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ABSTRACT 

We study two variants of block-spin calculations of the Heisenberg antiferro- 

magnet on a triangular lattice, using a unit block which is a hexagon containing 

seven spins. The first method allows mixing between the two lowest doublets on 

each block and leads to vanishing order on the infinite lattice. It gives a strict 

upper-bound on the energy density of -0.9518. A second analysis, based on a 

shadow-Hamiltonian approach, gives a slightly higher energy estimate and leads to 

finite canted magnetization. Comparison with analogous calculations on one and 

t_wo-dimensional rectangular lattices leads us to prefer the first solution. 
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- 1. Introduction 

The Heisenberg Antiferromagnet (HAF) on a triangular lattice is a highly 

frustrated system. Renewed interest in this model has come from the belief that 

understanding of the physics of frustrated systems will be important to the study 

of the new high temperature superconductors. In this paper we discuss several 

ways of calculating the ground-state of the HAF and compare our results to other 

approximate methods for treating the same model. Our study is aimed at a com- 

parison of variational treatments and the conclusions that can be drawn from them. 

In particular we are interested in the question of long range order, and the question 

of whether or not this theory has a mass gap. The Heisenberg model is defined by 

the Hamiltonian 

H = ; c T+(i) a T+(j) 

(iA 
(1.1) 

- ‘. 
where the sum covers all nearest-neighbor pairs on the triangular lattice (twice). As 

shown in Fig. 1, a triangular lattice can be divided into three mutually interlaced 

. sub-lattices, which we call the blue (B), green (G), and red (R) sub-lattices. On a 

triangular lattice each site has six nearest neighbors. Any triangle of the original 
-. - 

lattice contains one site from each colored sub-lattice; thus, if we look at a red 

site, its nearest neighbors are alternating blue and green sites. Just as a staggered 

mean field state is defined for an anti-ferromagnet on a rectangular lattice, we can 

similarly define a canted-mean-field state in which the spins on each sublattice are 

all oriented the same way but with a 120’ rotation between spins on the different 

sublattices. For example, choose the red spins to be oriented along the z axis 

and the blue and green spins to be rotated plus and minus 120” respectively in 

the x-z plane. This ordered state has an energy per site of -.75. The presence or 



absence of canted magnetization is then. addressed by defining an operator which 

has an expectation value of unity in the canted mean-field state. Long range anti- 

ferromagnetic order is indicated by a non zero value for this canted magnetization 

operater. The question of whether or not the ground state of the HAF exhibits such 

order is one of the crucial problems which confronts anyone studying the model. 

There is already a considerable literature on this model. Anderson1 suggested 

a resonating-valence bond (RVB) ansatz, which predicts the existence of a mass 

gap and no long range order. He estimated the ground state energy density per site 

to be & = -.98 but Oguchi et al2 obtain for this ansatz an estimate of -.95 f .02 . 

Similar RVB states have recently been used as a basis for models of superconduc- 

tivity3 . A trial state suggested by Kalmeyer and Laughlin, based on fractional 

quantum Hall states: leads to I = -.94 f .02 . 

‘Huse and Else5 have recently obtained an energy estimate of -1.0789 by using 

parametrized variations of the canted mean-field wave function to estimate the _ I . 

ground-state energy of systems with finite volume and extrapolated to the infinite 

volume limit. They concluded that there exists a remnant canted magnetization of 

0.68. Other calculations which produce even lower estimates of the energy density 
- 

contradict this conclusion. Among these are the results of Oguchi,Nishimori and 

Taguchi 2, who find E = -1.098 f .018. They exactly diagonalize the Hamiltonian 

for small parallelogram (or railroad trestle ) lattices and extrapolate in both length 

and width to obtain an estimate of the infinite volume answer. These authors 

conclude that the ground state on the infinite lattice has no order. 

The methods we describe in this paper are variants of the the Hamiltonian 

block-spin or real-space renormalization group technique .! The virtue of this 

method is that it allows one to explicitly construct infinite-volume trial wave- 
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functions specifically tailored to the problem at hand. Furthermore, it allows one 

to explore the space of non-trivial symmetry-breaking trial states as well as those 

constructed to preserve the symmetries of the problem. In what follows our fun- 

damental blocking unit is chosen to be the seven-site hexagons shown in Fig. 1. 

