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- ABSTRACT 

We investigate the possible existence of neutral bosons which are coupled to 

leptons. The cross section for the process e + p + e +-X+ anything, where X is a 

neutral boson of spin-parity 0* or I* emitted by the electron, is calculated and its 

energy-angle distribution discusse.d. Assuming X to decay predominant,ly into a 

lepton pair we investigate the characteristics of the background. It is pointed out 

that the signal to the background ratio can be greatly enhanced if one selects high 

J: = &/El and also uses the outgoing electron as a tag at a slightly non-forward 

angle with the X particle arranged in such a way that the momentum transfer to 

the target particle is near its minimum. This happens when the outgoing electron 

momentum & is parallel to pl -z, where pr and c are the momenta of the incident 

electron and the X particle respectively. 
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I. INTRODUCTION 

In gauge theories with spontaneously broken symmetry, bosons with spin-parity 

Of and I* play very essential roles. Up to now the standard theory of SU3 x SU2 

x U(1) worked rather well, but one is never sure that there might not be some 

unexpected particles to be discovered. The existence of unexpected vector or scalar 

(or pseudo scalar) particles would certainly change our concept of the elementary 

particle world as we understand it today. The purpose of this paper is to investigate 

the feasibility of producing such particles using the electron beams at SLAC. While 

these beams have only modest energies, their high intensities permit searches for 

bosons that might be very weakly coupled to electrons. We denote the particle we 

are looking for as X which can be a vector, axial vector, scalar or pseudoscalar 

particle. Since we hope to produce it by an electron via bremsstrahlung we assume 

that the X particle is coupled to an electron with a coupling constant gz: 

9x x z P2) 21 Pl> if X is a scalar, 

9x x u (P2) 75 21 (Pl) if X is a pseudo scalar, 

9x x/J z (P2) yp u (Pl) if X is a vector, 

9x x/L ii (P2> 75 YP u (Pl) if X is an axial vector. 

We define CY, s gz/(47r). 

The mechanism of production of the X particle is shown in Fig. 1. Pr and P2 

represent the four momenta of the incident and outgoing electrons, k is the four 

momentum of the X particle. Pi and Pi are four momenta of the initial and final 

__ _T. target particles, respectively. In this paper the target particle is a proton from a 

hydrogen jet injected into the PEP ring and PI is the 14.5 GeV circulating electron 

beam as suggested in the PEGASYS proposal’ at SLAC. Our calculations can be 

c 
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adapted to a stationary target using a heavier element or the e+ target in the 
- 

e+e- colliding beam. Only the change in target form factors is required for the . . _ 

. adaptation. The X particle is detected through its decay into e+e- or p+p- pair. 

A similar calculation2 was done previously by this author for production of a 

1.7 MeV object using the Weizsacker-Williams method. The subsequent seasches 

by Riordan3 et al., Konaka4 et al., Davier5 et al., and Brown’ et al., all showed 

that the 1.7 MeV object observed7 at GSI could not be an elementary particle. 

These experiments gave also the upper limits of ox as a function of 732, in the 

range 1 MeV < m, < 15 MeV. Another powerful constraint8 on the value of a, as 

a function of m, is obtained by g - 2 values of electron and muon. The most up- 

to-date discussions of the range of ox and m, ruled out by all these experiments, 

including g - 2, beam dump and, e+e- + X --f e+e- are given by Hawkins and 

Perl.g 

II. CALCULATIONS 

The cross section for the process e + Pi -+ X + e + Pf, shown in Fig. 1, can be 

written as 

da = (y2az d3k d3P2 
27rzPl E, E2 J J - (FliWl + f’2iW2)/t2 , (2.1) 

where k is the momentum of the produced X particle, t is the momentum transfer 

squared to the target, and WI and W2 are the usual target form factors used in the 

electron scattering. ” Fli and F2i represent the matrix elements squared for the 

emission of an X particle of kind i (scalar, pseudo scalar, vector and axial vector) 

and they are algebraically computed using a computer in the following way: We 
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- first define Fl for production of an axial vector particle X: 

;: . . 

