m)24@2P,p, + c(w3J,)2YQxPy , 

y quad sext 1 
and we use Eq. (5.15) to find tl le residual due to a corrected closed orbit of 

(6.10) 

, (6.11) 

where As is the distance between correctors and the values of $J are given by Eq. (5.16). 
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6.2.2 Local Correction 
- - 

To estimate the effect of local correction at position s, we could use the results derived 

in Section 6.1 as we did for the global correction. Alternately, we can observe the effect 

of local correction by returning to Eq. (5.6). Wh en the local coupling is corrected at 

location s, the first integral within the square brackets is zero; these integrals are equal - . 
to Q*(s). The remaining term in Eq. (5.6) will cause an emittance contribution of 

(6.12) 

where s is the point of correction. Here, we have neglected the cross coupling terms. 

In addition, we have ignored the contribution from the correctors themselves. This is 

equivalent to assuming that the correctors are located just after point s and thus they 

do not contribute to the integral. To include the correctors, we only need includ<the 

factor fcor that was found in Eq. (6.7). 

Now, we use Eq. (6.12) to find th e emittance after correction of the local coupling 

with four skew quadrupoles. For random errors we find 

+ -+j3~2~)2Y33xBy 1 , (6.13) 
sext 

where fcor is given by Eq. (6.8). N t o ice that this result is equal to the estimate of 

- local correction found in Eq. (6.7), namely, the correction changes the global coupling 

by ?fcor sin2 rAu*. Also notice that this is a factor of three larger than the result after 

global correction. 

Finally, we estimate effect of a corrected orbit after the local coupling has been 

corrected. Using Eqs. (6.12) and (5.15), we find 
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where As is the distance between correctors and the values of $ are given above by 
- - 

Eq. (5.16). 

6.2.3 Measurement 

Finally, to perform these corrections, one needs to measure the coupling. Unfortu- 

. nately, when operating a ring far from the coupling resonances, one cannot rely upon the 

standard technique of putting the ring on the difference resonance and then adjusting 

skew quadrupoles to make the two measured tunes equal. First, this technique does not 

correct the coupling due to the sum resonance. Second, the ring is perturbed when mak- 

ing the measurements and thus even the difference resonance will not be fully corrected 

when the ring is brought back to its nominal tunes. 

Instead, the coupling can be measured by analyzing the coherent motion of a kicked .w 

beam. 20’21 This measurement is convenient since one can measure the local value of the - 

coupling all around the ring. Finally, as in the measurement of the dispersion, additional - - 

information can be obtained from measurements of the beam size at synchrotron light 

monitors or, in a damping ring, from the extracted beam. 

6.3 SIMULATIONS 

Simulations were performed in the NDR to verify these analytic estimates. First, 

the effect of correcting the global dispersion was simulated in the NDRl ring. The 

correction was performed with two orbit bumps separated by roughly ninety degrees. 

The bumps were located in regions without sextupoles so there was no contribution to 

the betatron coupling. The results are listed in Table 4. Again, 1000 simulations were 

used to calculate the effect of the random misalignments and twenty simulations of a 

corrected closed orbit. Here, the estimates are found from Eq. (6.5) along with Eq. (4.21) 

and the equations for random errors Eq. (4.7) or the equations for a corrected closed 
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orbit, Eqs. (4.8), (4.12), and (4.17). N t o ice that the vertical emittance was decreased 

by roughly a factor of three. This.is in excellent agreement with our estimate. 

Next, the effect of correcting the local coupling was simulated. Four skew 

quadrupoles were used to completely uncouple the beam at the extraction point of 

.the damping ring; two skew quads were located immediately adjacent to the extraction 

point while the other two were located on the opposite side of the ring. The results are 

listed in Table 5. Again, 1000 simulations were used to calculate the effect of the ran- 

dom misalignments and twenty simulations of a corrected closed orbit. In this case, the 

calculated values are found using Eqs. (6.13) and (6.14) with a value fcor = 0.75 since 

two correctors are adjacent to the point of correction (fcor = 1.0) and two are halfway 

around to ring from the point of correction (fcor = 0.5). Notice that the vertical emit- 

. 

tance due to the errors is roughly a factor of four smaller than before the correcti,on. 

Again, the simulated results agree well with the calculated values. 

- - Finally, the effect of correcting the global coupling was simulated. This time the 

four skew quadrupoles were used to minimize the vertical emittance in the damping ring. 