This is a particularly suitable tiling for a triangular lattice . At each stage this 

blocking reproduces the triangular lattice with no loss of symmetry. In addition, 

the pattern of three interlaced sub-lattices is also preserved if one identifies the 

block color as the color of the central site. Such a seven-site, two state block-spin 

calculation was performed by van de Braak, Caspers and Willemse .7 Truncating 

the Hilbert space of every block onto the lowest doublet they obtained the result 

& = -0.91012 for the average energy per site of the triangular lattice. 

We will present two different generalizations of this approach. Each of these 

calculations introduces some admixture of other states within the Hilbert-space of 

each block. The calculation explained in section 2 uses an admixture between the 

lowest lying doublet and the first excited doublet within each block. This leads to 

& = -0.9518, and implies a vanishing mass-gap. The second method, explained 

in section 3, selects the states to retain on the basis of a shadow-Hamiltonian 

. . 

.-. - 
that includes a background term, which induces canted magnetization. Section 4 

presents the conclusions which we draw from a comparison of these results with 

similar calculations for one and two dimensional rectangular lattices. 
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2. Triangular HAF and 7-Site Blocks 

In the naive block-spin method, at each stage one retains the lowest eigenstates 

of a block Hamiltonian,HB, obtained from the true Hamiltonian H by simply 

dropping all terms that link the individual blocks to one another. When one 

diagonalizes the seven-site Hamiltonian, one finds that the lowest two eigenstates 

lie in a degenerate spin l/2 doublet. The naive block-spin calculation obtained by 

retaining just this multiplet was described in Ref.7. The block-Hamiltonian can 

_- be written as 

H7 = H6 + 227. & (24 

where H6 is the Heisenberg-model on the chain of six spins on the periphery whose 

total spin is s6, and s7 is the spin at the center of the hexagon. The two lowest 

lying spin multiplets are both doublets, that is the total spin S7 = l/2. The lowest. 

doublet has s(j = 1 and E7 = -6.236 and the first excited multiplet has s6 = 0 

and & = -5.6056. The next excitation lies at E7 = -4.56. Our variational ansatz 

is to keep a linear combination’of the lowest two doublets at each iteration and 

vary over the mixing angle, at the conclusion of the recursion. Clearly the choice 

t9 = 0 reproduces the result of Ref. 7. Since the Hamiltonian reproduces itself up 

to an overall scale factor which is less than unity, this calculation predicts that this 

system is at its critical point. 

After the first truncation one obiains a Hamiltonian which is a function of the 

mixing angle, 8, given by the formula 

HtT = -6.236 cos2 0 - 5.6056 sin2 8 + K c g(i) . Y?(j) P-2) 
(4 
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where - 

I< = g cos4 0 + 0.67857 sin2 28 . 

Applying the same transformation n times one finds that the recoupling term scales 

as I?. Successive iterations of the truncation yield a vanishing mass-gap and a 

geometrical series for the energy density. We find the minimum energy for the 

infinite volume system occurs when the mixing angle between the two doublets is 

0 = Omin = 35.8.‘. The energy per site is then - 0.9518. 

We can calculate the expectation value of any operater in this trial state. Of 

particular interest here is the canted magnetization, defined by 

. (2.3) 

-We will evaluate the average canted magnetization on a block of size V = 7”; 

-. j . obtained after n recursive applications of the RG truncation procedure. On such 

a block one can represent this operator as 

A& = g = v-y cos na gz + sin n2Q a,) -- - (2.4) 

where Ic and cy depend on the variational angle 0. For 8 = 0, i.e. truncating 

onto the lowest state of H7, one finds L = 1. This is the largest possible value, 

it gives the most rapid decrease of the expectation value with the volume of the 

system. This behavior coincides with that found for regular magnetization, which 

decays linearly with volume because the system has to have all the spins but one 

canceling- each other to produce a final state of spin one half. For 8 = 0min we 

obtain k = .278. Hence the mean canted magnetization drops more slowly than the 
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regular one and the wave-function has some alignment in the canted directions for 

small blocks. Nonetheless it does decrease as a power of the volume. Therefore over 

large scales no remnant of the canted magnetization is left. This is unavoidable 

when the truncated state is chosen as a linear superposition of two spin i doublets. 

