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I ABSTRACT

In this paper, a formalism to calculate the lattice functions and y axes. To calculate these norma! modes, we will generalize
and emi:ltan';;s olf a coufpled electron/%sitlrondstgragelrh;f is a procedure discussed in Ref. 1.
presented. e lattice functions are calculated directly from . . . .
the modal matrix of the betatron transport matrix for the ring. To analyze the moh.on: we dugon-a.l;ze the tramPort smatrix
The emittances and damping rates are then calculated from the M. The transport matrix is symplectic, and assuming that the
invariants found in the diagonalized representation. In addition, ~ motionis stable, the cigenvalues will be complex conjugate pairs
a computer program is described which uses the formalism to of the form A; = ¢*. Thus,
calculate the coupled lattice functions, emittances and damping in
rates. The program can either reconstruct the closed orbit from € 0

BPM-data and dipole corrector strengths, or construct an orbit -1 eim .

from misalignments entered into the lattice and then optionally E™"(50)M(s0)E(20) = it - ()

correct the orbit with dipole correctors. The lattice functions, »

eniittances, etc. are then calculated about the resulting closed 0 et

orbit. » Ilere, g1 and p3 are the tunes of the two eigenmodes, denoted 1
) INTRODUCTION and 3, and E(sq) is the modal matrix which is constructed from

columns of the eigenvectors and is, in general, complex valued.

. The modal matrix, E(so), defines a coordinate transforma-
tion to the eigenbasis at a point 3o

Coupling in storage rings has two effects. First, the hori-
zontal and vertical dispersion functions are coupled and thereby
modified. Second, the normal modes of the betatron oscillations
rotate from the z and y axes. In electron/positron rings, both =00y _ = oy opelf
of these effects changeythe equilibrium be/am size. This paper #(s0) = E(s0)¢(20) §(s0) = E™"(s0)(s0) . (3)
discusses a procedure to calculate these effects is discussed. The Since the eigenvalues are constant about the ring, the modal-
procedure is a generalization of Refs. 1 and 5. In addition, it matrix must transform in the same manner as a position vector

"is very similar to the work described in Ref. 2.” The approach

of Rel. 2 uses a 6x6 representation whereas the procedure dis- E(s) = P(s, 50)E(so) . (4)
cussed here uses a 4x4 representation and the explicit form of
the dispersion function. While the 6x6 approach provides an el-
egant tool for calculation, the changes in the dispersion function

Thus, the vector f does not depend upon s; it only dc'pends on
the initia! values and is a constant of the motion.

and the rotation of the normal mode axes are separated in the _An _explicit. form for f— can be found by restricting the nor-
4x4 procedure; this makes il easy Lo use one’s one-dimensional malization of the eigenvectors so that they, like the eigenvalues,”
intuition to understand the coupled case. are complex conjugate pairs; the two eigenvectors in a pair then

In the next section invariants of the single particle molion have the same magnitude. The modal matrix now has the form

(ignoring radiation) are found by diagonalizing the betatron trans-
porl matrix. Here, the normalization and the advantages of using

a symplectic form are .also discussed. Next, the effects of syn- E=1§ & & &° ’ (3)
chrotron radiation are included and the normal mode emittances oo
and damping rates are calculated. Throughout, analogy is made ) - - . . L
with the uncoupled case to gain an intuitive understanding for \\hcrt; € and €3 are the eigenvectors associated with eigenval-
the procedure. Finally, a parameterization of the coupled lat- ues ¢*! and "3, and the * represents the complex conjugate.
tice is discussed, and then a program that performs the coupled With this restriction, the components of § will also be complex
calculations is briefly described. c?‘njugate pairs and can be written in terms of a modulus and a
: ase: '
T COUPLED LATTICES P |
- In a storage ring the lincar betatron motion in the transverse ‘/J;".;
Janes can be described by a 4x4 transport matrix * - - VA
P ) P ! E=EYs)F(s) where §= ! " ()]
x ﬂ;c ?
5 ST
I(s) = P(s, )l wl I = 1 . Sy
f(s) (3,%0)(s0) rere ¥ v 1 Here, Ji and J; are single particle invariants and 8, and 03 are