The results are listed in Table 6. Here, only 100 simulations were used to calculate the 

effect of the random misalignments and twenty simulations of a corrected closed orbit; 

the global correction simulations are computation intensive. In this case, the calculated 

values are found using Eqs. (6.10) and (6.11). Notice that now the vertical emittance 
- 

due to the errors is roughly a factor of nine smaller than before the correction. Again, 

the calculated estimates a,gree with results of the simulations. 
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7. DISTRIBUTIONS AND TOLERANCES 
- - 

In Sections 4,5 and 6, we have calculated the expected values of the vertical emittance 

and the beam size. Naively, one could simply invert these equations to solve for alignment 

tolerances. But, when specifying tolerances, one should include a “confidence level” 

‘(CL); th’ 1s is the probability that, given the specified tolerances, any specific machine 

will be less than the design limit. Typically, one wants to specify a large CL so that there 

is a small probability of exceeding the design limit. In this section, we will calculate the 

location of the 95% CL as a function of the expected values calculated previously. 

Calculating the CL requires a detailed knowledge of the distribution of the values of 

the emittance and the beam size in an ensemble of machines. It has been shown that 

the mean square amplitude of the normalized orbit due to random errors with gaussian 

distributions should have an exponential distribktion function.22 Since-the equatioGfor 

the closed orbit are similar to those of the dispersion function and the betatron coupling, 
- _ 

the same result applies to the amplitudes of X,(s) and 1Q*(s)12. 

Here, we will consider the effect of averaging ‘7+,(s) and IQ-+(s)12 over s; the vertical 

emittance is equal to the average of these functions in the bending magnets. We will first 

discuss the distribution of the values of the emittance arising from vertical dispersion 

and betatron coupling due to random errors. Then, we will discuss the distribution 

- of the values of the local contribution to the vertical beam size. Finally, note that, 

although the discussion is limited to the effect of random misalignment errors, the effect 

of a corrected closed orbit is similar. 
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7.1 EMITTANCE DUE TO VERTICAL DISPERSION 

The actual distribution function for the values of the vertical emittance due to 

random errors is a complicated function. Thus, we will derive an approximate form that 

can be integrated to solve for the location of the 95% CL. We will do this by solving 

‘for the moments of the distribution of emittances. The vertical emittance is given by 

Eq. (4.20). Assuming identical bending magnets, we can express this in the same form 

as Eq. (6.1): 

(7.1) 

Now, we solve for the moments assuming random errors with gaussian distributions. 

This yields 

(ti) = 2~’ 1 - f sin2 ,,,> 

(E;) = 6~~ ( 1 - ; sin2 7r/TvY + - 2 sin4 7ruY > 45 

(et) z 24~’ 1 - sin2 ~TTY~ + - 1 sin4 7rvY - - 2 3 15. sin6 7rTvY > 7 

(7.2) 

where /J is the expected value of the emittance calculated in Section 4. The first three 

moments were calculated from Eq. (7.1)) while the fourth moment was fit to data from 

simulations. These are shown in Fig. 7 where the second, third, and fourth moments, 

normalized by ~z!P~, are plotted. 

Notice that the moments only depend upon the first moment p and the fractional 

vertical tune. When the vertical tune is close to an integer, the moments have the form 

pu, = n!p”“. These are the moments of an exponential distribution as noted in Ref. 22. 

As the fractional tune increases, the moments decrease, implying that the probability of 

large emittance values is decreased. 
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We could attempt to construct a distribution directly from these moments, but, in- 

stead, we simply notice that these moments are close to those of a-modified x-squared 

distribution where the number of degrees of freedom is a function of sin2 rvY. In partic- 

ular, the distribution density is 

(7.3) 

where p is the expected value of the emittance and n is the number of degrees of freedom 

which depends upon sin2 7ruY: 

n 1 -- 
2- * 1 - : sin2 7rvY 

.- 

(7.4 

.w 

With these definitions, this distribution has the same first and second moments as - _ 

the value of the vertical emittance, Eq. (7.2). F ur th ermore, when the tune is integral, 

Eq. (7.3) is th e d ensity of an exponential distribution which is equal to the distribution 

of the emittances. In addition, when the fractional tune increases to 0.5, the third and 

fourth moments of Eq. (7.3) are within 2% and 8% of the moments of the value of the 

vertical emittance. 

These distributions are illustrated in Fig. 8 where the distribution density of the 

vertical emittance, arising from random errors, has been plotted for three different tunes. 

All of the histograms are generated from 1000 simulations of 150pm vertical sextupole 

misalignments in the NDR. In Fig. 8(a), th e une is vY = 3.07, while in Figs. 8(b) and S(c) t 

the tunes are vY = 3.275 and vY = 3.43. In addition, the approximate distribution 

density of Eq. (7.3) is plotted for each of these three cases. One can see that there is 

fairly good agreement between the simulations and the approximation. 

47 



Now, we need to calculate the distribution after correction of the vertical dispersion. 

