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- - ABSTRACT 
In this paper, a formalism to calculate the lattice functions 

and emittances of a coupled electron/positron storage ring is 
presented. The lattice functions are calculated directly from 
the modal matrix of the betatron transport matrix for the ring. 
The emittances and damping rates are then calculated from the 
invariants found in the diagonalized representation. In addition, 
a computer program is described which uses the formalism to 
calculate the coupled lattice functions, emittances and damping 
rates, The program-can either reconstruct the closed orbit from 
BPhI-data and dipole corrector strengths, or construct an orbit 
from misalignments entered into the lattice and then optionally 
correct the orbit with dipole correctors. The lattice functions, 
emittances, etc. are then calculated about the resulting closed 
orbit. 

. 
INTRODUCTION 

Coupling in storage rings has two effects. First, the hori- 
zontal and vertical dispersion functions are coupled and thereby 
modified. Second, the normal modes of the betatron oscillations 
rotate from the z and y axes. In electron/positron rings, both 
of these effects change the equilibrium beam size. This paper 
discusses a procedure to calculate these effects is discussed. The 
procedure is a generalization of Rcfs. 1 and 5. In addition, it 

.is very similar to the work described in Ref. 2.-The approach 
of Ref. 2 uses a 6x6 representation whereas the procedure dis- 
cuss&here uses a 4x4 representation and the explicit form of 
the dispersion function. While the 6x6 approach provides an cl- 
egant tool for calculation, the changes in the‘dispersion function 
and the rotation of the normal mode axes ue separated in the 
4x4 procedure; this makes it easy to use one’s one-dimensional 
intuition to understand the coupled case. 

Iu the nest section invariants of the single particle motion 
(ignoring radiation) are found by diagonaliting the bctatron trans- 
pool matrix. H&c, the normalization and the advantages of using 
a symplcctic form are also discussed. Next, the ekts of syn- 
chrotron radiation are included and the normal mode emittanccs 
and damping rates are calculated. Throughout, analogy is made 
with the uncoupled case to gain an intuitive understanding for 
the procedure. Finally, a paramctcrization of the coupled lat- 
tice is discussed, and then a program that performs the coupled 
calculations is briefly described. 

- COUPLED LATTICES 
III a storage ring the linear betatrou motion in the transverse 

plants can bc dcscribcd by a 4x4 transport matrix, 

Z(s) = P(s,‘ss)r’(so) r’ z :I 
where 

0 

(1) 
Y 
Y’ 

and P(s,rs) transports the motion from point SO to point s. The 
transport matrix for one turn of the ring at poinl so, hl(sa), is 
given by P(ss+C,ss). \\‘hcn the lattice is uncoupled,, M will be 
block diagonal and the normal modes of the betatron oscillations 
will be along the z and y ases. In contrast, when the lattice 
contains coupling elcmcnts, the normal modes rotate from the z 
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and y axes. To calculate these -normal modes, we will generalize 
a procedure discussed in Ref. 1. 

To analyze the motion, we diagonalize the transport .matrix 
M. The transport matrix is symplectic~ and assuming that the 
motion is stable, the eigenvalues will be complex conjugate pairs 
of the form Xj = e’*J. Thus, 

E-‘(~o)WO)E(SO) = (‘:’ & &, .9,) . (‘2) 

Here, pi and pz are the tunes of the two eigenmodes, denoted 1 
and 3, and E(ss) is the modal matrix which is constructed from 
columns of the eigenvecton and is, in general, complex valued. 

The modal matrix, E(N), defines a coordinate transforma. 
tion to the l igenbasis at a point ss 

+o) = E(soj{(ss) fiso) = E-‘(so)Z(so) . (3) 

Since the eigenvahies are cons&t about the ring, the modal 
matrix must transform in the same manner as a position vector 

E(s) = P(s, s@(ss) ; 

Thus, the vector {does not depend upon s; it only depends on 
the initial values and is a conslonf of the motion. 