. & = -?[(81 t me) 
Yp(d + ?l )YvY5;+ YpYvY5me 

2B 

_ YvY5(?2 - ff>Yp t %Y5’Yfime 

2c (43 •t me) 

75%~(8 + ?l>Yp t YsYV’Ypme 

2B 

P-2) 

where B = P2 * k + mi/2, C = Pi . k - mz/2 and q = Pi - Pf. We then obtain 

Fzau by the substitution: 

All other Fli and F2i are obtained by the following sequence of substitutions: 

Flu = -Fla, (75 3 1) , (2.4) 

F2v = -F2av (75 -+ 1) , (2.5) 

Flps = Flm (yv + 1 , yv’ -+ 1 , kvkv’/m: -gIw + 1) ) (2.6) 

fip = -Flps (yp + f’i)/Mz’ , (2.7) 

Fls = -Flps (75 3 1) , (2.8) 

F2, = -F2ps (75 --f 1) . (2.9) 

C 
_Y. 

The trace in Eq. (2.2), as well as the subsequent substitutions shown in Eqs. (2.3) 

through (2.9), are handled by Hearn’sl’ Reduce II Pr0gra.m. We shall not give all 

the results here because it is much easier to obtain the result directly from the 
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- computer than copying the lengthy expression from this paper. As long as the 

- mass of the X particle m, is much greater than the electron mass m,, m, can be . . _ 

. ignored in the calculation. In the limit m, = 0, we have relatively simple results 

that we give here: 

Fls = &Is = BSll + $2 + PSl3 + B-2&J (2.10) 

F29 = F2ps = BS21 + Sz2 + B-1S23 + B-2S24 (2.11) 

Flv = FI,, = BVll + V12 + B-lV13 + B-2V14 (2.12) 

F2v = Fzav = BV21 + V22 + B-1V23 + B-2V24 (2.13) 

where 

s11 = l/C (2.14) 

z-- - 

SlZ = -(2 + 7-r&C + tmQ4/C2) (2.15) 

s13 = ctm; + n-$/C/2 (2.16) 

$4 = -tm;/4 (2.17) 

s21 = -1/(2C) (2.1s) 

s22 = 1 - (El& - &E, - E,2)/C + (t/t3 - E&/2 + E2&/2)7+C’(2.19) 

~$3 = -c/2 + El& - J!.?~E, - E,2 - t&@C) + @(2C) (2.20) 

+ (ElE2 + E&/2 - E&/2 - E32)m3C (2.21) 

~924 = (t - 4&& - 4&&)m;/8 (2.22) 

vi1 = 2/c (2.23) 

v-12 = 2t/c - nrn;/c - trn;/c2/2 (2.24) 

v13 = 2c - 2t + 2Tn; + P/c - atrrl~/c + TnQc (2.25) 
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VI* = -trnp/2 (2.26) 

h..= +c (2.27) 

v22 = (t - 2.E; + 2ErE2 + 2E&)/C + (t/4 - ElE2 + E2E,)mQC2 (2.28) 

v23 = -c + t - 2ElE2 + 2E; + 2E2E, + (-t2/2 + t&2 + 2tElE2 

+ tElE, - tE2E, + ?-rLZEf - rn2EIE, + 7722,E; + Tr&&)/C (2.29) 

T/24 = (t/4 - ElE2 - EIE,)m; (2.30) 

In the above expressions t = -(Pl - P2 - k)2, B = P2 . k + n&2, C = 

PI . k - rnZ/2, and El, E2 and E, are the laboratory energies of the incident 

and outgoing electrons and the X particle, respectively. They can be expressed 

covariantly as El = Pi . Pi/Mi, E2 = P2 * Pi/M, and E, = k . Pi/A4i if one 

is interested in using our results in other coordinate systems. The target form 

factors Wr and W2 are functions of t and Mj = Pf . The type of form factors to 

be used depends upon the magnitude of t. If 4 is comparable to the inverse of 

the atomic radius, i.e., 4 N 10eVZ’/3, th en atomic form factors must be used. 