After global correction, the expected value of the emittance is given by Eq. (6.5). In 

addition, the second moment of the distribution can be found from Eq. (6.1). It is 

(+= 2p2 f . 
0 

P-5) 

Notice that this second moment is independent of the tune. Thus, we would expect the 

95% CL to only be weakly dependent upon the fractional tune. To approximate this 

distribution, we simply choose n to equate the second moment of Eq. (7.3) with this 

second moment; this occurs when n = 5.0. 

The distribution density of the value of the vertical emittance after global correction 

is illustrated in Fig. 8(d). The data was found from 1000 simulations of random sextupole 

misalignments in the NDRl and the approximate distribution is found from Eq. c7.3) 

where n = 5.0. Here, our approximation does not accurately reproduce the distribution - _ 

density for emittance values less that 2(cY), but it does describe the tail of the distribution 

well; this is ultimately what we need to know to calculate the location of the 95% CL. 

At this point, we can calculate the location of the 95% CL for the distributions. 

This found by integrating the distribution density 

(7.6) 

where fc~ is the location of the 95% CL in units of the expected vertical emittance. 

The results are plotted in Fig. 9 as a function of the fractional vertical tune Av,. The 

solid curve is calculated from Eq. (7.3), while th e simulation results are plotted as solid 

circles. One can see that there is very close agreement between the simulation and the 

approximation results. 
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- - 
In addition, the value of fc~ after global correction of the dispersion has also been 

plotted in Fig. 9. The simulated.data is plotted as open circles while the dashed line 

is our approximation. Although the agreement between the simulated results and the 

approximation for the correction is not great, as expected, fc~ is only weakly dependent 

upon the fractional tune and it is usually much less that the fc~ of the uncorrected cases. 

. 
Finally, it is important to note the following: first, the curves for fc~ are universal. 

The only dependence comes from the fractional vertical tune. The value of fc~ is 

independent of the type of errors, the lattice type, and the integral portion of the tune. 

The data in Fig. 9 has been compared with simulations run on the ALS:16 a Triple 

Bend Achromat lattice with an integral tune of 8, and a future damping ring design: 
18 

a 

FODO lattice with an integral tune of 11. In both cases, excellent agreement was found 

with the curve in Fig. 9. .w 

Second, our calculations have assumed that the errors are random with gaussian - 

distributions. A more realistic error distribution is a gaussian distribution where the - - 

tails are cutoff at 620; it is doubtful that large alignment errors, values that are many 

CT, would go undetected. This will reduce fc~ even further, making Fig. 9 a conservative 

estimate of fc~. 

And lastly, notice that there are two advantages of increasing the fractional tune 

towards a half-integer: the expected value of the emittance decreases and the probability 

of large deviations above this expected value also decreases. 

7.2 EMITTANCE DUE TO BETATRON COUPLING 

Now, we can use the results of the previous section to calculate the distribution 

of the value of the vertical emittance arising from betatron coupling. Ignoring the 

cross term in Eq. (5.7), th e emittance is the sum the two quantities IQ*12. As noted 

earlier, these two values have the same form as ‘HFI, and thus they should each have 
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approximate distributions given by Eq. (7.3). Furthermore, if IQ+12 and IQ-12 are 

mutually independent, then the distribution of their sum is just the convolution of the 

two individual distributions. 

Since we have assumed that the errors have gaussian distributions, Q+ and Q- will 

be independent if 
23 

s+C 

s 
d*(F2(z))P,p,ei2~z = 0 

s 
SSC (7.7) 

s 
dz(F2(*))pxpyei2+Y = 0 . 

3 

Both of these conditions will be (approximately) satisfied if there are many errors in a 

betatron period, N > v~,~, and if the tunes are large, v,,~ >> 1; this is typical of high 

tune (low emittance) rings. 
v 

Convolving the two individual distributions for IQ+/2 and IQ-12, we find an approx- _ _ 

imate distribution for the value of the vertical emittance: 

where n+ and n- are 

n* 1 -= 
2 1 - $ sin2 TAV* ’ (7.9) 

and p* are the expected values of the contributions from the sum and difference res- 

onances; these were found in Section 5. Although the integral in Eq. (7.8) can be ex- 

pressed in terms of the degenerate hypergeometric function, sometimes called Kummer’s 

function, there is no simple evaluation and thus it is left as is. 
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The distribution of the emittances is illustrated in Fig. 10 where the distribution 

density is plotted for two sets of tunes. In Fig, 10(a) the tunes are V, = 8.375 and vY = 

3.275 so that Av+ = 0.35 and Au- = 0.10, while in Fig. 10(b) the tunes are V, = 8.425 

and vy = 2.925 so that Av+ = 0.35 and Av- = 0.50. As before the histograms are 

-found from 1000 simulations of random sextupole errors and the curves are calculated 

from Eq. (7.8). Ag ain, there is very good agreement between the simulations and the 

approximation. 