¥ the respective pliases. We will see that with an appropriate
choicg of normalization, these variables will be the action-angle
and P(s, o) transports the motion [rom point sg to point s. The coordinates for the two normal modes.
transport matrix for one turn of the ring at point sg, M(sp), is Since the motion is derived from a linear Hamiltonian system
given by P(so+C, s0). When the lattice is uncoupled, M will be and is described by a canonical transformation, there exists a
block diagonal and the normal modes of the betatron oscillations
will be along the z and y axes. In contrast, when the lattice
contains coupling elements, the normal modes rotate from the

. . 3
constraint on the eigenvectors, namely,

0 HMNFELN,

&(4)S6(e) = {tons! A =1/);

(M
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anti-symmetric matrix

0 -1 0 O
1 0 0 0
S = (8)
0 0 0 -1
0 0 1 0

Thus, with an appropriate choice of normalization, the coordi-
nate transformation to the eigenbasis will be an extended canon-

ical transformation,4 i.e.
E(s)SE(s) =4S . (9)

There are two advantages to this choice of normalization.
First, the inverse of the modal matrix, which will be needed
s find:

‘latcl, JO tll ‘AJGJ UU llll\A
E~(s) = iSE(s)S . (10)

Second, the invariants, Ji, J3, 61, and 83, are the action-angle
coordinates for the two normal modes. Thus, as in the uncoupled
case, the normal mode emittances are just the ensemble averages
of the actions:

€ = (Jl) €3 = (J3) . (ll)

Furthermore, as in the uncoupled case, the four-dimensional
emittance is just the product of the two emittances.

NORMAL MODE EMITTANCES

In an electron/positron storage ring the emittance is deter-
mined by two competing processes: quantum excitation and ra-
diation damping, both of which result from the synchrotron ra-
diation. In this section, we will first consider the quantum exci-
tation which is due to the discrete nature of the radiation and
then discuss the radiation damping which results from the av-
erage properties of the radiation. Our treatments of both the
excitation and the damping are simple generalizations of the
treatments given in Ref. 5.

In the absence of synchrotron radiation, the single particle
invariants, J; and J3, can be calculated using Eq. (3),
Ji = Z(s)A(s)E(s)  and = F$)B(s)(s),  (12)

where the matrices A and B are

1, ._ - _ -

Ajr(s) = 5 (BETME T + ET19ET ) 13)
2 13
1, 1 1 e

Bji(s) = §(E HET g + BTGB )

These two matrices, A and B, are both real symmetric matrices
since the eigenvectors are complex conjugate pairs.

To calculate the change of J; and Jj in the presence of radia-
tion, two effects need to be considered: the radiation of photons
and the replacement of the radiated longitudinal energy in RF
cavities. First, when a photon is radiated, the closed orbit is
displaced by an amount proportional to the dispersion function.
Thus the change in the betatron motion is

u .
—7 14
Eorl i ( )
where u is the photon energy and 7 are the four components
of the dispersion function. Second, when the particle passes
through an RF cavity, the particle gains energy in the longitu-
dinal direction, changing the slope of the trajectory

SE*
61’ = I — , 6!]’ = —-y"E)— .

6 =

(1)

Here, §E™ is the energy gain in the cavity. Notice that the effect
of dispersion in the cavity has not been included; this effect is
very small unless one is close to a synchrobetatron resonance.

Combining these two expressions, Egs. (14) and (15), and -
using Eq. (12), the change in Jy, and similarly for J3, is

= a3

6]—“2:" U~ SE* , , ,
1= EOZ—'I]AT} + 2FOIA7] — 2—E'0~(I A2ka + Yy A4ka) y (16)

where the expression includes an implicit sum over the subscript
k. Note that the term proportional to (§E*/Ej)? has been ig-
nored; this term will be much smaller than the others. Also
notice that the first term does not directly depend upon z while
the others do; thus, the first term, which is the quantum excita-
tion term, is a random walk diffusion term while the others lead
to exponential damping or anti-damping.

