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ABSTRACT

We investigate the possible existence of neutral bosons which are coupled to
leptons. The cross section for the process e + p — e + X+ anything, where X is a
nieutral boson of spin-parity 0% or 1% emitted by the electron, is calculated and its
energy-angle distribution discussed. Assuming X to decay predominantly into a
lepton pair we investigate the characteristics of the background. It is pointed out
that the signal to the background ratio can be greatly enhanced if one selects high
t = E;/E; and also uses the outgoing electron as a tag at a slightly non-forward
angle with the X particle arranged in such a way that the momentum transfer to
the target particle is near its minimum. This happens when the outgoing electron
momentum ﬁg is parallel to ]31 - E, where 131 and k are the momenta of the incident

electron and the X particle respectively.
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I. INTRODUCTION

In gauge theories with spontaneously broken symmetry, bosons with spin-parity
0% and 1% play very essential roles. Up to now the étandard theory of SU3 x SU2
x U(1) worked rather well, but one is never sure that there might not be some
unexpected particles to be discovered. The existence of unexpected vector or scalar
(or pseudo scalar) particles would certainly change our concept of the elementary
particle world as we understand it today. The purpose of this paper is to investigate
the feasibility of producing such particles using the electron beams at SLAC. While
these beams have only modest energies, their high intensities permit searches for
bosons that might be very weakly coupled to electrons. We denote the particle we
are looking for as X which can be a vector, axial vector, scalar or pseudoscalar
particle. Since we hope to produce it by an electron via bremsstrahlung we assume

that the X particle is coupled to an electron with a coupling constant g,:
gz 2 U (P2) u (Pr) if X is a scalar,
gz 2T (P2) vs u (P1) if X is a pseudo scalar,
gz T, T (P2) ¥* u (P1) if X is a vector,

9z Tu U (P2) 5 ¥* w (P1)  if X is an axial vector.

We define o, = g2/(47).

The mechanism of production of the X particle is shown in Fig. 1. P; and P,
represent the four momenta of the incident and outgoing electrons, k is the four
momentum of the X particle. F; and Py are four fnomenta of the initial and final
target particles, respectively. In this paper the target particl;e is a proton from a
hydrogen jet injected into the PEP ring and P; is the 14.5 GeV circulating electron
beam as suggested in the PEGASYS proposal! at SLAC. Our calculations can be
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adapted to a stationary target using a heavier element or the e¥ target in the
ete™ colliding beam. Only the change in target form factors is required for the

adaptation. The X particle is detected through its decay into ete™ or ptu~ pair.

A similar calculation? was done previously by this author for production of a
1.7 MeV object using the Weizsacker-Williams method. The subsequent searches
by Riordan® et al., Konaka? et al., Davier® et al., and Brown® et al., all showed
that the 1.7 MeV object observed” at GSI could not be an elementary particle.
These experiments gave also the upper limits of a; as a function of m; in the
range 1 MeV < m; < 15 MeV. Another powerful constraint® on the value of o, as
a function of m; is obtained by g — 2 values of electron and muon. The most up-
to-date discussions of the range of a; and m; ruled out by all these experiments,
including g — 2, beam dump and, ete™ — X — ete™ are given by Hawkins and

P._erl.9
II. CALCULATIONS

The cross section for the process e+ P; — X + e+ Py, shown in Fig. 1, can be

written as

do =

3k d3P2
FiiWh + FaWa) [t 2.1
27r~P1 / (FuiW1 + F2iW2)/ (2.1)
where k is the momentum of the produced X particle, ¢ is the momentum transfer
squared to the target, and W; and W, are the usual target form factors used in the
electron scattering.!! Fj; and Fb; represent the matrix elements squared for the
emission of an X particle of kind ¢ (scalar, pseudo scalar, vector and axial vector)

and they are algebraically computed using a computer in the following way: We
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first define F for production of an axial vector particle X:

p Tf + 14 + v m
Flay = —“4_[(?1 + me){'ﬁl(d Pl)')’ 2'7153 YuYvY5Me

_ s — !f);(f; 5T }(Pz + me)

{75%'(4 + P1)ve + 150 vume
2B

Yu(P2 — O)vs7e + Yy e kvkv'
B 2C m? ~ ! ’

where B= Py -k+m2/2,C = Pp-k—m2/2 and ¢ = P, — Ps. We then obtain

Fs4y by the substitution:
Fogy = _Flav('Yu — Fz)/M,z . ' (23)