Now, we can calculate the location of the 95% CL which, in the case of the betatron 

coupling, is a function of both Av+ and Av-. This is illustrated in Fig. 11 where fc~ 

is plotted as a function of Au-, for Av+ = 0.35. The solid circles are the results of 

simulations and the solid line_ is calculated from Eq. (7.8). In addition, the fc~, found 

from 100 simulations of global correction, is plstted for three different tunes; this data 

is plotted as open circles while the estimated value, found using the approximation of 
- _ 

Eq. (7.5), is plotted as a dashed line. 

One can see that there is very good agreement between the simulated results and 

the approximation when Av.- is small, but there is a significant discrepancy as Av- 

increases. In particular, as Av- increases towards the half-integer, the value of fc~ seems 

to depends upon the horizontal and vertical tunes in addition to Av+ and Av-. For 

- example, when the tunes are u, = 8.575 and uY = 3.075 (Au+ = 0.35 and Au- = 0.50), 

fc~ equals 2.05. In contrast, when the tunes are u, = 8.425 and uY = 2.925 (Au+ = 0.35 

and Au- = 0.50), fc~ equals 1.86. Thus, there is a substantial difference in fc~ even 

though Auk are the same in the two cases. This difference could be explained by the 

cross term in Eqs. (5.7) and (5.12) which depends upon sin27ru, along with sinrAu*. 

Finally, again notice the following: (1) the curves in Fig. 11 are universal in that all 

rings will have similar values of fc~, (2) b ecause the actual distributions of errors will 
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probably not have large value tails, the values of fc~ in Fig. 11 are conservative, and 
- - 

(3) there are two advantages of keeping Au- and Au+ large: the expected value of the 

emittance decreases and the probability of large deviations above this expected value 

also decreases. 

7.3 LOCAL BEAM SIZE 

Now, we can calculate the di-stribution of the value of the beam size arising from the 

local coupling effects. These are simpler than the distributions of the emittances since 

the contribution depends upon the local value, not the average value, of the coupling. 

In the case of the dispersion, the beam size a;//$, depends upon am/,&,. As stated, 

this will have an exponential distribution similar to the closed orbit.22 Thus, the value of 

the local beam size increase due to dispersion will have an exponential distribution with .- .w 
a 95% CL located at 3.00(0:)/&; th is is equal to the distribution of Eq. (7.3) where - 

n = 2 instead of the value specified in Eq. (7.4). - _ 

Similarly, the beam size due to local effect of the betatron coupling depends upon 

both IQ?(s)1 and IQ:(s)1 1 * 1 1 1 w MC 1 a so lave exponential distributions. Thus, the resulting 

distribution can be found from Eq. (7.8) where nk = 2 instead of the values specified in 

Eq. (7.9). In th is case, we can evaluate the integral in Eq. (7.8), finding 

- 
s(((#P,) = 

,-bmPYPt -,-ml~Y~- 

7 (7.10) 
P-l- - P- 

where pk are the expected contributions for the sum and difference resonances which 

were found in Section 5. Now, the location of the 95% CL can be calculated directly 

a’. from this “bi-exponential” distribution. It ranges from fc~ = 3.00, when p+ >> p- or 

,u- >> p+, to fc~, = 2.37, when p+ = p-. 
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7.4 TOLERANCES 
- - 

Finally, one can use the results of this section to calculate tolerances. We have found 

that the 95% CL occurs at a value between roughly two and three times the expected 

emittance. To calculate alignment tolerances with a 95% confidence level, we solve for 

tolerances that yield expected values that are a factor fc~ smaller than the design values. 

For example, if we wish to limit the vertical emittance due to sextupole misalign- 

ments, we can use Eqs. (4.7) and (5.11) along with the appropriate values of fc~ to solve 

for the 95% CL emittance: 

Ey95% = [4s;?":u (c(I(z~)"~%)fcL~, 
Y sext 

E, (1 - cos 27ru, cos 27Wy) CY, 
+T( cos27ru, - (C(KzL)zp.B)fCLP]Y~ ? (7*11) cos 27ru,)2 ay sext .w 

where fc~ Ty can be found from Fig. 9 and fc~p can be found from Fig. 11. It is trivial - _ 

to invert this to solve for the desired alignment tolerance. 

