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ABSTRACT 

The final electron energy spectrum under multi-photon beam- 
strahlung process is derived analytically in the classical and the 
intermediate regimes. The maximum disruption angle from the 
low energy tail of the spectrum is also estimated. The results are 
then applied to the TLC and the CLIC parameters. 

INTRODUCTION 

The synchrotron radiation, called beamstrahlung, due to the 
beam-beam force is one of the major limitations of the perfor- 
mance for the next generation linear colliders. In addition to the 
average energy loss, the electron energy spectrum also provides 
crucial informations. The knowledge on the tip of the spectrum 
reveals the energy resolution for high energy experiments. The 
spectrum tail, on the other hand, gives the probability of low 
energy particles that will be severely deflected by the SBIIIC beam- 
beam field, and \~oulcl impose constraints on the aperture of the 
final focusing quadrupole. The concern is rclavcnt because for 
the nest generation linear colliders at the TeV range, the critical 
energy of radiation is comparable to the beam erlcrgy. In such 
case some particles can in principle lose a large fraction of their 
initial energies and be deflected by angles much larger than the 
typical value. 

The ainl of the present paper is to dcrivc a simple formula 
for the energy spectrum after successive multi-photon radiations. 
Similar effort has been done recently by Blankcnbcclrr and Drell.” 
Our goal in this paper, hoivever, is to look for compact expressions 
handy-for quick estimations, with attention to the tip and tail of 
the spectrum. In our derivations we bare in mind that a rclntivel! 
accurate formula near the initial energy tip is necdcd for the en- 
ergy resolution purpose, whereas for background considerations a 
crude estimation near the low energy tail is enough. 

THE RATE EQUATION 

Let <(E, 1) be the energy spectral function of electrons at time 
t normalized as J +( E, t)dE = 1. \\‘c assume that the emission 
of a photon ta!ics place in an infinitesimally short time interval. 
Then the cvolrrtion of the spectral function can bc described by 
the-rate equation 

32 
at* 
i= 

-v(E)q(E,f) + 
I 

F( E, E’)C( E’, f)dE’ , (1) 
E 

whcrc the first trrm corresponds to the sink. and tire second term 
the source. for’thr evolution of c( E, 1). Ilcrc, V(E) is thr awrngc 
number of photons radiated per unit time and F is the spectral 
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function of radiation; i.e., F(E, E’)dE’ is the transition probabil- 
ity of an electron from energy E’ to the energy interval (E, E+dE) 
per unit time. Obviously, F(E,E’) = 0 if E 1 E’. h’otice, 
however, that F does not include the probability for electrons to 
remain at the same energy without photon emission. 

An important parameter characterizing the spectral function 
is the critical energy I+ of radiation. Kormalizing it by the energy 
E before emission, we define 

where 7 is the Lorentz factor for energy E. X, the Compton wave 
length, and p the radius of curvature. Since p cx 7, the introduced 
parameter Ii is independent of energy. 

The quantum-theoretical spectral function F was derived b! 
Sokolov and Ternov: 2) 

F(E’, E) = $g#,Y) t 

where y = K((l/E’) - (l/E)]. I cy’s are the modifkd Bessel func- 
tions and V,I is the number of photons per unit time calculated 
by the classical formula, 
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o being the fine structure constant. Kate that for a given ficltl 
strength vet is indcpcndent of the particle energy. 

By definition, v(E) is given by integrating F as 

E 

v(E) = 
/ 

F(E’. E)dE’ E v,,lo([) . (5) 
0 

The function us([) is normalized such that [To(O) = 1, and can 
be rcprcscnted by the following approsimatc esppression: 

l/o(C) = 
1 - 0..59s[ + 1.0G1[5/3 

1 $0.9’2’:’ 

where the relative error is less than 0.7% for any <. 