All other Fy; and Fj; are obtained by the following sequence of substitutions:

Fio = —Fiao (5 2 1) (2.4)
Fop = —Fagy (s = 1) (2.5)
Fips = Fiav (= 1, % > 1, kvkv'/mi—gn— 1), (26)
Faps = —Fips (v — Pi)/IM? (2.7)
Fig = —Fips (5 = 1) (2.8)
Foo = —Fops (5 — 1) . (2.9)

The trace in Eq. (2.2), as well as the subsequent substitutions shown in Egs. (2.3)
through (2.9), are handled by Hearn’s!® Reduce 11 Program. We shall not give all

the results here because it is much easier to obtain the result directly from the

—
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computer than copying the lengthy expression from this paper. As long as the
mass of the X particle m; is much greater than the electron mass me, me can be
ignored in the calculation. In the limit m, = 0, we have relatively simple results

that we give here:

Fiy = Fips = BS11 4 S12+ B 'S13 + B7Sy, (2.10)
Fys = Fapy = BSp1 + Sp2 + B™'Sa3 + B %54 (2.11)
Flo = Figo = BVi1 + Via + B"Vi3 + B™%Vyy (2.12)
Fyy = Faqy = BVay + Vag + B Va3 + B2V (2.13)
where
Su=1/C (2.14)
S12 = —(2+ m2/C +tm2/4/C?) (2.15)
S13 = Ctm2 + m}/C/2 (2.16)
S14 = —tm?/4 (2.17)
So1 = —1/(2C) (2.18)

Sz =1~ (E1E; — EyEr — E2)/C + (/8 — E1E2/2 + EyEo [2)m /C(2.19)

Sy3 = —C/2+ E\E, — E9E, — E} — tm2/(4C) + tE2/(20) (2.20)

+ (E\Ey + EYE |2 — E2E. ]2 — E2/2)m?/C (2.21)
Sys = (t — 4By Ey — 4E1 E;)m?2/8 (2.22)
Vir = 2/C ‘ (2.23)
Vig = 2t/C — 2m2/C — tm2/C?/2 (2.24)
Vis = 2C — 2t 4+ 2m? +12/C — 2tm2/C + mi/C (2.25)
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Vig = —tm} /2 (2.26)
Vo =—1/C (2.27)
Vag = (t — 2E2 + 2E\Ey + 2E1E.)/C + (t/4 _ E1E; + EoE,)m?/C? (2.28)
Vs = —C 4t — 2E1 By + 2E2 + 2B By + (—2/2 + tm2/2 + 2B Ey

+tE By —tE2Ey + m2E2 — m2E\E, + m2E2 + m2ELE,)/C (2.29)

Vas = (t/4 — F\Ey — EYE;)m? (2.30)

In the above expressions t = —(P; — P, — k)z, B =P -k+m/2 C =
P k- mg/Q, and Fy,E; and E; are the laboratory energies of the incident
and outgoing electrons and the X particle, respectively. They can be expressed
covariantly as 1 = P, - P;j/M;, E; = P, - Pi/M; and E; = k- P;/M; if one
is interested in using our results in other coordinate systems. The target form
' fz;ctors W1 and W, are functions of t and M2 = Pf2. The type of form factors to
be used depends upon the magnitﬁde of t. If v/ is comparable to the inverse of
the atomic radius, i.e., v ~ 10eV Z1/3 then atomic form factors must be used.
If v/t is comparable to the inverse of the nuclear radius, i.e., v/t ~ A4ATY3 GeV,
then nuclear form factors must be used. When v/t is comparable to the inverse of
the proton radius then the nucleon form factors must be used. The computer can
be programmed to select the proper form factors automatically according to the
value of t. Comprehensive accounts of atomic form factors, nuclear form factors
and nucleon form factors for dealing with this type of problem are given in Ref.
11. The reader should refer to that paper for details on W, ‘and W, for various
targets. The deep inelastic nucleon form factors given in that paper need to be

up-dated.
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The elastic form factors for a proton used in our calculations are:

) {Wg} _ 2Mp8(Mf - M7) [(1+2.79°7)/(1 4 7) (2.31)

wel (1+¢/0.71) 9.79%7
where 7 = t/(4M3).