Actually, the factors fc~ were calculated for the dispersive contribution and cou- 

pling contribution individually. Strictly, to calculate the. fc~ for the sum of the two 

contributions requires convolving both distributions. Fortunately, one usually finds that 

either the dispersive or the coupling contribution dominates and thus the separate val- 

ues fc~ can be used accurately. However, if both contributions are of equal magnitude, 

this method will result in tolerances that are slightly too severe. 
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8. SUMMARY 

In this paper, we have discussed two of the dominant contributions to the vertical 

emittance and beam size in e+/e- storage rings, namely, the vertical dispersion and 

the betatron coupling. In addition, we have presented a corrected derivation for the 

emittance contribution from the opening angle of the synchrotron radiation. Although, 

this later effect is negligible in the current designs, it does specify a lower bound on the 

vertical emittance and may be an important limitation in the future. 

The vertical dispersion and the betatron coupling are generated by both magnet 

alignment errors and a non-zero beam trajectory. We have calculated the expected con- 

tributions to the vertical emittance and the vertical beam size due to random misalign- 

ments of the magnets and a corrected closed orbit. In addition, we have carefully sepa- 

rated the contributions to the vertical emittan& and the beam size s&e local cou$ng 

effects can increase the beam size without increasing the emittance. This is important - _ 

since the emittance is the relevant quantity in some instances while the beam size is in. 

others. 

We have also estimated the effectiveness of simple correction techniques in reducing 

both the vertical emittance and the beam size. In particular, we used one pair of 

correctors to reduce the vertical dispersion and four skew quadrupoles to reduce the 

- betatron coupling. In general, the correctors reduce the emittance by cancelling the 

resonant denominators found in the expressions for the emittance due to dispersion 

or betatron coupling. Of course, two dispersion correctors or four skew quadrupoles 

cannot be used to zero the respective emittance contributions anymore than two dipole 

correctors can be used to zero the closed orbit at all locations around a ring. 

Finally, we have calculated alignment tolerances to limit the vertical emittance and 

beam size from the vertical dispersion and the betatron coupling. In particular, we 
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have calculated approximate distribution functions for the values of the emittance and 
- - 

beam size in an ensemble of machines. From these distributions, we found tolerances 

that limit the vertical emittance and beam size with a 95% confidence level. In general, 

these are a factor of & to & more severe than tolerances simply calculated from the 

.expected values of the emittance and beam size. It is thought that this analysis could 
- . greatly simplify the calculation of alignment tolerances to limit the vertical emittance 

and beam size, thereby reducing the need for extensive simulation. 
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APPENDIX A 

OPENING ANGLE EMITTANCE CONTRIBUTION 

In this appendix, we derive the emittance contribution due to the opening angle of 

the synchrotron radiation. Photons are radiated with an rms angle of l/y relative to the 

‘particle trajectory, thereby changing both the longitudinal and transverse momentum - . 
of the particle. In a storage ring built in the horizontal plane, the horizontal motion 

is coupled to the longitudinal via the “dispersion” function, i.e. because the horizontal 

closed orbit is dependant upon the longitudinal momentum. In the horizontal plane, 

the effect of this coupling dominates the contribution due to the opening angle of the 

radiation. In contrast, the vertical closed orbit in an ideal machine does not depend upon 

the longitudinal momentum and thus the radiation opening angle should determine the 

vertical emittance. In practice, errors in the machine will generate uertical dispersion 

- and couple the horizontal and vertical betatron motion. These effects will then determine 

- - the vertical emittance. Still, the emittance due to the opening angle is useful since it 

specifies a lower bound on the vertical emittance, a lower bound that will be approached 

by future generation machines. 

The emittance contribution due to the opening angle is estimated in Ref. 1 by 

ignoring the correlation between the energy and angle of the radiated photons. In this 

approximation, one finds 

c, $PY(41G3(41d~ 
” N aJ, jG2(s)ds (A4 

where C, = 3.84 x 10-13m, py is the vertical betatron function, and G(s) is the bending 

function: G(s) = l/p 1 w lere p is the instantaneous bending radius. Our derivation will 

parallel that of Ref. 1, except that the correlation between the energy and angle of the 

photon will be included. The high energy photons should be radiated at smaller angles 

than the low energy photons and thus the correct result will be smaller than Eq. (A.l). 
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When a particle radiates a photon of energy u, the transverse momentum changes 

Ay’ = ;oll Ay=O . (A4 

where 0, is the angle of inclination between the particle trajectory and the path of the 

photon. The change in y’ changes the particle’s transverse invariant J; where J is equal 

tol3 

2J = yy2 + 2ayy’ + i&i2 . 64.3) 

The change in J is 

P AJ = oyAy’ + @y’Ay + ,(AY’)~ . (A.4 

The beam emittance is calculated from J bp averaging over an ensemble of particles. 