For finite volumes we find some canted magnetization. Thus for V = 49 the result 

is VBk = .34. We note that this is already significantly smaller than the estimate 

derived from the wave-function of ref.5. Hence the two wave-functions are very 

different. Neither does our wave-function correspond to a.n RVB state. We do 

have couplings of the various spins to the lowest possible total spin, but not just 

via spin 0 nearest neighbor pairings. 

For comparison let us apply the same method to the two-dimensional square 

lattice, choosing a similar form for the blocks, namely a central site plus all its 

nearest neighbours (a cross). We get a very different result. In this five-site block 

spin the lowest state is not a doublet, but a multiplet of spin 3/2 after the first 

iteration and 3n/2 after n iterations. This block-spin transformation does not lead 

to a self-similar system at each scale, because of the increasing spin of the retained 

multiplet. Nonetheless, it does yield a variational ansatz which converges to a 
-- - 

I. 

stable result for the ground state energy density and a large expectation value (.75) 

for the staggered magnetization. The finite value of the magenetization operator is 

possible because the single-site states belong to larger and larger irreducible spin 

representations. This contrasts with the previous case where the lowest multiplets 

were always spin l/2 and the canted magnetization was forced to fall to zero 

asymptotically. Since the Hamiltonian in this problem eventually scales to zero 

faster than its block expectation-value grows with the spin, this calculation does 

give a vanishing mass gap. On a one dimensional lattice the equivalent calculation 



. .- 

uses three site blocks and the result looks more like the triangular lattice case. The 

lowest two multiplets are both spin one half. A truncation which keeps a linear 

combination of these multiplets at each step gives a description of the system as 

one with zero mass gap and no order, which is correct for this model. Numerical 

results for these calculations are given in the table in the following section. 

3. Block Spin Method with a Shadow Hamiltonian 

_- We now consider a generalization of the block-spin method in which the choice 

of retained states is made by picking the eigenstates of some effective block Hamil- 

tonian, which we call a shadow Hamiltonian, Hs . For example, let 

f&~(j)= HB+~M (3.1) 

where M can be chosen to be any operater, preferably the order-parameter of inter- 

est, and j is a parameter to be determined variationally. Let I+(j)) be the infinite _ 

volume wavefunction generated by retaining the n lowest eigenstates of Hs(j) on 

_ each block at each stage of the iteration. At every stage of the calculation we carry 

along enough information to reconstruct both Hs and H in the truncated basis of 
-- - 

states. The truncation procedure is repeated until the energy per site converges 

to’ the desired accuracy. One computes, for each value of j, the expectation value 

of the original Hamiltonian in the state constructed from the thinning algorithm 

based upon Hs(j). The best trial state is that which minimizes the resulting 

function of j. Note that the quantity 

(3.2) 

is a bound on the infinite volume energy of the system for any value of j. Having 
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chosen jmin, that value of j which minimizes E(j), we can then obtain a best 

estimate for the expectation value of M, 

(3.3) 

We have carried out calculations of this kind for the case of the one-dimensional 

HAF, the two-dimensional HAF on a square lattice, and the two-dimensional HAF 

on a triangular lattice. In all calculations we retain the lowest two eigenstates of 

the shadow Hamiltonian on the block at each step. In the one-dimensional problem 

the blocks are constructed by using three points in each block, on the square lattice 

we used same kind of blocks alternating between the two orthogonal directions on 

consecutive steps, and in the triangular problem we used the hexagonal units of 

Fig.-1. The best energies and corresponding magnetizations are given in in Table 1. 