An explicit form for f can be found by restricting the nor- 
malization of the eigenvectors so that they, like the cigenvalues,- 
are complex conjugate pairs; the two eigenvecton in a pair then 
have the same magnitude. Tbe modal matrix now has the form 

where Z” and gz are the eigenvcctors sasociatcd with eigenval- 
ues ei”l and e’pa, and the l represents the comples conjugate. 
\Vith this restriction, the components of f will also bc complex 
conjugate pairs and can be written in terms of a modulus and a 
phase: 

f= E-‘(s)qs) where <= * 02 

llcrc, Ji and 3s are single particle intariants and 01 and 0~ are 
the respective pbascs. We will see that with an appropriate 
choice of normalization, these variables will be the action-angle 
coordinata for the two normal modes. 

Since the motion is derived from a linear llamiltonian svslem 
and is described by a canonical transformation, there esists a 
constraint on the eigenwctorsf namely, - 

qs)sc;(s) = 1 0 if Ai # l/1, 
const if A, = I/X, (7) 

where eland A are the cigcnvecrors and eigcnvalucs, and S is t hc 
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anti-symmetric matrix Combining these two expressions, Eqs. (14) and (15), and 
using Eq. (12), the change in 51, and similarly for Js, is 

Thus, -with an appropriate choice of normalization, the coordi- 
nate transformation to the eigenbasis will be an extended canon- 
ical transformation,4 i.e. 

E(s)SE(s) = iS _ (9) 

There are two advantages to this choice of normalization. 
First, the inverse of the modal matrix, which will be needed 
later, is trivial to find: 

- 
E-‘(s) = iSET)S . (10) 

Second, the invariants, Jr, J3, Or, and 83, are the action-angle 
coordinates for the two normal modes. Thus, as in the uncoupled 
case, the normal mode emittances are just the ensemble averages 
of the actions: 

Cl = (31) 63 = (53) : ( 1) 
Furthermore, as in the uncoupled case, the four-dimensional 
emittance is just the product of the two emittances. 

NORMAL MODE EMITTANCES 
In an electron/positron storage ring the emittance is deter- 

mined by two competing processes: quantum excitation and ra- 
diation damping, both of which result from the synchrotron ra- 
diation. In this section, we will first consider the quantum exci- 
tation which is due to the discrete nature of the radiation and 
then discuss the radiation damping which results from the av- 
erage properties of the radiation. Our treatments of both the 
excitation and the damping are simple generalizations of the 
treatments given in Ref. 5. 

In the absence of synchrotron radiation, the single particle 
invariants, Jr and J3, can be calculated using Eq. (3), 

.7i = z$)A(s)Z(s) and .73 = zT)B(s)Z(s) , (12) 

where the matrices A and B are 

Ajk(s) E $(E-‘ljE-‘zk + EmlgjEvllk) 

i (13) 
Bj~(s) z s(E-13jE-1,k + E-14jE-13k) . 

These two matrices, A and B, are both real symmetric matrices -. since the eigenvcctors are complex conjugate pairs. 
To calculate the change of Jr and 53 in the prcscnce of radia- 

tion, two elfects need to be considered: the radiation of photons 
and the replacement of the radiated longitudinal energy in RF 
cavities. First, when a photon is radiated, the closed orbit is 
displaced by an amount proportional to the dispersion function. 
Thus the change in the betatron motion is 

61= g)f, (1“) 

where u is the photon energy and f are the four components 
of the dispersion function. Second, when the particle passes 
through an RF cavity, the particle gains energy in the longitu- 
dinal direction, changing the slope of the trajectory 

&’ = -*e&L ; 6’=- ,6E+ Y y Eo . 