Since changes in y’ are statistically independent, the change in the emittance is found 

- - from the ensemble average of AJ. Furthermore, the ensemble averages of y and y’ are 

zero and thus if we assume that the probability of radiation is uncorrelated with the 

particle position and transverse momentum, then the change in the emittance between 

position s and s + ds is 

P de(s) = ,a~“(@ (A.5) C 
- 

where 

Ay’“(s) = 
s 

u2(32 
Ln(u, R, s)dudR 

E,2 
. Gw 

Here, 1z(u, R, s)duclR is the probable number of photons, with an energy between u and 

u + du and a solid angle of R to R + dR, radiated per unit time at position s. 

By assuming that (yAy’) = ‘(y)(Ay’) = 0, as we did in Eq. (A.5), we are ignoring 

the effect of gradients in the magnets. When the magnetic field has a gradient, the 
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probability of radiation depends upon the particle position. But, the magnetic field 

variation across a beam is typically very small and thus we can ignore it. For example, 

a damping ring design for the NLCr’ has gradients of 300 KG/meter in the 13.1 KG 

bending magnets while the beam sigma is 4 microns. Thus, the field varies by only 2 

-Gauss vertically across the beam. 

Now, to find the change in the emittance over one turn, we integrate de over the ring 

Ae = 
f 

P- ?Ayf2fi . (A.7) 
C 

The equilibrium emittance is then calculated by setting the change due to quantum 

excitation equal to the change due to damping. Thus 

(ii.8) _ 

where ry is the vertical damping time and To is the revolution period of the ring. Note. 

that the vertical emittance damping rate is 2/ry. 

Thus, we need to evaluate the integral in Eq. (A.8) -over u and R. The rate of 

photons emitted with energy between u and u + du multiplied by the energy u is equal 

to the power radiated with a frequency between w = u/tz and (u + du)/h. 

un(u, 0, s)dudR = a2p(u/h, ‘7 ‘> dwdfi 
8WXl 

(A.9) 

The classical relation for the differential power radiated by an ultra-relativistic elec- 

tron in instantaneous circular motion was calculated by Schwinger 
24 

d”P(w, $,, s) 
dwd$ 

2 

>[ 
I$ (0 1 (A.lO) 
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where 
- _ 

(A.ll) 

Here, 1c, is the angle of inclination above the orbital plane; thus, $ is equivalent to 0, of 

Eq. (A.2). In addition, p(s) is the instantaneous radius of curvature, and “5 and 1~‘; are 

. modified Bessel functions. Notice that the azimuthal angle has been integrated out of 

Eq. (A.lO); it would be needed if we wanted to calculate the opening angle contribution 

to the horizontal emittance, but, as was mentioned earlier, the horizontal emittance is 

dominated by the dispersive effects. 

Thus, the emittance is 

(.X12) 

where w has been written in terms of [. Furthermore, since the integrand is very small 

for II, - 7+ > l/y, and decreases rapidly with +, we can extend the limits of integration 

from *r/2 to rrtcx~ 

The integral In(v) is equal to25 

1 r(+)r(y) 
I&) = 4 q; + 1) r(+++(F-.) ) 

(A.14) 

(A.15) 
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where I’(Z) is the gamma function. Specifically, 
- - 

I&) = &(l - V2) . 

Next, the integral over I+!I is performed using the algebraic integral26 

00 

.I (x2 x2mdJ: +q = (2772 2(2n - 1)!!(2n - 2)!!c”-“-I& - 2772 - 3)!!r . o 

(A.16) 

(A.17) 

Finally, substituting for ry,’ we find for the opening angle contribution to the emit- 

tance, 

13 c, IPY(w3(sws 

’ = 55% $Gz(s)ds ’ Y 

.- w 

This is a factor of 2.1 times smaller than the estimate in Eq. (A.l). This expression can - 

be further simplified by using the average value of py and the rms energy spread. We find 

Y~y M 0.24J~~~ , (A.19) 

where yc is the norma.lized emittance and J, and gC are the longitudinal damping pa,r- 

tition number and the rms energy spread. 

Equation (A.18) h as been used to calculate the minimum vertical emittance of a 

future damping ring design: r8 

Yeyopening angle N 6 x 10-lOm-rad . (A.20) 

This is a factor of 45 sma.ller than the specified vertical emittance of ycy < 2.7 x 

10m8m-rad. 
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APPENDIX B 

COUPLING DERIVATION 

In this appendix, we will derive Eqs. (5.7) and (6.12) from Eq. (5.5). We will only 

-explicitly calculate the contributions from the individual coupling resonances; these come 

. from-the COS($~(Z) --.Iciz(z’)) cos(&,(z) -?i,,(z’)) term which is found when one expands 

the trigonometric functions in Eq. (5.5). The d erivation of the cross term is similar 

except one needs to include all of the trigonometric functions; this is easily accomplished 

using exponential notation, but, because of the large number of terms, the calculation 

is quite tedious. 

