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ABSTRACT 

The purpose of this calculation is to understand the limitation on the energy 

transfer efficiency of an electron beam to the RF field in the output cavity of a 

klystron or a lasertron. An output cavity with drift tubes is modeled in this cal- 

culation by a region of constant amplitude RF field with exponentially decreasing 

entrance and exit fringing fields. The-exit velocity of an electron traversing such a 

gap is examined as a function of entrance phase for various values of the ratio of 

the peak RF caviiy voltage to electron entrance voltage. Depending on this ratio, 

the dynamics of the electron motion can become quite complex. For a gap with 

:. 

. . f&g-e fields it is found that, even if the gap voltage and phase are optimized, the 
- 

maximum energy that can be extracted from a short bunch is always significantly 

less than 100%. The case in which the electron is created with zero velocity in the 

gap, and s u b sequently leaves the ‘gap having extracted energy from the RF field, 

is also treated. 
-- - 

1. INTRODUCTION 

J. Welch has previously found,r using the MASK simulation code, that a short 

- electron bunch cannot deliver more than about 80% of its energy to an RF gap of 

the type used in the SLAC lasertron experiment and in most klystrons. He further 

found that this limit on efficiency is present using even a crude one-dimensional 

model of the gap in which the bunch is replaced by a single electron interacting 
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with the RF field. In the present note, this problem is pursued further. The electron 

motion is examined in some detail in terms of normalized gap parameters, both for 

relativistic and nonrelativistic examples. We first write down the difference equations 

for the electron motion and then apply them to the case of a plane-parallel gap with no 

fringing field. We next apply them to the case of a typical klystron output cavity with 

drift tubes, modeled by a region of constant amplitude RF field with exponentially 

decreasing entrance and exit fringe fields, as shown in Fig. 1. Also shown in Fig. 1 is 

the field, obtained using SUPERFISH, for th e output cavity of the Xl00 high power 

X-band klystron now under development at SLAC.2 The position and velocity of the 

electron as functions of time are obtained by integrating the equations of motion 

through the gap, starting from an entrance position in a region of negligible RF field. 

The subsequent motion of the electron depends strongly on the phase of the RF 

field (the entrance phase) at the time the electron leaves this entrance position. Of 

particular interest is the exit velocity of the electron, after it has left the gap either by 

transmission or reflection. The exit velocity (and energy) is examined as a function 

of entrance phase for different values of the ratio of the peak RF gap voltage to the 

electron entrance voltage. 

2. -- - EQUATIONS OF MOTION 

2.1. List of Symbols 

E, = RF peak voltage 

w = RF (angular) frequency 

g = gap length (length of uniform field region) 

b = cutoff tube attenuation parameter 

V, = initial electron voltage 

.- Q = ratio of RF gap voltage to initial voltage, a = E,g/V, 

z = electron position along the gap 

2 = normalized position, z/g 

‘u = electron velocity 

u = electron velocity normalized to the entrance velocity, v = V/V, 
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p = electron momentum 

P = electron momentum normalized to the entrance momentum, P = p/p0 

W = ratio of electron exit energy to electron initial energy, W = W/W, 

S$ = phase (time) step, 64 = wAt 

$s = gap transit angle, 4s = wg/v, 

& = initial phase 

E = relative phase (time) advance, e E &S/4,, per phase step 

n = phase step index number 

I$,, = phase at step n, q$, = q& + nS$ 

C#Q = total cumulative phase when the electron exits the gap 

Dt = time that electrons spend in the gap in units of RF period 

y = relativistic energy parameter, y = 1 + eV/m,c2 

p = v/c 
E = velocity of light 

- 2.2. Nonrelativistic Case 

The equations of motion in the nonrelativistic case are 

on+1 = vn + “EAt -- - m 

&a+1 = 2, + vn+lAt . 