Ilere, 6E+ is the encra gain in the cavity. A’otice that the effect 
of dispersion in the cavity has not been included; this effect is 
very small unless one is close to a synchrobctatron resonance. 2 

where the expression includes an implicit sum over the subscript 
k. Note that the term proportional to (SE+/EO)~ has been ig- 
nored; this term will be much smaller than the others. Also 
notice that the first term does not directly depend upon I while 
the others do; thus, the first term, which is the quantum excita- 
tion term, is a random walk diffusion term while the others lead 
to exponential damping or anti-damping. 

Initially, consider the first term of Eq. (16). Using radiation 
formulas for the emission rate of photons and Eq. (11) for the 
emittances, we calculate the average rate of change of the normal 
mode emittances due to the quantum diffusion. The result is 

dcl Uo 
dt = “,r2Ts& 

2 j IG3 \:A?‘& 
$ G?ds 

de3 Uo 2 f lG3($Bfds c 2- 
dt = ” TOE,, $G’ds . 

(17) 

Here, C, = 3.51 x 10-13m, and Us, To, and EO are the energy 
radiated per turn, the revolution time, and the energy of the 
particle, respectively. Finally, G(s) is the reciprocal of the local 

bending radius, G  = l/p = dm, and is proportional to 
the total bending field. 

The other contributions to Eq. (16) are a bit more compli- 
cated to calculate. Since we are considering averagedfects, the 
photon energy II can be replaced by the power radiated P,&t. 
Unfortunately, P, depends upon 2’; note that this was ignored - 
in the quantum excitation calculation, but it has a small effect 
there. To include this dependance, we expand P, in a power 
series: 

P,(S) = P,(O) 1+ 2h;(yGz+rGy)+~(rG~-yGJ] , (1s) @  

where G  is defined above, and G, and G, are equal to the inverse 
of the horizontal and vertical projections of the local bending 
radius. In addition, Kr and k are the normalized quadrupole 
and skew quadrupole gradients: h’r = e/mci?B,/dI and i = 
e/pocaB,/ar. 

To complete this calculation, Eq. (3) is used to write the I 
coordinates in terms of C. Then, one averages over particles, i.e., 
over the phases Or and 03. Finally, the result can be simplified 
using Eqs. (9) and (IO). One finds 

h3 

dt - -~~I,s~IJ I lO where 01.3 = 27 3- ’ 2EoTo 7 (19) 

and where the damping rates, 01,s~ have been expressed in terms 
of the normal mode damping partition functions .7r and Js: 

31 = 1 + Plmag 
$‘I,E-‘lj [CxE-l?? + C,E-‘?,]ds 

jc;?ds 

33 = 1 + 2 Imag hE-‘3,[CzE-1~~ t C,E-‘,,)dJ 
$C?ds I- 

The cocfficicnts C, and C, arc 

c, = C2G, t 2G,K, ; c, = G%, + 2G,h-, . (21) 

Notice that the sLew quadrupole terms have not been included 
in these coefficients, but they are trivial to add. 



At this point, the equilibrium emittance is calculated by sim- 
ply equating the rates of these two processes, quantum excitation 
and damping - Eqs. (17) and (19), respectively. The final re- 
sults for the normal mode emittances are 

e1 = &2$ lG31%Ws 
3 f G2ds 

(22) 
- - 7z 2 Jb 1G3 J;;‘Bfds 

b53 = cq- 
J3 $G2ds . 

BEAM SIZES and LATTICE FUNCTIONS 
In this section the previous results are used to calculate both 

the action-angle representation for the beam position and the 
beam sizes. In doing so, a parameterization of coupled lattices 
will be discussed; this parameterization was originally introduced 
in Ref. 6. While this choice of parameters is intuitive, a few of 
the pitfalls will also be mentioned. 