Initially, consider the first term of Eq. (16). Using radiation
formulas for the emission rate of photons and Eq. (11) for the

Pmlﬂ:«mrpq we calculate the average rate of r}ungp of the normal

A€ LVIilidy

mode emxttances due to the quantum diffusion. The result is

dﬁ_ )2 Us 29§|G37Adqds
di T ToE §G%ds

| X (1)
des » Us 2§|G*[7Bids
= 097 2] -
dt ToEs §G-ds

Heré, C, = 3.84 x 1072 m, and Uy, Tb, and Ej are the energy
radiated per turn, the revolution time, and the energy of the
particle, respectively. Finally, G(s) is the reciprocal of the local

bending radius, G = 1/p = , /G2 + G},

the total bending ficld.

The other contributions to Eq. (16) are a bit more compli-
cated to calculate. Since we are considering average effects, the
photon energy u can be replaced b) the power radiated P ét.
Unfortunately, P, depends upon Z; note that this was 1gnored )
in the quantum exr"ahon calculatxon but it has a small effect
there. To include this dependance, we expand Py in a power
series:

and is proportional to

- 2K ]
P,(Z) = P4(0) [l + F‘(yG’z +zG,)+ ?G'—,"-’(IG‘

where G is defined above, and G; and Gy are equal to the inverse
of the horizontal and vertical projections of the local bending

radius. In addition, K| and A" are the normalized quadrupole
and skew quadrupole gradients: K| = €/poc8B,/8z and K =
e/poc 0B, /0.

To complete this calculation, Eq. {3) is used to write the ¥

coordinates in terms of {. Then, one averages over particles, i.e.,
over the phases 0; and 3. Finally, the result can be simplified
using Eqs. (9) and (10). One finds

—ycn],u&

(1(]'3
dt

Uo
2E0Ty

= —201'361,3 whcre J] 3T

(19)

and where the damping rates, a1 3, have becn expressed in terms
of the normal mode damping partition functions J; and J3:

f’]}E‘]li [CXE-122 + C,E_l'_q]ds
§ G*ds

Ji=1 +2hnag{

Ji=1+ leag{f,’lEdU [CIE_IQ * CyEq“]ds} .

fG:’ds
(20)
The coefficients C; and C, are
C: = GG + 2G4 Ky 5 Cy=G"G,+2G.Ky. (2])

Notice that the skew quadrupole terms have not been included
in these coefficients, but they are trivial to add.



At this point, the equilibrium emittance is calculated by si.m-
ply equating the rates of these two processes, quantum excitation

and damping — Eqs. (17) and (19), respectively. The final re- -

sults for the normal mode emittances are
7* 2§ |G®|ijAqds
€ = Cq—-————z———-——
Ji f G?ds

(22)
€ = Cq_j:;_———___f Pds
BEAM SIZES and LATTICE FUNCTIONS

In this section the previous results are used to calculate both

the action-angle representation for the beam position and the

" beam sizes. In doing so, a parameterization of coupled lattices

will be discussed; this parameterization was originally introduced

in Ref. 6. While this choice of parameters is intuitive, a few of
the pitfalls will also be mentioned.