For the inelastic form factors for a proton!? we use

Wit = (1 - 2)3(.6453 + 1.902(1 — ') — 2.343(1 — 2')*) /v (2.32)

Wi = 023 (2.33)

where z' = t/(t + M]%) and v = (M} +1t-— Mg)/(QMp).

Equation (2.1) can be used by the experimenters to estimate the number of X
produced in their detector with a; and m; as free parameters. The Monte Carlo
method is usually used for this purpose in order to accommodate various cuts and
the detection efficiency, which must be folded into the integration of Eq. (2.1).
Such detailed considerations are best left to the experimentalists.!3 In this paper,
we investigate some essential features of the cross section and the backgrounds in
order to aid experimentalists in designing their experiment. In order to do this, we
integrate the cross section given by (2.1) with respect to d3P,, as well as the solid
angle of the X particle, and obtain do/dz, where z = E;/E;. This will give us the
order of magnitude of the productibn cross section and the energy distribution of
the X particle. Since m, and a, are free parameters in the calculation, we shall
be able to estimate the range of m, and a, for which an experiment is sensitive for
a given integrated luminosity. We shall also discuss the energy-angle distribution
do /(dzdf) of the X particle. Finally, we shall show that the signal-to-noise ratio
is increased by tagging the z production with the outgoing electron at high z and

— — o
at angles such that P is parallel to P; — k.
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There are six-fold integrations in Eq. (2.1) if Wi and W; represent inelastic
form facPorg, but the number of integration is reduced by one if the final state has
a discrete mass such aé a proton. We perform the Pz integration in the coordinate
system where u = P, + Py = Py — k + P, is at rest and ?1 — k is in the z axis
and both k and ?1 are in the rz plane, as shown in Fig. 2. After integration
with respect to P, in this special frame we do integration with respect to & in
the laboratory system, with the direction of ?1 as the z axis. The advantage of
d(;ing the P, integration in the special coordinate system is that only the quantity
B in Eq. (2.1) depends upon, ¢2 and hence ¢, integration can be carried out
immediately.

B=Py-k+m2/2
= E3sE s — PagPrs(sin 6, sin 0 cos ¢2 + cos 83 cos 0;) + mi/2

Therefore

27

2—17; / Bd¢y = EogEps — PogPpscos 8y cos 0 + mi/? =W (2.34)
0

1 fa

5 / Fddr =1 /SQRT(W? — P} P2, sin 0,sin® 6;) = Y ! (2.35)
0

27
1 1
— | —dg, =W/Y?3 2.
3 [ gt =Y (2.36)
0

Quantities with a subscript s refer to the rest frame of u = P, + Py, and they can

be expressed in terms of laboratory quantities in the following way:
C=P -k-m?/2=E(E; — Prcos8) —m2/2 ,

where 8 is the angle between the X particle and the incident electron in the lab-

oratory system and P, = (E2 — mg)% is the momentum of the X particle in the
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laboratory system.

U2=(P+ P~ k)= (P + P)? = M} + AE; — E;)M, - 2C
U = SQRT(U2)
Ezs = (C—m2/2+ E.Mp,)/U
P,y = SQRT(EZ, — m3)
Ep = (U2 - M})/2/U
By, = (ExMy — C = m}/2)/U (2-38)
Eis = My(Ey + M, — E;)JU
Pis = SQRT(E% — M})
cos Oy = [(Ers — Ezs)Ezs — C +m2/2]/Pyy/ Pis
Ey = (=M} —t — M} +2E;,U)/[2/M,

t=2C + 2E23(E13 — Eu) — 2FE94 P;s cos 65

The integrations with respect to Egs and cosf; can be converted into integrations

with respect to M} and t, respectively, using (2.37) and (2.38). We obtain from

(2.1):
d
—Cz% ‘:‘ 20%a; f(z) (2.39)
where x = E;/FE; and
P Brnax M; maz t max
fla) == / sin df / dM; / dt(FriWh + F2Ws) [t
0 M? 1 min )

S min

F1; and F'y; are Fy; and Fy; given by Eqgs. (2.10) through (2.13) with B, 1/B and
1/B? replaced by W, Y~! and W/Y® respectively as shown in Egs. (2.34) through
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(2.36):
Fis = Flps =WSn+S12+Y" l513 + (W/Y?)S14

Fas = Fops = WSn + S20+ Y7~ 523 + (W/Y?)S24

Fiy = Fiao = WV + Via + Y 7 Vig + (W/Y?) V14

Fao = Fogo = WVar + Vaz + Y 7 'Vag + (W/Y?) Va4
where S;; and V;; are defined by Egs. (2.14) through (2.30).