_ In normalized form, the equations of motion become 

4 n+l = 4n +Sd 

vn+l = Un + (ac/2)& COS(& 

z n+l = zn + eVn+l 7 .- 

where 

F, = 1 IZnJ < 0.5 

F, = exp [-b (]Zn] - 0.5)] IZnl > 0.5 - 
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Here 2’ = z/g is the normalized position, g is the length of the region of uniform 

gap field, Eo, and v = v/v0 is the normalized velocity where 00 is the entrance ve- 

locity. The normalized gap voltage is cy E Eog/Vo, where Vo is the electron entrance 

voltage. The time step parameter is SC$ = wSt = E$~, where bs = wg/vo is the gap 

transit angle. The fringe fields are assumed to decay with distance in the drift tube 

‘as E N Eo exp [-b/g (]z] - g/2)]. Th e normalizing velocity v, is obtained from 

1 
- mu,” = eEog 2eEog 
2 -; v,= 

J 
- . 

CY am 

2.3. Relativistic Case 

! The equations of motion for the relativistic case are: 

Pn+l = pn + eEAt 

zn+l = zn + vn+l At 7 

where pn = ,&Tnmoc. The normalizing momentum, velocity and energy are: 

-- - 
PO = -ioPomoc = mot 702 - 1 d- , p=m 0 , w. = (To - l)moc2 , YO 

Eg 
yo=l+(yv 7 vo=(yo-l>K , 

e 

where V, = mOc2/e = 0.511 mV. In normalized form, the equations of motion in the 

relativistic case are 

.- $ n+l = 4% + 64 - 

P n+l = Pn + CYC Fzcos $n 

z n+l = zn + CVn , 
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where 

The normalized energy is 

wn = w Yn - 1 =-. 
wo Yo - 1 

Note that the equation for momentum in the relativistic case reduces to the non- 

relativistic expression as 7 + 1, as it should, and the dynamics of the electron become 

independent of the entrance energy. 

3. GAP WITHOUT FRINGE FIELDS; NONRELATIVISTIC CASE 

. . 

In order to delineate the effects due specifically to the fringing field, we first 

consider the case of a cavity without drift tubes (e.g., a gridded gap). This would 

also approximate the case for a hollow beam, or for the electrons at the outer edge 

of a round beam near the walls of the drift tube. Simple analytic expressions can be 

written in this case for the electron velocity and position as a function of time and 

entrance phase. The value of Q just required to bring an electron to rest at the output 

edge of the gap is cy = dg/sin&C, at an entrance phase 40~ = 7r - 4s where d9 < 7r. 
-- - 

The normalized exit velocity as a function of entrance phase for the case & = n/2 

is shown in Fig. 2 for a gap without fringe fields. Note that for cr = 7r/2 one electron 

is indeed just brought to rest at the output of the gap at r& = 90°, but that the slope 

- of the curve is infinite, and hence the efficiency would decrease rapidly with increasing 

phase width of the bunch. At higher Q the plots become more complex. Figures 3 

and 4 show detailed phase space (velocity vs. distance) plots for a range of entrance 

phases. The first singularity near $0 = 68’ on the curve for Q = 2.6 in Fig. 2 occurs 

at thepoint at which electrons are just turned back as they reach the exit of the gap, - 
as seen in Fig. 4. For slightly higher values of ~$0~ the particle makes a loop inside the 

gap but still exits in the positive .z direction. At still larger values of $0 the electrons 

exit in the negative z direction before they can complete the loop. This accounts for 

the region of reflected electrons in the entrance phase range 90°-125’ in Fig. 2. 
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Figure 5 shows the energy extraction efficiency as a function of central entrance 

phase for rectangular bunch current distributions with a phase width of 60’. In the 

case of an output cavity driven by the beam, the phase would adjust itself to transfer 

the maximum energy from the beam to the RF field. However, as seen from Fig. 5, any 

electrons in the broad antibunch region will extract a substantial amount of energy 

.from the cavity field. A relatively few number of electrons in this region can severely 

degrade the efficiency. 

Figure 6 shows the maximum efficiency, and the phase at maximum efficiency, as 

a function of (Y for bunches 20’ and 60’ in width. Note that the efficiency reaches a 

maximum near a M 1.5, then decreases at higher ar. At very large cy the efficiency 

can increase again for short bunches. However, most of the electrons in the bunch 

are reflected rather than transmitted under this condition, certainly an undesirable 

situation for a klystron. 