CLASSICAL REGIAIE 

Let us solve Eq.( 1) for constant fields (1; =const) in the cl,assi- 
cal regime, i.c., (0 << 1. Instead of using the csact Sokolov-Tcrno\ 
formula for f(C,v) as in Eq.(3). we invoke an approsirnatr spectral 
function 

1 
9(Y) = - -?/3(-Y 

l-(l/R)Y ’ (7, 

which gives a rrasonablc approximation for an>’ C and y. The 
advantages of using g(y) is that it is a function of y only and it 
provides a sirnplr Lnplacr transform. 
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The rate equation can now be solved exactly with v(E) = 
Y,I in the calssical limit. Changing variables to r] E K/E and 
~(7~2) E E$(E, t), the rate equation can be rewritten a 

Applying the following Lapiace transformations, 

m 

cj(P,f) = 
/ 

e-"Pv(rl, Wg ; 
0 

m 

i(P) = 
/ 

1 
e-gP9trl)drl = (1 + p)lp ; 

0 

Eq.(S) take: the form 

a* 
~=ucl -I$ 

[ (1 +IpJ,/” + ’ 1 
which can be sol~ccl immediately to obtain 

3hf) = 3(p,O)esp[-W,r(-1 + (1 +p)-li3)] , 

(8) 

(9) 

(10) 

(11) 

with Ik’,l = vcrf being the average number of photons radiated up 

to the time t. 

Let us assume the initial condition Q(E, 0) = 6(E-Eo). Then 
from the inverse Lapiace transformation wc get 

e-.~cl-Y 1 
X+iS 

-- r”(E,f)= CoE ?*j 
I 

esp(Nc,p-‘13 + yp)dp , (A > 0) 

A-i33 

(12) 
with y = 7 - ~0 and 70 = Ii/Eo. Using p instead of yp, we get 

+(E.f) = e-.?“‘[6(E - Eo) + -j$$h(y”‘n;r)] , (13) 

wit11 . 

X+8X 
I k(r) = yT I 

rsp( Ip 
_I., 

--I/3+p)r(i)=~~ . 
“=1 n!l’(n/3) (1J) 

A-IX * 

The first term of Eq.(13) represents the elcclron population 
that sufcrs no radiation. In addition, each term of 111c Taylor 
cspansion in Eq.( 1.1) has a physical craning: The 11” term cor- 

responds to 71 times of ilcrations on the radiation spcctrai f:l:lc- 
lion F, thus rrprcscnts the process of n-photon emissions. For A 
given r, the largest cont.ributioll comes from the term n my & = 
my’/‘. Th crc OIC I f or a finite Xc, the tail of the spectrum is 
not dominated bg single photon emissions, but by multi-photon 
emissions. 

Applying tile saddic point method to Eq.( l-l), we can find the 
asymptotic form for /I(I) at r > 1. B.ascd upon this zymptotic 
form an approsimatc csprcssion is available: 

h(r) - (1.5) 

which is accurate within 22 for any 0 _< z 5 W. for the I and y dimensions, rcsprctivciy. and 0 = ‘T,,~. 

INTERMEDIATE REGIME 

For finite values of t, the rate equation cannot be solved es- 
actly since v(E) is not constant any more. However, in the inter- 
mediate regime where [ 6 O(lO), v(E) should not deviate from 
vcl too +ificantly. This suggests to a solution based upon minor 
perturbations to the classical result of Eq.(13). 

The first, and natural, attempt is to replace KC, in the espo- 
nent by the photon number calculated by the quantum theor::: 

NT = v(Eo)f = U,,(<o)iVC/ . (16) 

This replacement is good, however, only near the high energy tip 
E - Eo. It turns out that a better approsimation exists if. in 
addition, one repla.ces the second I\;/ in the argument of h(r) b! 
the following emperical formula: 

I?(E)= l ---xc1 $ $-$v, ( 
1+ (OY 

(17 

which reduces to IV,, at E = Eo (or. y = 0). Thus we have 

$(E,t) = e-“2 6(E - 10) + &h(y”3x(y))] . (IS) 

An altcrnativc approach is the following: One may retain the 
second Ncl while replacing the first one with an effcctiw photon 
number. Since the particle with final energy E must have been 
cascadixg down through ail energies between EO and E statisti- 
cally, an efTcctivc photon number can be given by 

I?(E) = ;(I@,) •t u(E))! : #,,(:o) + L,( &)].\;b (19) 