If d is comparable to the inverse of the nuclear radius, i.e., 4 - .4A-‘I3 Ge\‘, 

then nuclear form factors must be used. When fi is comparable to the inverse of 

the proton radius then the nucleon form factors must be used. The computer can 

be programmed to select the proper form factors automatically according to the 

value of t. Comprehensive accounts of atomic form factors, nuclear form factors 

and nucleon form factors for dealing with this type of problem are given in Ref. 

11. The reader should refer to that paper for details on WI and M/z for various 

targets. The deep inelastic nucleon form factors given in that paper need to be 

up-dated. 



- 
The elastic form factors for a proton used in our calculations are: 

,z.- . . _ wz”; [ 1 2Mp6(M; - M;) (1 + 2.792~)/(1 + 7) 

wl$ = (1 + t/0.71)4 i.7g2r 1 . , 
(2.31) 

where 7 = t/(4Mi). 

For the inelastic form factors for a proton12 we use 

W;; = (1 - ~‘)~(.6453 + 1.902(1 - 5’) - 2.343(1 - z’)~)/v (2.32) 

w;; = 0.2wg , (2.33) 

- 

_- 

where 2’ = t/(t + Mj) and v = (Mj + t - Ml)/(aM,). 

Equation (2.1) can be used by the experimenters to estimate the number of X 

produced in their detector with cy, and m, as free parameters. The Monte Carlo 

method is usually used for this purpose in order to accommodate various cuts and 

the detection efficiency, which must be folded into the integration of Eq. (2.1). 

Such detailed considerations are best left to the experimentalists.13 In this paper, 

we investigate some essential features of the cross section and the backgrounds in 

order to aid experimentalists in designing their experiment. In order to do this, we 

integrate the cross section given by (2.1) with respect to d3P2, as well as the solid 

angle of the X particle, and obtain da/&r, where 2 = E,/El. This will give us the 

order of magnitude of the production cross section and the energy distribut,ion of 

the X particle. Since m, and crz are free parameters in the calculation, we shall 

be able to estimate the range of mz and cr, for which an experiment is sensitive for 

a given integrated luminosity. We shall also discuss the energy-angle distribution 

da/(dxdO) of the X particle. Finally, we shall show that the signal-to-noise rat.io 

is increased by tagging the 5 production with the outgoing electron at high 2 and 

at angles such that 3 is parallel to $ - i. 

c 
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- There are six-fold integrations in Eq. (2.1) if WI and W2 represent inelastic 

;.’ form factors, but the number of integration is reduced by one if the final state has . . _ 

. a discrete mass such as a proton. We perform the P2 integration in the coordinate 
+ 

system where u = P2 + Pf = PI - k + Pi is at rest and P 1 - z is in the z axis 

and both i and $1 are in the zz plane, as shown in Fig. 2. After integra.tion 

with respect to P2 in this special frame we do integration with respect to k in 

the laboratory system, with the direction of -L’r as the z axis. The advantage of 

doing the P2 integration in the special coordinate system is that only the quantity 

B in Eq. (2.1) depends upon, 42 and hence 42 integration can be carried out 

immediately. 

B = P2. k + rn2/2 

= &s&s - Pz,P,,(sin 02 sin Ok cos $2 + cos 02 cos 0,) + mz/2 . 

Therefore 

2% 
1 

G J 
Bd$2 = E2sE2s i Pz,P,, cos 02 cos Ok + n2;/2 = w 

0 
2a 

(2.34) 

1 
5i J 

kd& = l/SQRT( W2 - PisP,“J sin2 62 sin2 0,) f Y-l (2.35) 
0 

2ir 
1 

i% J 
$d$, = W/Y3 

0 

(2.36) 

Quantities with a subscript s refer to the rest frame of u = P2 + Pf, and they can 

be expressed in terms of laboratory quantities in the following way: 

where 8 is the angle between the X particle and the incident electron in the lab- 

oratory system and P, = (Ez - mz)f is the momentum of the X particle in the 
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- laboratory system. 