- The lower and upper limits of integrations for ¢ are obtained from Eq. (2.38):

tmaz = 2C + 2E23(Els - Ezs) + 2E23Pis . (2'40)

mn

For the elastic form factors, the integration with respect to M% drops out
because of the § function in Eq. (2.31). For inelastic form factors, the lower limit

of My is given by the pion threshold.
(MP)min = (My +.14)* (2.41)
and the upper limit can be obtained from Eq. (2.37),

(M7)maz =U2 . (2.42)

The maximum production angle for the X particle, Ommaz, can be obtained in

the following way:
U2= (P —k+ P) = M} + M = 2My(Ey — E;) — 2E1(E; — Pz cos0)
Hence

08 Omaz = [(U2)min — M,? — M? 4+ 2M,(E1 — Ep) + 2E\E3)/(2E1 Pr)

10
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Now

(U2)min = (P2 + Py )min = (M})min ==M§ for elastic, and

- (2.43)
(M, + .14)? for inelastic
Therefore
M) min — M2 —m2 — 2M,E (1 — z) + 2E}z
Omaz = ATCCOS ( f) ' I; il i 12( ) ! (2.44)
2E?z(1 — m2/z?/E})%5
where z = FE;/E;.
The allowed range of ¢ = E;/FE1 can be obtained in the following way:
E, = k- P:/M - (EzcmEicm - chmEicm cos aikcm)/Mp
where the subscript C M refers to the center-of-mass system. Thus
(Ez):?: = (E:ccmEicm + chmpicm)/Mp )
" now
Eiem = Mp(El + MP)/W
(2.45)

Erem = (W2 - M} + mz)/(QW) >
where W = SQRT(M]? + 2E1M,) and M% in (2.45) must be (M})m,'n given by
(2.43.

We conclude

Xmaz = (EzcmEicm T chmPicm)/Mp/El (246)

mn

with Ezem and Ej.n given above and
Prem = SQRT(Eﬁcm - mi)
Picm = SQRT(EL,,, — M)

Equation (2.39) gives do/dz in term of integrations with respect to the pro-

11
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duction angle 6, the invariant mass of the hadronic final state M; and the momen-
tum transfer t. From Eq. (2.39), one can easily obtain do/(dzdf), da/(d:rd&dM})
da/(dmedM? dt), etc., vusing the integrand. The numerical results will be discussed

in Sec. 4 after we discuss the backgrounds in Sec. 3.

III. BACKGROUND CALCULATIONS

Since the X particle is produced by an electron via the process shown in Fig. 1,
one of its decay modes must be X — ete™. The partial widths corresponding to

various types of X particles decaying into ete™ are given by®

;= }Q—mzazF,'(z) , (3.1)

where z = (m,/m,)? and
Fy(z) = (1 — 42)3/?
Fps(z) = (1 —42)/?

Fy(z) = 2(1 - 42)Y2(1 + 22)

Wlto Wl

Faulz) = 2(1 — 42)*/?

In the PEGASYS experiment z — 0, hence

1
Fs == Fps = §mzaz ) (3 2)
and
1 :
Fv = Fav = '3‘m1;a1: . (3-3)

If we ignore the decay probabilities into all other channels, we can obtain the

12
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lifetime

7 = hJTi = 1.316 x 1072 s GeV/[m,a, Fi(z)] (3.4)

and the decay length is

(%)
(&)
o

——

In the PEGASYS experiment! we have E; < 14.5 GeV and 0.1 GeV < m; <
3.5 GeV and the best available vertex detector has a spacial resolution of about
1073 cm. Thus, only when m; ~ 0.1 GeV and a; < 10~7 can we observe the
vertex of the decay X — ete~. Also, if oz is much smaller than 10~7, there will
not be enough z produced. From now on we shall assume that the decay length is

so small that it can be ignored. The main backgrounds are due to Figs. 3 and 4.