In this approach the solution becomes 

tj:(E.t) = e -.$cE) 6(E _ Eo) + &h(,‘?\;,)]. (?O, 
0 

11 turns out that the sccontl solution apes brttc~ \vitl~ t!.<. 
simulation result bawd OH the approsimatc spectral f\;ilct i,~n. 
w1vxc.a.~ the first fits better with the esact spectral fllnction or 
Sokoiov-Tcruov. \\‘ithout obviol:s advantage of ritl:cr enc. \\,a 
shall sim;)ly adopt Eq.( IS) for the intcrniedinlc rcgilnr. 

hlAXI;\IUAl DISRUPTIOK AKGLE 

Particles that sufTcr severe rncrc iosscs would be disrl:p!cx! 
with Iargc an&s by the stron, - beam-hcam ficitl. :\ simu!ario:~ 
was done by monitoring low encrgv test part irks t111oug!1out thr 
collision process. TLC n~asimum drflcction a11g1<* for a gi\ c:: C:I- 
cru CEO. whrrc ,C < I. is fou~rti 10 bc rougl~l> 

‘D,., E . 
1r, .vo, 

7ur.y(u, + by) ’ 
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Table 1. Parameters for TLC and CLIC 

I ~~ I TLC I CLIC I 

EO [TeV] 0.5 1.0 

N s x 109 5 x 109 

uz,qhn~l 190, 1 60, 12 

02 [PI 26 200 

cz, ty [10-‘2mrad] 2.5S, 0.023 1.53, 0.51 

Dz,D, 0.033, 6.27 0.667, 3.333 

El 3.43 1.48 

‘6 0.15 0.25 

* N, 1.33 3.0 

Emit2 0.013 0.03 

0 z.maz, ~,,maz[milir4 10, 0.4 1.0, 0.4 

1: Quantities computed by simulations. 

The minimum value of E can in principle be as small as l/r. 
But the real problem is about how small a E should one care. Since 
the number of photons Ai7 per beam particle for linear colliders 
in the near future is of order unity, the spectral function +(<Eo) 
given in Eq.( 18) is always dominated by the factor e-Y in the spcc- 
trum tail, \vhcre y >> 1 (in logarithmic sense). Therefore if the 
acceptable background counts is n out of h’ electrons, the mini- 
mum E of concrn~ is approsimntely cletcrmined by 2/ = log(.W/n), 
or 

1 
(23) 

\Yith this value of E, one can directly estimate the maximum 
deflection angle using Eq.(21). Since the dependence on n is only 
logarithmic, one can set n = 1 for practical purposes. 

APPLICATION TO TEV COLLIDERS 

\\e IIO\V apply the formula dreivcd above to the specific Tc\’ 
collider design. So far WC have considered constant fkltls only, 
but in reality tllc beam-beam ficltl varies in time like a Gaussian 
function. l‘hus I\’ (and. thcrcforc, (0) is not a constant in tinlr. 
The pnramctcr (0 has to be rcplnccd with a typical value of [ 
during the collision. \Ye suggest to use 

\vhcre r( is the classical electron radius, oL, oY and u, are tllc 
horizontal, vertical, and longitudinal r.m.s. beam sizes at the 
collision point, rcspcctivcly. This cspression is larger than the 
avcragc [ by a factor about 3/‘2, but it provides better agrcemcnts 
with simulations. The reason is that the low energ? tail of tllc 
spcctruin is tlominatcd by thr radiation with larger local C. and 
is thcrcfore wcightcd more: wiwrcas the high energy tip of the 
spectrum is rclativcly insensitive to the clloicc oft. 

In addition. the ,Yc, at thr cntl of the cntirc collision process 
. has been dcrivcd to be” 

2nr, ,\ 
,Yc/ = 1.06- . 

UI + by 
(25) 

Computer simulations for Gaussian beams have been per- 
formed using the program code ABEL” on the linear collider 
design parameters for TLC,” and that for CLIC6’ The adopted 
parameters are summarized in Table.1. The disruption effect is 
included in the simulation. 

The analytic formula Eq.(lS) (dots) is compared- with the 
simulations (histogram) in Fig. 1. The agreement is excellent for 
the TLC parameter, while there is a slight discrepancy at the low- 
energy tail for the CLIC parameter. The reason is that the fie!d is 
enhanced somewhat in the CLIC case due to the more significant 
pinch effect in the horizontal plane. Since in general the spectrum 
tail is sensitive to various parameters, especially [, the excellent 
agreement seen in the figure is somewhat fortuitous. 
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