. . 4. GAP WITHOUT FRINGE FIELDS; RELATIVISTIC CASE 

An example was calculated using the relativistic equations of motion for the case 

qbs = 42, b = 2.5, Vo = 1.0 MV (i. = 3.0). Th ese values correspond approximately 

to the parameters for the output cavity of the SLAC/LLNL SL4 relativistic klystron -- - 
experiment.4 A set of plots, similar to those shown in Figs. 2 to 6 for the nonrelativistic 

case, are shown in Figs. 7 to 11. Note that the maximum energy extraction efficiency 

is significantly lower for the same values of b, &, and bunch length than for the 

- nonrelativistic case. 

5. GAP WITH FRINGE FIELDS 

W-o next look at the modification in the previous results produced by the addition 

of fringing fields with an exponential decay parameter b = 2.5 (see Fig. 1). Figure 12 

shows distance vs. accumulated. phase (time) for cr = 3.0. We see that electrons 

are either transmitted through or reflected from the gap region depending on the 

entrance phase. (The entrance phase is taken to be the phase of the RF field when 
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the electron is at 2 = -2.) A small change in entrance phase (from +a = -26.4’ to 

-26.0’) leads to a change from transmission to reflection. The exit velocity in both 

cases is comparable to the entrance velocity (the velocity is proportional to the slope 

of the curve.) 

Figure 13( ) h a s ows plots of normalized velocity vs. normalized distance along 

the gap axis (phase space plot) for the case when the electron slows down or even 

reverses its velocity in the gap, but exits with about the same velocity as the entrance 

velocity. Figure 13(b) illustrates cases in which the electrons are reflected, that is, 

they exit in the -2 direction. Figure 13(c) illustrates a more interesting behavior: 

the electron exits with a minimum velocity of about 0.4, corresponding to an efficiency 

of 86%. Note that the velocity is nearly zero for CY = 3 at 2 M 1. However, because 

of the fringe field, it is not possible for the electron to exit with this low a velocity. 

Figure 13(d) illustrates a case (Q = 3 and do = -190) for which the electron is 

accelerated during most of the time it is in the gap, exiting with more than double, 

its initial velocity (about five times the initial energy). 

Fig-ure 14 shows the normalized exit velocity as a function of entrance phase as 

Q increases from 0.2 to 2.6. Note that the dip at about -50’ corresponds to the 

singularity near 70’ in the case of the gap with no fringe field (see Fig. 2), but it is 

-. -rounded and does not extend to v = 0. Note also that the region of reflected electrons 

develops very rapidly over a small range of CY = 2.5 to 2.6. 

Figure 15 shows the exit velocity for the case CY = 3. The region near the critical 

phase between transmission and reflection is magnified in the lower curve, where the 

exit velocity is plotted as a function of the log of the phase difference qSd from the 

critical phase, 4d = q& - ~$0. As the critical phase is approached, the exit velocity 

oscillates with an exponentially decreasing entrance phase period, but never falling 

below I/ = 0.35. The pattern shows self-similarity, repeating on a scale that decreases 
.- 

by about 1O1*5 from one cycle to the next. A phase space plot of trajectories for the 

case (Y = 3 is given in Fig. 16 for 10’ intervals in entrance phase. 

The efficiency as a function of central entrance phase is shown in Fig. 17 for a 60’ 

bunch with uniform current distribution. Note that for large Q the efficiency is positive 
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only over a fairly narrow phase range near 40 = 0’. Most electrons outside the bunch 

are strongly accelerated, with a consequent deleterious effect on efficiency. Figure 18 

shows the maximum efficiency and central bunch phase at maximum efficiency as a 

function of CY for 20’ and 60’ bunches. As in the case of the gap with no fringe fields, 

the efficiency can increase again at large a, but again the bunch electrons are mostly 

‘reflected rather than transmitted (the region between the “ears” in Fig. 14). 