The contribution from Fig. 3 can be calculated easily using the result for a
vector particle production and the Kroll-Wada!? theorem. Let the invariant mass
of the ete™ pair in Fig. 3 be the square root of s = (P4 + P_)2. Then the
cross section for producing such a pair can be obtained from the cross section for

producing a vector particle of mass M, = /s by a replacement

2 —4 -2 d .
az_>a—<5—-1”—e)dsz1.13x10—5 Mz (3.6)

37 s2 My

where dm, is determined by the mass resolution of the apparatus. Now we are
looking for a bump due to production of an z particle whose intrinsic width is
negligible. The background is a smooth curve given by (3.6); only the statistical
fluctuation will give a bump-like look. Let us assume that there are N events in the

interval ds due to the background. The statistical fluctuation will be V/N. Let the

13
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background cross section be o and its statistical fluctuation be do. Then do/o =
V/N/N; thus do = o/vV/N. In other words, the more meaningful background to
the problemr is less serious than the number obtain;:d from Eq. (3.6); it should be
multiplied by 1/v/N.

The backgrounds due to Fig. 4 can be calculated exactly. We give here a simpler
treatment using Weissacker-Williams method. First let us point out that the
signal-to-background ratio can be considerably improved by detecting the outgoing
electron Pp as well as the pair from the decay of the X particle. They should be
arranged such that neither k or }_72’ 1s in the forward angle but the sum of their
transverse momenta is nearly zero. In general, even if only the pair from the
decay of = are detected, the outgoing P, will prefer to go in the above-mentioned
symmetric direction because this is where the minimum momentum transfer to
the target occurs. Comparing Figs. 1 and 4, the momentum transfer to the target
l‘;beled g in the two cases are identical. In Fig. 4, the outgoing electron P, will
prefer to go to the forward angle in-stead of the symmetric angle because the photon
propagator labeled k1 in Fig. 4 can become almost on the mass shell when P; is in
the forward direction. Let us therefore calculate the background contribution due

to Fig. 4, with the above geometry in minu.

1. The equivalent photon flux of the electron!! is

adk; [14+(1-2)21 m?z?

pe(kl,tl)dkldtl = ;E- -——2————27 — t,2 dtl (37)
~2adw1+(1—x)2é0_2 (3.8)
T r oz 2 0, - ’

where k) = E; — Ej is the energy of the photon, t' = —(P; — P2)2 ~ E, EQOg

and ¢ = k]/El.

14
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Integrating (3.7) with respect to t', we obtain the more familiar expression

for the equivalent photon flux when P; is left_rundetected:

tmaz

— 1)
/t"e(kl,tl)dt'zC—YﬂCl 1+(1-2) Zntmaz—(

™ k‘] 2 tmin

1-z) (3.9)

tmin

where tyin = m22%(1 — z) and tmez = 4E1 E.
For E; = 14.5 GeV, z ~ 1, the ratio of Eq. (3.9) to Eq. (3.8) is (62/A02){n
(2E1/m.) = 1162/ A6;, which shows that the background can be reduced by

two orders of magnitude if 82/Af, = 10.

. We ignore the facts that the two 4’s in the reaction v +v — ete™ are off the
mass shell, and use the mass shell cross section
+ o2ra®

e )~ . , (3.10)

olyy = e

where s = (Py + P_)?. Since we are calculating the background we set

s = mj.

. Combining the equivalent photon flux of the electron given by Eq. (3.8), the
vy — ete™ cross section given by (3.10) and the equivalent photon flux!! of

the target proton, we obtain

d(e” +p — e~ +' ete pair + anything)
M3

. 2 2 mazx
_ (?_c_xd_:vl-{-(l z) d92> (27ra >gfd_s_l__ / dM} (3.11)

T oI 2 0, s T s 2my

1

[(t = tmin) W2 + Qt,lm'nwl]dt/tz ,

15
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where Wy and W, are given by Egs. (2.31) through (2.33), and

Mf'ma.z = (Mpz + 2klMp)% - \/g )
troin = [s/(2k1))

tmin = tmin + SQRT (tin) (M} — M2) /M,

Note that dt can be changed into the acceptance of the pair in the following
way: Let k = Py + P_. Then

t=—(PL—P,—k)?=2k-(PL—-P)+... (3.12)