U2 f (PI + Pi - k)2 = (P2 + Pf)2 = Mp” + 2(E1 - E,)Mp - 2C 

U = SQRT(U2) 

E,, = (C - 77~32 + E&$)/U 

P,, = SQ RT( E,2, - r-n;) 

E2s = (U2 - M;)/2/U 

El, = (El Mp - C - n&2)/U 

Ei.g = Mp(E1 + Mp - Ez)/U 

Pi, = SQRT(Efs - Mi) 

cos 8k = [(Els - &s)-&s - C + mz/2]/Pzs/Es 

E2 = (-Mi - t - Mj + 2Ei,U)/2/Mp 

t = 2C + 2E2,(E 1s - Ezs) - 2E2sPis COS 02 

(2.38) 

The integrations with respect to Ezs and cos& can be converted into integrations 

with respect to Mj and t, respectively, using (2.37) and (2.38). We obtain from 

(2.1): 

da 
-& F 2cr2cr,f(z) ) (2.39) 

where x = E,/El and 

Fri and F2i are 6’1; and F2i given by Eqs. (2.10) through (2.13) with B, l/B and 

l/B2 replaced by W, Y-’ and W/Y3 respectively as shown in Eqs. (2.34) through 
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(2.36): 

Fl, = Flps = WSll + s12 + y-513 + (W/Y3)S14 . . - 

Fzs = F@j = w&l + &!2 + y-‘&; + (w/y3)&4 

Flv = Flav = Wtil + vi2 + y-953 + (W/Y3y14 

F2v = F2av = WV21 + v22 + y-‘v23 + (w/y3)v24 

where Sij and V;j are defined by Eqs. (2.14) through (2.30). 

. The lower and upper limits of integrations for t are obtained from Eq. (2.38): 

t ;;; = 2C + 2E2s(Els - Ezs) f 2E2sPis . (2.40) 

For the elastic form factors, the integration with respect to Mj drops out 

because of the 6 function in Eq. (2.31). F or inelastic form factors, the lower limit 

of Mf is given by the pion threshold. 

(Mj)min = (Mp + .14)2 7 (2.41) 

and the upper limit can be obtained from Eq. (2.37), 

(2.42) 

The maximum production angle for the X particle, O,,,, can be obtained in 

the following way: 

U2 = (PI - k + Pi)’ = Mp” + Mz - 2Mp(E1 - E,) - 2E1(Ez - P, ~0~0) 
. 

Hence 

C 

-- 

cos 0,,, = [(u2)min - Mp’ - M,” + 2Mp(El - Ep) + 2ElE;!]/(2ElPJ . 
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Now 

i ;- 
(U2),i, = (P2 + Pl)~in = (Mf2)min =Mp” for elastic, and 

. . - (2.43) 
. (Mp + .14)2 for inelastic , 

Therefore 

0 
(Mj)min - Mp2 - “2, - 2MpEl(l - x) + 2Efx 

max = arccos 
2E,2x(l - ~~,/x~/E;)O.~ > 

. (2.44) 

where x = E,/El. 

The allowed range of x = E,/El can be obtained in the following way: 

E, = k * Pi/M, = (EzcmEicm - PzcmEicm Cos Oikun)/Mp 

where the subscript CM refers to the center-of-mass system. Thus 

(Ed “,;; = (Excmhm f PxcmPicm)/Mp ; 

now 

&cm = Mi(El + Mp)/W 
(2.45) 

E xcm = (W2 - M; + 7$)/(2W) , 

where W = SQRT(Mi + 2E1 Mp) and Mj in (2.45) must be (Mj),i, given by 

(2.43:. 