The particle position can be expressed in action-angle co-
ordinates using Egs. (3) and (6). To parameterize the coupled
lattice, one simply makes an analogy with an uncoupled lattice
and defines B functions and phases. Thus, Eq. (3) becomes

z(s) = +/2J18z1 cos(z1 + 01) + +/2J38:3 cos(¢z3 + 03)
y(s) = /2J18y1 cos(¢y1 + 01) + \/2J38y3 cos(¢y3 + 63) ,

where the 8’s and phases depend upon s. Likewise, we can solve
for the beam sizes: :

(@%(s)) = e1B21(s) + €aBa(s)
(Iy(s)) = €1/ ﬂrlﬁyl COS(¢::1 - ¢y1)

(23)

. + 53@;(:05(‘?5:3 — ¢y3) (24)
(¥%(s)) = e1Byi(s) + eaBya(s)
or, in general, '
(zjz1) = €22Re(Ej1Ei) + €32Re(E;j3E) . (25)

In terms of this parameterization, the elements of the modal

matrix are
Ei3 = /Bzaf2e®

En = /B /29 (26)
Esi = y/By1/2e% Ess = /By3/2¢%%

and the components Eaj and Ey; are found by taking the deriva-
tives of Ey; and Ej; with respect to 5. Notice that there are 16
individual parameters: four §’s, four df3/ds’s, four ¢’s, and four
d$/ds’s. This is cumbersome; only 10 independent parameters
are peeded to specify the matrix since the transfer matrix is sym-
plectic. " The dependances between parameters are found from
the symplectic condition Eq. (9), but unfortunately, some of the
dependances are complex and do not simplify the relations.

Another point of interest occurs when the ring is on a cou-
pling resonance. When the ring is completely uncoupled, the
coupled parameters reduce to the normal uncoupled parameter-
ization:

ﬂzl:ﬂz, ﬁy3=ﬁyy ﬁ13=ﬁy]=01 (27)

where f; and B, are the normal § functions. Assuming that
the ring is far from a coupling resonance, our parameters cha..n-gc
slowly as the coupling is increased. This allows for an intuitive
understanding; a kick in the z plane will lead to some small
amplitude vertical motion. Unfortunately, when one is on a cou-
pling resonance, the eigenvectors are no longer orientated near
the r and y axes, even in the limit of small coupling. In this case

1 o
Brr =Pz = %5: , Byt = By3 = 513;, . (28)

and thus, it is not as simple to gain a feel for the motion.

CEMIT

The formalism described above has been implemented in a
computer program called CEMIT (Coupled EMITtances). The
program will input an arbitrary storage ring lattice. Then, a
number of random errors can be simulated, including magnet
misalignments and power supply variations. Next, the closed
orbit must be specified. Either the orbit is reconstructed from
BPM (Beam Position Monitor) measurements which are input,
or the orbit is calculated from the bending fields and errors.
In a lattice that contains nonlinear elements, the closed orbit
calculation is iterated until the desired convergence is attained.
Finally, the orbit can be corrected with dipole correctors. Cur-
rently, the program uses a simple RMS correction procedure, but
other methods can easily be implemented.

After calculating the closed orbit, the dispersion function
associated with the orbit is found. Then, using the formalism
described above, the program calculates the normal mode emit-
tances and damping times. In addition, the coupled lattice func-
tions and the beam sizes can be plotted.

The procedure that has been described for calculating the
emittances uses the symplecticity of the transport matrix M. At
this time, the symplecticity of M is ensured by approximating
the nonlinear fields in a magnet with a delta-function element
located at the center. In the future, it is planned to improve the
program by using a more detailed canonical integration scheme.

Currently, the program has been used to study alignment
tolerances in a preliminary damping ring design for the TLC

(TeV Linear Collider). In addition, the program was used to
find vertical orbit bumps to increase the width of the coupling
difference resonance in the SLC North Damping Ring, and it is
also-being used to study methods of using vertical separation
to increase the number of bunches when colliding beams in the-
PEP ring at SLAC.

SUMMARY

A formalism for calculating the beam emittances and lat-
tice functions in an arbitrarily coupled storage ring has been
described. Throughout, analogy has been made with the un-
coupled case to give intuition. Finally, the computer program
CEMIT, which performs these calculations on an arbitrary stor-
age ring lattice, has briefly been described.

I would like to thank Ron Ruth for many helpful suggestions
and critiques, and Etienne Forest for useful discussions.
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