First, we expand the square of the bracket in Eq. (5.5), keeping only the terms: 

N(u2)x~(z~) 
4E,2 SJ 

s &(jz’g(z)g(z’) . . . co+,(g - &(z’)) ~+z(~) - $44) ) (B.1) - - 
zi 

where trigonometric identities have been used in the expansion and only terms depending 

upon the differences of the phases II,(z) and $(z’) were kept. Now, we can use additional 

trigonometric identities to express this result as 

9 

+ 

(1 

~ze(“‘-“)“~/c+(“-“)“Y/C 
JF$ s4vL f- $4) ‘1 

p p 

zi 

P.2) 

where the sum over f represents a sum over the Gz + GY phase and the $, - $Y phase. 
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Next, we can condense this into a single integral using a complex exponential. Ex- 

pressing this in the form of Eq. (5.6), we find 

n-l 3 
-ncr%To 

c 
ej(~z-~y)T~-ij2xAv 

s 
q&)dz 

j=o S-C 

Se 
-na,To-in2xAv 

9 
J I 

2 

q&)dz 

where 

4% (2) = Jmgei(yll”*4z) . (B-4) 

In addition, AV = (vz f vY), To is the revolution time, and it was assumed that the 

damping per revolution is small compared to the betatron tunes. .w 

Now, we perform the sum over j. The expression within the absolute value signs - 

becomes 

s 
+e 

-na,To-in2xAu 

s I 
2 

&)d~ * 

zi 

At this point, we can calculate the case where the local coupling is zero at location 

S. When the local coupling is zero, the first integral over q is zero and we are left with 

only the second term. Thus, 

0; (S)global 
cc S 

& = n=Oe 
c 

-2ncu,To 

s 
S-C 

Now, we perform the final summation, shifting s --+ s+C, and assuming that the photons 

are radiated uniformly around the ring, this yields Eq. (6.12). 
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I 

If the local coupling is not zero, we can group the terms in Eq. (B.5) as 

. - +e -nayTo-i7z2KAv ( 2 ;;r;;usi q&)d.z + 1 q&)dz) I2 . 

Zi 

When the absolute value sign is calculated, the cross term will have an oscillatory term 

due to the complex exponential. Assuming that 27rAv* >> aTo, this cross term will go 

to zero when the final sum over n is performed. Thus, we are left with the separate 

absolute values of the two terms in Eq. (B.7). The first term is simple; the absolute 

value is 

After performing the final sum over n and substituting expression for the emittance, this - - 

yields the first expression in Eq. (5.7). 

Finally, we have the second term of Eq. (B.7). Let us express this as 

e-2ncuyTo 
3 

I( 
t 

4 sin2 riA~ 
ie ixA” + 2 sin ~Av q*(z)dz + ieirAv i I qlt(-+z ’ . (B.9) zi s-c 

Next, we express the sine in exponential form and shift the second integral by C. When 

we shift the lim its by C, we have to include a phase shift of ei2xAV. Thus, Eq. (B.9) 

becomes 

e-2nayTo 
3 

. -ixAv 

4 sin2 7rAu I J ze q*(z)dz + ie-i*A” PJ-9 
zi 3 

Now, we add these two integrals ‘and perform the final summation over n; this yields the 

second expression in Eq. (5.7). 
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If the local coupling is not zero, we can group the terms in Eq. (B.5) as 

/ - emnazTo ( 2~~~~~v 1 q*(z)dz) 

s-c 
(B.ll) 

When the absolute value sign is calculated, the cross term will have an oscillatory term 

due to the complex exponential. Assuming that 27rAvh >> cuTa, this cross term will go 

to zero when the final sum over n is performed. Thus, we are left with the separate 

absolute values of the two terms in Eq. (B.ll). The first term is simple; the absolute 

value is 

(R.12) _ 

After perform the final sum over n, this will be the first expression in Eq. (5.7). 

Finally, we have the second term of Eq. (B.ll). Let us express this as 

3 
e-2ncuyTo 

%, 
iaAv 

4 sin2 7rAv I( ie + 2 sin ~Av q*(z)dz + ieixAv -1 I q&W 2 . (B.13) 

zi s-c 

- Next, express the sine in exponential form and shift the second integral by C. When 

we shift the limits by C, we have to include a phase shift of ei2*Au. Thus, Eq. (B.13) 

becomes 

e-2nayTo 
3 &SC 

. -inAv 

4 sin2 ~Av I s ze q*(z)dz + ieeirAu / &)dj’ . (B.14) %i 3 

Now, we add these two integrals and perform the final summation over n; this yields the 

second expression in Eq. (5.7). 
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11. TABLES 

Table 1. Effects of rotational [O] and vertical [ym] misalignments. 