We conclude 

x’ma* = m,n (Excmhm f PxcmEcm)/Mp/El (2.46) 

with E,,, and Eicm given above and 

*- _T. P - SQRT(E;,, -m;) - xcm - 

Rem = SQRT(E;‘, - M;) . 

Equation (2.39) g ives da/dx in term of integrations with respect to the pro- 
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- 
duction angle 8, the invariant mass of the hadronic final state Mf and the momen- 

i 71m turn transfer t. From Eq. (2.39), -. - one can easily obtain da/(dxdB), da/(dxdOdA4f) 

. do/(dxdbJdM;dt), t e c., using the integrand. The numerical results will be discussed 

in Sec. 4 after we discuss the backgrounds in Sec. 3. 

III. BACKGROUND CALCULATIONS 

Since the X particle is produced by an electron via the process shown in Fig. 1, 

one of its decay modes must be X + eSe-. The partial widths corresponding to 

various types of X particles decaying into e+e- are given by8 

where z = (n~,/rn,)~ and 

F,(z) = (1 - 4z)“/’ 

Fps(z) = (1 - 4~)“~ 

F,(z) = $1 - 4~)“~(1 + 22) 

Fa&) = $1 - 4~)~‘~ . 

In the PEGASYS experiment z t 0, hence 

rs = rps = $rn,,, ) 

and 

(3.2) 

(3.3) 

If we ignore the decay probabilities into all other channels, we can obtain the 
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lifetime 

. . - Ti = h/r; = 1.316 x 1O-24 s GeV/lm,a,F;(z)] , (3.4) 

and the decay length is 

E 
CTiT;y = 3.95 X 10-14CTTZ2 

GeV 

mx mxaxF;(z) * 
(3.5) 

In’ the PEGASYS experiment1 we have E, < 14.5 GeV and 0.1 GeV < 172, < 

3.5 GeV and the best available vertex detector has a spatial resolution of about 

10m3 cm. Thus, only when m, N 0.1 GeV and ax < 10m7 can we observe the 

vertex of the decay X + e+e-. Also, if ox is much smaller than 10v7, there will 

not be enough x produced. From now on we shall assume that the decay length is 

so small that it can be ignored. The main backgrounds are due to Figs. 3 and 4. 

The contribution from Fig. 3 can be calculated easily using the result for a 

vector particle production and the Kroll-Wada l4 theorem. Let the invariant mass 

of the e+e- pair in Fig. 3 be the square root of s = (P+ + P-)2. Then the 

cross section for producing such a pair can be obtained from the cross section for 

producing a vector particle of mass M, = fi by a replacement 

dmx ds z 1.13 x 10-5- ) 
mx 

(3.6) 

where dm, is determined by the mass resolution of the apparatus. Now we are 

looking for a bump due to production of an x particle whose intrinsic width is 

negligible. The background is a smooth curve given by (3.6); only the statistical 

fluctuation will give a bump-like look. Let us assume that there are N events in the 

interval ds due to the background. The statistical fluctuation will be Jn’. Let the 
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- background cross section be CT and its statistical fluctuation be da. Then da/a = 

i- m/N; thus da = a/a. I n other words, the more meaningful background to . . - 

. the problem is less serious than the number obtained from Eq. (3.6); it should be 

multiplied by l/a. 

The backgrounds due to Fig. 4 can be calculated exactly. We give here a simpler 

treatment using Weissacker-Williams method. First let us point out that the 

signal-to-background ratio can be considerably improved by detecting the outgoing 

electron P2 as well as the pair from the decay of the X particle. They should be 

arranged such that neither z or 2 is in the forward angle but the sum of their 

transverse momenta is nearly zero. In general, even if only the pair from the 

decay of x are detected, the outgoing P2 will prefer to go in the above-mentioned 

symmetric direction because this is where the minimum momentum transfer to 

the target occurs. Comparing Figs. 1 and 4, the momentum transfer to the target 

labeled Q in the two cases are identical. In Fig. 4, the outgoing electron P2 will 

prefer to go to the forward angle instead of the symmetric angle because the photon 

propagator labeled kl in Fig. 4 can become almost on the mass shell when P2 is in 

the forward direction. Let us therefore calculate the background contribution due 

to Fig. 4, with the above geometry in mint. 