The particle position can be expressed in action-angle co- 
ordinates using Eqs. (3) and (6). To parameterize the coupled 
lattice, one simply makes an analogy with an uncoupled lattice 
and defines p functions and phases. Thus, Eq. (3) becomes 

z(s) = @zlCO~(4zl + 01) + JmGcos(~,3 + 03) 

Y(S) = @m&4&J,  + 41) + x/5x&4&3 + 83) , 
(23) 

where the p’s and phases depend upon s. Likewise, we can solve 
for the beam sizes: 

(&)) = ~lPzl(S) + c3Pz3(s) 

by(g) = cldmcoS(dz1 - &I) - 

+ ~3&i&C+L3 - dy3) 

(Y2(4 = 41(s) + c3Py3(s) > 

or, in general, 

(24) 

(zjrk) = cr2Re(EjrE;r) + ca2Re(EjsEka) . (25) 

In terms of this parameterization, the elements of the modal 
matrix are 

and the components E?j and Edj arc found by taking the deriva- 
tives of Erj and Eaj with respect to S. Notice that there are 1G 
individual parameters: four /3’s, four d,O/ds’s, four d’s, and four 
dd/ds’s. This is cumbersome; only 10 independent parameters 
are needed to specify the matrix since the transfer matrix is sym- 
plectic. The dcpcndances between parameters are found from 
the symplcctic condition Eq. (9), but unfortunately, some of the 
dcpcndances are complex and do not simplify the relations. 

Another point of interest occurs when the ring is on a cou- 
pling resonance. 1Vhen the ring is completely uncoupled, the 
coupled parameters rcducc to the normal uncoupled paramctcr- 
ization: 

Brl=Pr, By3=By, Pr3=By1=0, (27) 

where pz and BY are the normal /3 functions. Assuming that 
the ring is far from a coupling resonance, our parameters change 
slowly as the coupling is increased. This allows for an intuitive 
understanding; a kick in the z plane will lead to some small 
amplitude vertical motion. Unfortunately, when one is on a cou- 
pling resonance, the eigenvectors arc no longer orientated near 
the I and y axes, even in the limit of small coupling. In this cast 

CEMIT 
The formalism described above has been implemented in a 

computer program called CEMIT (Coupled EblITtances). The 
program will input an arbitrary storage ring lattice. Then, a 
number of random errors can be simulated, including magnet 
misalignments and power supply variations. Next, the closed 
orbit must be specified. Either the orbit is reconstructed from 
BPM (Beam Position Monitor) measurements which are input, 
or the orbit is calculated from the bending fields and errors. 
In a lattice that contains nonlinear elements, the closed orbit 
calculation is iterated until the desired convergence is attained. 
Finally, the orbit can be corrected with dipole correctors. Cur- 
rently, the program uses a simple RMS correction procedure, but 
other methods can easily be implemented. 

After calculating the closed orbit, the dispersion function 
associated with the orbit is found. Then, using the formalism 
described above, the program calculates the normal mode emit- 
tances and damping times. In addition, the coupled lattice func- 
tions and the beam sizes can be plotted. 

The procedure that has been described for calculating the 
emittances uses the symplecticity of the transport matrix M. At 
this time, the symplecticity of M  is ensured by approximating 
the nonlinear fields in a magnet with a delta-function element 
located at the center. In the future, it is planned to improve the 
program by using a more detailed canonical integration scheme. 

Currently, the program has been used to study alignment 
tolerances in a preliminary damping ring design for the TLC 
(TeV Linear Collider).? In addition,, the program was used to 
find vertical orbit bumps to increase the width of the coupling 
difference resonance in the SLC North Damping Ring, and it is 
also--being used to study methods of using verticarseparation 
to increase the number of bunches when colliding beams in the- 
PEP ring at SLAC. 

SUMMARY 
A formalism for calculating the beam emittances and lat- 

tice functions in an arbitrarily coupled storage ring has been 
described. Throughout, analogy has been made with the un- 
coupled case to give intuition. Finally, the computer program 
CEhlIT, which performs these calculations on an arbitrary stor- 
age ring lattice, has briefly been described. 

I would like to thank Ron Ruth for many helpful suaestions 
and critiques, and Etienne Forest for useful discussions. 
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