Thus,

S
dt = —2|P; — P;|P;dcos b,

- —_  — —_—
Where 6y, is the angle between the two vectors k = Py + P_ and P — P.
Equation (3.12) tells us that for a given ?2, t is minimum when E//F; - 132), where

most of the events will be concentrated. If k is given then t can be written as
t=—(PL—P,—k)?=2P,- (PL—k)+... (3.13)

B —_—
which shows that ¢ is minimum when P; is parallel to the vector (P, — k).
IV. NUMERICAL EXAMPLES

In Fig. 5(a) we give do/dz defined by Eq. (2.39) for production of a spin 0
particle. The results from elastic and inelastic form factors, given by Eqs. (2.31)
through (2.33), are summed in the figures. Figure 5(b) is similar to Fig. 5(a)

except now we deal with production of a spin 1 particle. We assume m¢/m; — 0,

16
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so there is no difference in the cross section for production of pseudo scalar and
scalar parti‘cles, and also between vector and axial vector particles. We also assume
a; = 1. JUs-'ing these curves, one can immediately i)btain the minimum values of
ar necessary to discover particles of various masses. For example, suppose the
integrated luminosity is 10%°cm™2 and we need at least 10 events to prove the

nvrecdmem s AL n nantiAla
CEXISLEIICE Ol a paitllic,

m~ M ~AF ooy
1 1

mrandiies 5 vartisla nag 1 — 2k 9N 1N N1 3\]
prouuce a paltiCic Ul i11asd 7ty — 9.9, £4.U, 1.U, U.1 \a

ev,
the value of a; must be at least a; = 1074, 3 x 10~7, 10~8, 10~1° for spin 0, and
az‘ =5x 1075, 1076, 10™8, 107! for spin 1 particle production. When m, — 0,
the = dependence? of the cross section goes like do/dr — z for spin 0 particle
production and do/dr — 1/z for spin 1 particle production (such as in ordinary
bremsstrahlung emission). We note from Figs. 5(a) and (b) that in both spin 0
and spin 1 particle productions do/dz tend to peak at z = 1 when m,; # 0. The

peaking is more pronounced for the spin 0 case.

In Fig. 5(c) we plot the background using Eq. (3.11) integrated with respect
to both 02 and t and setting ds/s- = 2dmy/my; = .02. This gives the background
of electron pairs due to Fig. 4. The background due to Fig. 3 is not included in
Fig. 5(c). As mentioned in Sec. 3, the background due to Fig. 3 can be obtained
by replacing a; in Eq. (2.39) for production of a vector particle by an expressicn
given by Eq. (3.6). Since we have assumed dm;/m,; = 0.01 in our calculation for
Fig. 5(c), the background due to Fig. 3 is equivalent to do/dz given in Fig. 5(b)
multiplied by 1.13 x 10~7. Comparing Fig. 5(c) with Fig. 5(b) x1.13 x 1077 we
see that the latter is negligible, except when m; = 0.1 GeV and z — 1. We have
assumed the mass resolution of dmy/m, = 0.01 for convenience of presenting our

result. The actual value of dm;/m;, is dependent upon E; and m;.

Inspection of Figs. 5(a), (b) and (c) shows that the signal-to-background ratio

17
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is greatest when z is near unity, hence high z events should be selected. At z = .95
the signal-to_—background ratios for m; = 3.5, 2.0, 1.0 and 0.1 GeV are respectively
(1.36 x 102, 73.89 X 103, 1.57 x 104, 5.88 x 10%) (a;mx/Am,;) for spin 0 particle
production and (3.19 x 102, 8.80 x 103, 3.60 x 10%,1.36 x 10°%) (azm./Am,) for

spin 1 particle production.

In Figs. 6, 7 and 8 we give the energy-angle distributions of the z particle,
do[(dzdo), for both spin 0 and spin 1 cases, and the masses m; = 0.1,1.0,2.0
GeV, assuming again a; = 1. The energy-angle distributions of the background
are also given in Figs. 6(c), 7(c) and 8(c), assuming Am;/m; = .01. These curves
are obtained by integrating (3.11) with respect to 6, [see Eq. (3.9)].