1. The equivalent photon flux of the electron” is 

crdkl 
pe(kl, t’)dkldt’ = ;T 

1 + (1 -z)~ 1 m2x2 

2 
--* t’ I 

dt’ (3.7) 

2a dx 1 + (1 - x:>~ d02 E-- 
7t 5 2 e:! ‘- (34 

where kl = El - E2 is the energy of the photon, t’ = -(PI - Pz)~ z El E?Oi 

and x = kl/El. 
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- 
Integrating (3.7) with respect to t ‘, we obtain the more familiar expression 

. 

for the equivalent photon flux when P2 is left undetected: . . - 

t ma2 
J 

cr dh 
p&,t’)dt = n-y 

[ 

1 + (1 - z)2entmaz -_ 2 
2 bnin 

(1 - I] i (3.9) 
tmin 

where tm;,, = mzx2( 1 - x) and t,,, = 4Er&. 

For El = 14.5 GeV, x - 1, the ratio of Eq. (3.9) to Eq. (3.8) is (&/A&)~n 

(2Er/m,) = 110,/A0 2, which shows that the background can be reduced by 

two orders of magnitude if 02/A& NN 10. 

2. We ignore the facts that the two 7’s in the reaction y + y + e+e- are off the 

mass shell, and use the mass shell cross section 

2noJ 
a(yy --f e+e-) X - 7 s 

(3.10) 

where s = (P+ + P-)2. Since we are calculating the background we set 

s = m%. 

3. Combining the equivalent photon flux of the electron given by Eq. (3.S)? the 

yy + eSe- cross section given by (3.10) and the equivalent photon flux” of 

the target proton, we obtain 

a- .P 

d(e-+p--t e- +’ e+e-pair + anything) 

lw fmar 
2cY dx 1 + (1 - x)’ de2 2Tra2 ads 1 = --- -- - 
lr 2 2 02 >( > 

(3.11) 
s T s 2mp J 

dA4; 

Mp2 

[(t - tmin)W2 + 2t;;,Wl]dt/t2 , 

15 



- 
where IV1 and IV2 are given by Eqs. (2.31) through (2.33), and 

. 
M.f max = (M; + 2klM,,)3 - & , 

CTZ;, = M~h~12 7 

tmin = thin + SQRT(tAi,)(Mj - Mi)/Mp * 

Note that dt can be changed into the acceptance of the pair in the following 

way: Let k = P+ + P-. Then 

t = -(Pl - P2 - k)2 = 2k . (PI - P2) + . . . 

Thus, 

dt = -2/m 

’ Where eklz is the angle between the two vectors z = z + z and m. 

Equation (3.12) tell s us that for a given 2, t is minimum when i;‘//s - z, where 

most of the events will be concentrated. If k is given then t can be written a.s 

(3.12) 

t = -(PI - P2 - k)2 = 2P2 . (PI - k) + . . . (3.13) 

which shows that t is minimum when g is parallel to the vector (s). 