- 

Plots of normalized exit momentum and efficiency vs. initial phase for the rela- 

tivistic case with b = 2.5, qSs = 1r/2 and 70 = 3.0 are given in Figs. 19 and 20. The 

plot for maximum efficiency as a function of cy is given in Fig. 21. The efficiency 

reaches a maximum of 72% at cy = 1.5 for the 20’ bunch, and 53% at Q = 0.6 for 

the 60’ bunch. This can be compared with Fig. 18 for the nonrelativistic case, where 

‘I maz = 747 t o a (Y = 1.5 for the 20’ bunch and qnaz = 63% at CY = 0.9 for the 60’ 

bunch. 

. . 6. MOTION OF ELECTRONS CREATED IN THE GAP 

Electrons with zero velocity can appear at any RF phase at any point in a gap, 

either by ionization in the beam region or by photo-emission from the gap surface. 

After spending some time in the gap, these electrons leave the gap either in the 
-- - 

positive or negative 2 direction with some velocity greater than zero. The time spent 

in the gap and the exit velocity depend on the RF phase at the time of the particle’s 

appearance; this is illustrated in Fig. 22 for the nonrelativistic case for electrons 

_ created at the center of a gap with cr = 1, b = 2.5, and & = n/2. The average 

normalized exit energy is 0.12 in this example, with equal probability of the electron 

leaving in the $2 or --z direction. The electron motion in phase space is shown in 

Fig. 23. 

-For the relativistic case, plots of normalized exit energy as a function of initial 

phase are shown in Fig. 24 for RF gap voltages, V,f = Vo, ranging from 0.01 to 1 MV. 

Still higher gap energies give results which are essentially the same as the V, = 1 MV 

case. Likewise, the V, = 0.01 MV is essentially at the nonrelativistic limit. Note that 

the average normalized exit energy at V,, = 1 MV is about 0.6, about five times the 
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average normalized exit energy for the nonrelativistic case. The phase space plots for 

yo = 3.0 are shown in Fig. 25. 

By specifying a frequency and a gap length, the actual energy and velocity are 

readily calculated. In the nonrelativistic example, as in the previous examples, the 

transit angle for an electron with a velocity v. is specified to be w/2. Thus V, = 2wg/r. 

The normalization energy is then w, = mu:/2 and the gap voltage is E,g = aw,/e . 

The actual energy and velocity at any point, including the exit, are then 

w=wxw, , v=uxvo . 

Electrons appearing with zero velocity anywhere in the gap can only take energy from 

the RF field and hence represent RF loading. 

7. CONCLUSION 

. . -. / The beam dynamics of an electron in an RF gap are relatively complex, even 

for the case of a gap with uniform field and no fringing fields. For such a gap it 

is possible to extract all of the energy from an electron which has just the right 

entrance phase and energy. However, the efficiency falls off rapidly with increasing 

-- -phase width of the bunch. If the gap has an exponentially decaying fringe field, the 

dynamics become still more complex. In this case, it is not possible for an electron 

to lose all of its energy, even in principle. In a real klystron beam, the effect of the 

fringing field depends on radial position. The effect of the RF magnetic field on the 

motion of off-axis electrons must also be taken into account in a real gap. In addition, 

collective effects and energy spread in the incident beam can also affect the efficiency. 

The simple one-dimensional, single-particle dynamics discussed here, however, gives 

an indication of the limit on the efficiency that can be obtained. 
.- - 

Both the nonrelativistic case and the case where electrons can reach relativistic 

velocities have been considered. In the nonrelativistic regime, the exit to entrance 

energy ratio is independent of entrance kinetic energy, and depends only on the ratio 

of the RF gap voltage to the electron entrance voltage. In the relativistic regime, 
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the exit to entrance energy ratio (normalized energy) does depend on the electron 

entrance voltage. In the highly relativistic limit, the normalized exit energy is again 

independent of entrance energy. 