We observe the following characteristics of the energy-angular distributions:

1. Comparing Fig. 4 with Fig. 1, we note that the photon propagators labeled
q in two cases are the same. In Fig. 1, the electron propagator makes the
angular dependence more shgfply peaked toward the forward angle than the
background. The extra angular dependence due to the electron propagators
in Fig. 1 is

1

(o2+ )

This factor makes the cross sections fall off sharper with 6 when m; is small

and z is near 1.

2. From the above analysis we see that the signal-to-background ratio is better
at small angles if only the pair is detected; but as we have pointed out in
the last section, tremendous increase in signal-to-background ratio can be
achieved if we tag the final electron slightly off the forward angle in such a

R — - — —
way that the momentum of the pair k = Py 4+ P_ is parallel to P, — P;.
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We note that in this kinematical condition the final state momentum of the
— -
target Py is parallel to k because of the momentum conservation. On the

— —F I hong 4 -
other hand, if P, is chosen to be parallel to P; — k, then Py is parallel to P,.
V. DISCUSSIONS

Hawkins and Perl® have speculated that there might be charged-lepton specific
forces. Our X particles could be the particles associated with such forces. Let us
us;z the analogy with QCD. Similarly to the color for the quarks, we may have a
leptonic “color” possessed only by leptons. This leptonic color acts as a source for
a new force via exchange of a new kind of a gluon that would be the candidate for
our spin 1 X particle. We do not know such a force is parity-conserving or not.
This can be tested by using a polarized electron beam. The existence of the parity-
violating term & - E, where & is the electron spin and k is the momentum of the X
' p;xrticle in the angular distribution of the X particle will indicate parity violation.
If» there is a new force between leﬁtons, we might expect some bound states to be
formed by leptons and they may show up as spin 0 z particles. There may also be
Higgs-like particle and pseudo-Goldstone bosons coupled only to leptons. In this
paper, we do not attempt to build a detailed model of the X particles because we
need to assume only two parameters a; and m; to perform the calculation for the

cross sections.

We also cannot specify whether the coupling is flavor-dependent. This can be
determined by the decay rates of X into e*, u? and 7%. Production of z particles
using a muon beam can also shed light on this question. As‘ long as mg; > m,,
we may use all the equations given by Eqgs. (2.10) through (2.30). However, even

if the mass of muon is not negligible compared with mg, it is trivial to change all
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of our equations, because exact expressions for the cross sections can be generated
by a computer using Eqgs. (2.2) through (2.9).

Our r particles dovnot have to be coupled to I;ptons only. If they couple to
hadrons as well leptons, the only change would be that the branching fractions to
the leptons are reduced by about a factor of two, which can be obtained exper-

mentally.
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FIGURE CAPTIONS

Fig. 1. Fejnrﬁan diagrams for production of an z particle by an electron beam. The

target particle F; is a proton.

Fig. 2. The coordinate system used in the integration of the outgoing electron Ps.
The subscript s refers to the rest frameof U = P, + Py = PP+ P, — k. In
this frame both k and P; are in the z — z plane, the direction of the vector
—ﬁ; — k is chosen as the z axis and the direction of _1_5: is along the negative

z direction.

Fig. 3. Background e pair production due to internal conversion of the bremsstrahlung

photon. -
Fig. 4. Background e* pair production due to two photon annihilation.

Fig. 5. (a) do/dz for production of a spin 0 particle in the reaction e +p — X + ¢+
anything at E; = 14.5 GeV in unit of cm? assuming a; = 1. (b) The same as
above for a spin 1 particle. The background due to the mechanism of Fig. 3
can be obtained by multiplying 1.13 x1073Am,/m, onto this graph. (c)
Background due to 2y process shown in Fig. 4. Mass resolution of Amg/m, =

.01 is assumed.

Fig. 6. (a) do/(dzdo) for production of a spin 0 particle in the reaction e + p —
X + e+ anything at F; = 14.5 GeV in unit of cm?, assuming a; = 1
and m; = 0.1 GeV. (b) The same as above for a spin 1 particle. The
background due to the mechanism of Fig. 3 can be obtained by multiplying
1.13 x 10™% Am,/m, onto this graph. (c) Background due to 2y process

shown in Fig. 4. Mass resolution of Am;/m; = .01 is assumed.
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Fig. 7. Same as Fig. 6 except m; = 1.0 GeV.

Fig. 8. Same_as Fig. 6 except m; = 2.0 GeV.
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