IV. NUMERICAL EXAMPLES 

In Fig. 5(a) we give da/da: defined by Eq. (2.39) for production of a spin 0 
c 

a- _P. particle. The results from elastic and inelastic form factors, given by Eqs. (2.31) -- 

through (2.33), are summed in the figures. Figure 5(b) is similar to Fig. 5(a) 

except now we deal with production of a spin 1 particle. We assume me/m2 --+ 0, 
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- 
so there is no difference in the cross section for production of pseudo scalar and 

scalar particles, and also between vector and axial vector particles. We also assume 
-. - 

. CyX = 1. Using these curves, one can immediately ‘obtain the minimum values of 

cr, necessary to discover particles of various masses. For example, suppose the 

integrated luminosity is 1040cm-2 and we need at least 10 events to prove the 

existence of a particle. To produce a particle of mass m, = 3.5, 2.0, 1.0, 0.1 GeV, 

the value of ox must be at least ox = 10T4, 3 x 10s7, lo-‘, 10-l’ for spin 0, and 

a ; = 5 x 10-5, 10-6, 10-s, 10-11 fo r spin 1 particle production. When m, --+ 0, 

the x dependence2 of the cross section goes like da/da: --+ x for spin 0 particle 

production and da/d x + l/x for spin 1 particle production (such as in ordinary 

bremsstrahlung emission). We note from Figs. 5(a) and (b) that in both spin 0 

and spin 1 particle productions da/dx tend to peak at x = 1 when m, # 0. The 

peaking is more pronounced for the spin 0 case. 

In Fig. 5(c) we plot the background using Eq. (3.11) integrated with respect 

to both 192 and t and setting ds/s = 2dm,/m, = .02. This gives the background 

of electron pairs due to Fig. 4. The background due to Fig. 3 is not included in 

Fig. 5(c). As mentioned in Sec. 3, the background due to Fig. 3 can be obtained 

by replacing ox in Eq. (2.39) f or ro UC ion of a vector particle by an expressic-1 p d t 

given by Eq. (3.6). S ince we have assumed dm,/m, = 0.01 in our calculation for 

Fig. 5(c), the backg round due to Fig. 3 is equivalent to da/dx given in Fig. 5(b) 

multiplied by 1.13 x lo- 7. Comparing Fig. 5(c) with Fig. 5(b) x1.13 x 10m7 we 

see that the latter is negligible, except when m, = 0.1 GeV and x -+ 1, We ha.ve 

assumed the mass resolution of dm,/m, = 0.01 for convenience of presenting oui 
4 

a- _P. -- 
result. The actual value of dmx/mz is dependent upon E, and m,. 

Inspection of Figs. 5(a), (b) and ( c s ) h ows that the signal-to-background ratio 
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- 
is greatest when x is near unity, hence high x events should be selected. At x = .95 

;- the signal-to-background ratios for m, = 3.5, 2.0, 1.0 and 0.1 GeV are respectively . . - 
. ’ (1.36 x 102, 3.89 x 10 3, 1.57 x 104, 5.88 x 104) ( cr,m,/Am,) for spin 0 particle 

production and (3.19 x 10 2, 8.80 x 103, 3.60 x 104-, 1.36 x 10’) (o,m,/Am,) for 

spin 1 particle production, 

In Figs. 6, 7 and 8 we give the energy-angle distributions of the x particle, 

do/(dxdc), for both spin 0 and spin 1 cases, and the masses m, = O.l,l.O, 2.0 

GeV, assuming again ox = 1. The energy-angle distributions of the background 

are also given in Figs. 6(c), 7(c) and 8(c), assuming Am,/m, = .Ol. These curves 

are obtained by integrating (3.11) with respect to 02 [see Eq. (3.9)]. 

We observe the following characteristics of the energy-angular distributions: 

1. Comparing Fig. 4 with Fig. 1, we note that the photon propagators labeled 

q in two cases are the same. In Fig. 1, the electron propagator makes the 

angular dependence more sharply peaked toward the forward angle than the 

background. The extra angular dependence due to the electron propagators 

in Fig. 1 is 

1 

(0: + $9-y), 1 

This factor makes the cross sections fall off sharper with ok when m, is small 

and x is near 1. 

2. From the above analysis we see that the signal-to-background ratio is better 

at small angles if only the pair is detected; but as we have pointed out in 

*-- - the last section, tremendous increase in signal-to-background ratio can be 

achieved if we tag the final electron slightly off the forward angle in such a 

way that the momentum of the pair z = 3 + z is parallel to pf - 3. 
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We note that in this kinematical condition the final state momentum of the 

target 3 is parallel to i because of the momentum conservation. On the 
-. - 

other hand, if 2 is chosen to be parallel to pf’- z, then 6 is parallel to 2. 