Misalignment Effect Result 

.- 
Vert. BPM Yc M Ym 

Vert. Quad. AG, = -Klym 

Vert. Sext. A& = Kzym 

Rot. Bend AG, = -GO 

non-zero closed orbit 

dipole kick 

coupling 

dipole kick 

I Rot. Quad. I Ar?-, = 2K10 ( coupling 

Table 2. cY from vertical dispersion due to misalignments in the NDRl. v 

h/lisalignment Calc. cY Simulated eY 

Random quad. 0 = 0.5 mrad I 1.91 x 10-12 1 1.83 f0.05 x lo-l2 1 - 

Random sext. ym = 15Opm I 6.51 x lo-l2 1 6.42 at 0.16 x lo-l2 1 

Corrected closed orbit due to random 
quad. ym = 150pm and BPhI ym = 150pm 1.32 x 1O’l2 1.1 f0.2 x 10-12 

Table 3. ey from betatron coupling due to misalignments in the NDRl. 

Misalignment I Calc. cY I Simulated ey I 
Random quad. 0 = 0.5 mrad 6.00 x 10-l” 6.17 f 0.14 x 10-l’ 

Random sest. ym = 150pm 1.16 x 10-11 1.11 f 0.02 x 10-11 

Corrected closed orbit due to random 
quad. ym = 150iLm and BPM ym = 150pm 2.01 x 10-12 2.6 f 0.3 x 10-l” 
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Table 4. cy from globally corrected vertical dispersion in the NDRl. 

Misalignment Calc. Ed 

Random quad. 0 = 0.5 mrad I 0.72 x lo-l2 

Simulated cy 

0.80 f 0.02 x lo-l2 

Random sext. ym = 150pm I 2.44 x lo-l2 2.35 f 0.04 x lo-l2 

Corrected closed orbit due to random 
quad. ym = 150pm and BPM ym = 150pm 0.50 x lo-l2 0.60 f 0.02 x lo-l2 

Table 5. ey from locally corrected coupling due to misalignments in the NDRl. 

h’lisalignment Calc. cY 

Random quad. 0 = 0.5 mrad 1 1.52 x lo-l2 

Random sext. ynz = 150pm I 3.00 x 10-12 

Corrected closed orbit due to random 

quad. ym = 150pm and BPM ym = 150pm 1.01 x lo-l2 

Simulated eY 1 

j 1.7f0.2 x lo-l2 

Table 6. Q, from globally corrected coupling due to misaligmnents in the NDRl. 

Misalignment Calc. Ey Simulated Q 

Random quad. 0 = 0.5 mrad 0.68 x lo- l2 0.71 f 0.0s x 10-12 

Random sext. ym = 150pm 1.33 x lo- l2 1.55 f 0.09 x lo-‘2 

Corrected closed orbit due to random 
quad. ym = 15Opm and BPM ym = 150pm 0.44 x lo-l2 0.7 f 0.1 x 10-12 



12. FIGURE CAPTIONS 
- - 

Fig. 1. The average of vi/p, vs. & for an uncorrected closed orbit. Data points are 

calculated from 20 simulations while the curve is found from the analytic results. 

Fig. 2. The average of qi//& vs. JY for a closed orbit corrected with 20 correctors. 

Datapoints are calculated from 20 simulations while the curve is found from the analytic 

results. 

Fig. 3. Q/Y: clue to vertical dispersion vs. Ncorr in the NDRl lattice. Data points are 

calculated from 20 simulations while the curve is found from the analytic results. 

Fig. 4. q,/yz due to v ertical dispersion vs. IV,,,, in the ALS. 

Fig. 5. Q/Y: due to 1 inear coupling vs. A’,,,, in the NDRl lattice. Data points are 

calculated from 20 simulations while the curve is found from the analytic results. 
.w 

Fig. 6. cY/yz due to linear coupling vs. IV,,,, in the ALS. 

- _ 
Fig. 7. h/laments of the distribution for cy from dispersion due to random errors. 

Fig. 8. Events vs. cY due to the vertical dispersion in the NDRl lattice. Data is 

calculated from 1000 simulations of random vertical sextupole misalignments with ring 

tunes of: (a) vY = 3.07, (b) vY = 3.275, (c) vY = 3.43, and (d) vY = 3.275 after global 

correction. 

_ Fig. 9. 957 0 confidence level for cY due to dispersion vs. the fractional tune. 

Fig. 10. Events vs. cy due to the linear coupling in the NDRl lattice. Data is calculated 

from 1000 simulations of ra,ndom vertical sextupole misaligmnents for tunes of: (a) 

Av+ = 0.35 and Au- = 0.10, and (b) Av+ = 0.35 and AY- = 0.50. 

Fig. 11. 95% confidence level for cy due to betatron coupling vs. the distance from the 

difference coupling resonance for Av+ = .35. 
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