The energy extracted from the RF field by electrons created in the gap by ioniza- 

tion or photo emission has also been considered. The exit energy of a zero velocity 

electron appearing at the center of the gap depends on the value of the RF gap volt- 

age, and of course on the RF phase at the moment of its creation. It is found that 

the loading is much more severe for a gap where the electrons can reach relativistic 

energies (RF gap voltage exceeding 200 kV or so). 
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FIGURE CAPTIONS 

Fig. 1. Normalized electric field ‘amplitude vs. normalized position. Dashed curve 
gives the field for the the SL4 klystron output cavity obtained with 
SUPERFISH. 

Fig. 2. Normalized exit velocity vs. entrance phase (#Jo = w/2, no fringe fields, 
nonrelativistic). 

Fig. 3. Normalized velocity vs. distance (o = a/2, no fringe fields, nonrelativistic). 

Fig. 4. Normalized velocity vs. distance (cy = 2.6, no fringe fields, nonrelativistic). 

Fig. 5. Efficiency vs. entrance phase for a 60 O bunch, no fringe fields, nonrelativistic). 

Fig. 6. Maximum efficiency (solid) and entrance phase at maximum (dashed) effi- 
ciency vs. Q, no fringe fields, nonrelativistic. 

. . 

Fig. 7. Normalized exit momentum vs. entrance phase (4, = x/2, no fringe fields, 
relativistic, V, = 1 MV ). 

Fig. 8. Normalized momentun vs. distance (a = 7r/2, no fringe fields, relativistic). 

Fig. 9. - Normalized momentum vs. distance (cy = 2.6, no fringe fields, relativistic): 

Fig. 10. Efficiency vs. entrance phase for a 60’ bunch, no fringe fields, relativistic. 

Fig. 11. Maximum efficiency (solid) and entrance phase at maximum efficiency (dot- 
ted) vs. cy, no fringe fields, nonrelativistic. 

Fig. 12. Normalized distance vs. accumulated phase (time), for a gap with fringe 
fields, nonrelativistic o = 3.0. -- - 

Fig. 13. Normalized velocity vs. normalized distance for cy = 2 and CY = 3 and for 
various values of ~$0, with fringe fields, nonrelativistic. 

Fig. 14. Normalized exit velocity vs. entrance phase, (+s = 7r/2, b = 2.5), with 
fringe fields, nonrelativis tic. 

Fig. 15. Normalized exit velocity as a function of entrance phase (top) and as a 
function of phase deviation from critical phase (bottom) for o = 3. 

Fig. 16. Normalized velocity vs. normalized distance for Q = 2 at 10’ intervals in 
entrance phase, gap with fringe fields, nonrelativistic. 

.- 
Fig. 17. Efficiency vs. entrance phase for a 60” bunch, gap with fringe fields, non- 

relativistic. 

Fig. 18. Maximum efficiency (solid curves) and entrance phase at maximum effi- 
ciency vs. o, gap with fringe fields, nonrelativistic. 
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Fig. 19. 

Fig. 20. 

Fig. 21. 

Fig. 22. 

Fig. 23. 

Fig. 24. 

Fig. 25. 

Normalized exit momentum vs. entrance phase for a gap with fringe fields, 
relativistic case, V, = 1 .MV. 

Efficiency vs. entrance phase for a 60’ bunch, for gap with fringe fields, 
relativistic case with Vo = 1 MV. 

Maximum efficiency (solid) and entrance phase (dashed) at maximum effi- 
ciency vs. (Y, for a gap with fringe fields, relativistic case, Vo = 1 MV. 

Normalized exit velocity (solid) and dwell time (dashed) vs. initial phase 
for an electron created at 2 = 0 with v = 0 (4, = 7r/2, b = 2.5, (Y = l), 
gap with fringe fields, nonrelativistic case. 

Phase space diagram for electrons originating with zero velocity at the gap 
midpoint for 10’ intervals in initial phase, for a gap with fringe fields, non- 
relativistic case. 

Normalized exit energy vs. initial phase for electrons originating with zero 
velocity at the midpoint of a gap with fringe fields (4, = 7r/2, b = 2.5, (Y = 
l), for several values of gap voltage. 

Phase space diagram for electrons originating with zero velocity at the 
midpoint of a gap with fringe fields for 20’ interval in entrance phase 
Vrf = 1 MV. 

-- - 

.- 
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