V. DISCUSSIONS 

Hawkins and Perlg have speculated that there might be charged-lepton specific 

forces. Our X particles could be the particles associated with such forces. Let us 

use the analogy with QCD. S imilarly to the color for the quarks, we may have a 

leptonic “color” possessed only by leptons. This leptonic color acts as a source for 

a new force via exchange of a new kind of a gluon that would be the candidate for 

our spin 1 X particle. We do not know such a force is parity-conserving or not. 

This can be tested by using a polarized electron beam. The existence of the parity- 

violating term 0’. <, where a’ is the electron spin and z is the momentum of the X 

particle in the angular distribution of the X particle will indicate parity violation. 

If there is a new force between leptons, we might expect some bound states to be 

formed by leptons and they may show up as spin 0 x particles. There may also be 

Higgs-like particle and pseudo-Goldstone bosons coupled only to leptons. In this 

paper, we do not attempt to build a detailed model of the X particles because we 

need to assume only two parameters ox an d m, to perform the calculation for the 

cross sections. 

We also cannot specify whether the coupling is flavor-dependent. This can be 

determined by the decay rates of X into e*, p2 and r*. Production of x particles 

using a muon beam can also shed light on this question. As long as m, >> m,, 

we may use all the equations given by Eqs. (2.10) through (2.30). However, even 

if the mass of muon is not negligible compared with m,, it is trivial to change all 
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- 
of our equations, because exact expressions for the cross sections can be generated 

?I- by a computer using Eqs. (2.2) through (2.9). 
. . - 

. Our x particles do not have to be coupled to leptons only. If they couple to 

hadrons as well leptons, the only change would be that the branching fractions to 

the leptons are reduced by about a factor of two, which can be obtained experi- 

mentally. 
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FIGURE CAPTIONS 
- 

’ Fig. 1. Feynnian diagrams for production of an 2 particle by an electron beam. The 

target particle Pi is a proton. 

Fig. 2. The coordinate system used in the integration of the outgoing electron Pz. 

The subscript s refers to the rest frame of U = Pz + Pf = Pi + Pi - k. In 

this frame both k and PI are in the 5 - z plane, the direction of the vector 

s - z is chosen as the z axis and the direction of 2 is along the nega,tive 

t direction. 

Fig. 3. Background e* pair production due to internal conversion of the bremsstrahlung _ - 

photon. 

Fig. 4. Background e* pair production due to two photon annihilation. 

Fig’. 5. (a) da/d z f or production of a spin 0 particle in the reaction e + p + X + t+ 

anything at El = 14.5 GeV in unit of crn2 assuming oy, = 1. (b) The same a.s 

above for a spin 1 particle. The background due to the mechanism of Fig. 3 

can be obtained by multiplying 1.13 ~lO-~Am,/m, onto this graph. (c) 

Background due to 27 process shown in Fig. 4. Mass resolution of Am,/mz = 

.Ol is assumed. 

Fig. 6. (a) da/(&da) for p ro UC ion d t of a spin 0 particle in the reaction e + p -+ 

X + e+ anything at Er = 14.5 GeV in unit of cm2, assuming oZ = 1 

and m, = 0.1 GeV. (b) Th e same as above for a spin 1 particle. The 

background due to the mechanism of Fig. 3 can be obtained by multiplying 

1.13 x 10S5 Amz/rnz onto this graph. (c) Background due to 27 process 

shown in Fig. 4. Mass resolution of Am,/m, = .Ol is assumed. 
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Fig. 7. Same as Fig. 6 except m, = 1.0 GeV. 
- 

_ Fig. 8. Same as Fig. 6 except m, = 2.0 GeV. 

- 
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