_- 

_ The energies and magnetizations converge quite rapidly as a function of the 

iteration. This fact, and the simplicity of interpretation, make this sort of calcu- 

lation very appealing. Unfortunately, one has to remember that the ground-state 

of the one-dimensional anti-ferromagnet cannot exhibit long range order while by 
-- - 

this method one would conclude that it does. The shadow Hamiltonian technique 

is’useful for studying symmetry breaking quantities such as the magnetization of a 

system, but, as this result indicates, it does introduce a bias in favor of such break- 

ing. In the neighborhood of a critical point, where long-range structures play an 

important role, it may lead to erroneous conclusions. This same criticism applies to 

the procedure of Huse and Else5 . Their method also chooses trial states in a way 

which is biased toward the symmetry breaking mean-field state. As in the method 

described here applying their method to a one-dimensional Heisenberg antiferro- 
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magnet, it yields a result known to be -incorrect. In the square-lattice problem 

both studies lead to higher and more stable values of staggered-magnetization. 

On the basis of the calculation described in this section one would conclude that 

the triangular lattice behaves like the square lattice, and that its ground state has 

a non-zero canted magnetization. The lesson of the one dimensional calculation, 

however, is that one should also explore options which do not bias the calculation 

towards order before drawing any conclusion. The calculation described in the 

previous section is an example of such a method. 

4. Conclusions 

We have discussed two variational calculations which provide upper bounds 

on the vacuum energy density. While the resulting energies were quite similar 

. . 

the wave-functions are very different. In particular, one exhibits non-vanishing 

canted anti-ferromagnetic order whereas the other does not. As discussed in the 

introduction, this reflects the situation in the literature. For every approximation 

which predicts canted anti-ferromagnetic order one can find a calculation which 

produces a comparable estimate of the ground-state energy density but which 
.-. - 

predicts no long range order. 

In our first calculation we allowed for the mixture of the two doublets which 

belong to the low-lying structure of the Hamiltonian inside the hexagonal block. 

The state so obtained indeed has some non-vanishing expectation value for the 

canted magnetization for small lattices but it shows no order in the infinite volume 

limit. The value of the energy-density obtained in this way provides an upper 

bound on. the infinite volume energy that is, as far as we know, the lowest obtained 

to date. 
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We consider the long-range-order found in the second calculation, based on the 

shadow Hamiltonian, to be unreliable. When one biases the calculation towards 

such order by the choice of shadow Hamiltonian, one indeed obtains an ordered 

state. We saw this happening in the one-dimensional chain. The calculation for the 

frustrated system may suffer from the same problems that invalidate the calculation 

for the one-dimensional chain, namely the appearance of large-scale structures 

which destroy the magnetization and which are missed by this method. 

_- The bounds on the energy-density obtained in these two calculations differ 

only slightly. Although the state which has no order lies a little lower, this by itself 

is not sufficient evidence to decide that it correctly reflects the properties of the 

true ground state. What we find much more convincing is the comparison with 

the one- and two-dimensional rectangular lattice results. Table 1 summarizes our 

results, as well as those of Ref. 5, for the three cases. It appears to us on examining 

this table that the triangular lattice results look much more like those of the one 

dimensional case than the two dimensional. This leads us to conclude that it is 

most likely that the ground state. of this system is indeed disordered. Note, because 

of the slow fall-off of the magnetization the distinction between order and disorder 
-- - 

cannot readily be made upon the basis of small lattice calculations. 

Both of our block-spin calculations lead to a vanishing mass-gap. In our 8- 

dependent calculation we keep an exact spin doublet at each recursion step. Hence 

the Hamiltonian is unchanged except by an overall scale factor at each recursion. 

This indicates a massless spectrum since the Hamiltonian scales to zero as the block 

size increases. In the other calculation we obtain spontaneous symmetry-breaking. 

This should be accompanied by a Goldstone-boson leading again to a vanishing 

mass-gap. 
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Table 1: Comparison of calculations for the energy-density E and the staggered 

or canted magnetization M. First line refers to the block-spin calculation using 

a string of 3 sites in l-dimension, a cluster of 5 sites forming a cross on a square 

lattice, and a 7-site hexagon on the triagonal lattice. Second line gives the resuls 

of Shadow Hamiltonian calculations described in section 3. The third line contains 

the results of Ref. 5. 

_- 
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Figure 1: Triangular lattice grouped into seven-site blocks. 


