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Wess-Zumino-Witten models PI are-prototypical rational conformal field the- 

ories. The classification of rational conformal field theories has been the focus of 

much recent attention. But even the small subclass consisting of Wess-Zumino- 

Witten models is not well understood; all consistent models are not known. 

One powerful restriction is modular invariance. For example, the states of the 

theory must be such that the one loop partition function is modular invariant. A 

list of possible modular invariant partition functions has been compiled and proven 

complete only for the simplest case, that of SU(2)12’. 

Remarkably, the SU(2) partition functions may be labelled by the simply-laced 

Lie algebras, i.e. those of the A,D and E types. There are the trivial diagonal 

modular invariants (A type) and also exceptional ones (E type) occurring for iso- 

lated values of KaE-Moody central charge k. The remaining modular invariants 

(D type) are the partition functions for strings propagating on the group mani- 

fold SO( 3) 13j4’ .So besides the trivial and exceptional, all SU(2) modular invariants _. 
are partition functions for strings on nonsimply-connected group manifolds. If 

this pattern continues for other Lie groups1 ,strings on nonsimply-connected group 

manifolds are certainly important. 

Felder, Gawedzki and Kupiainen [61 have studied the canonical quantization 

of Wess-Zumino-Witten models. Using the geometry of line bundles over the 

loop groups of G, they derive consistent spectra for arbitrary nonsimply-connected 

groups G = G/B, where 6’ is the covering group, and B a subgroup of its centre 

B(G). In this letter we use the orbifold171 approach advocated in reference 3 to 

construct the partition functions, thus providing a simple confirmation of their 

results. 

The crucial mathematical relation we use is the isomorphism between the outer 

automorphism group O(i) of th e un wisted) KaE-Moody algebra g and the centre ( t 

B(G), and its relation to the modular transformations of the torus. Bernard PI has 

: This was conjectured for SU(3) in reference 5. 
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shown that in the space of characters of highest weight representations of 4, it is 

the modular tranformation S (T -+ -l/7) that transforms an element A E O(cj) 

into an element (u E B(G), and vice versa. He and others PI use this fact to derive 

many modular invariants! These are now understood to be some, but not all, of 

the partition functions for strings on nonsimply-connected group manifolds. 

A Wess-Zumino-Witten model one-loop partition function is a sesquilinear 

combination of restricted characters 

XX (7) = trA e2x2Lor (1) 

of highest weight representations of a KaE-Moody algebra ij. Here X = XP,wp is 

the highest weight of the corresponding representation, X, E Z, and wP are the 

fundamental affine weights. For a unitary representation, we must have X,k”~ = k, 

where k is the Kac-Moody central charge and k”p are the co-marks. 

In particular, the partition function for strings propagating on the nonsimply- 

connected group manifold G = G/B, B c R(G), is of the form 

It can also be written as an orbifold17’ partition function PI . If al + ~727 are the 

coordinates of the torus and r its modulus, we let (or, CY~) denote the contribution 

to the partition function from fields obeying the twisted boundary conditions 

$(a1 + 27qa2) = Nq+l,Q2) 

qqq, 02 + 274 = a2+17 a2) . 
(3) 

Then the partition function can be written as 

where IBI is the order of B. The modular invariance of this expression is guaranteed, 

5 Many of these may also be derived from the branching rules for the conformal embedding 
&(p)q @ sh(q)P c sqppol. 

3 



since under any transformation 7 + (a7 + b)/(c~ + d), (ad - bc = 1; a, b, c, d E Z), 

(Cal, a~) transforms to (ofos, c~i$) 17’111.1f B = ZN, (4) reduces to 

Z(G+/z;) = $ N2 (ay-yg) . 
m,n=O 

The trivial example is the partition function on the simply connected group 

manifold 6’131: 

2(&q = (l,l)xq = sxq . (6) 

Untwisted fields are those obeying (3) with or = 1. The contribution to (5) from 

the untwisted sector is denoted 21 : 

1 N-l 

-w%z,) = E c (1,o”) . 
n=O 

(7) 

Using these last two objects and the generators S (7 -+ -l/r) and T (7 t r + 1) 

of the modular group, it is in principle possible to obtain the full partition function 

.@/ZN)131.Th e o f 11 owing formula is valid for N prime: 

z(@zN) = [l + ET’s] z&/z,) - z(e) . (8) 

For N not prime, the situation is more complicated. For example, one can verify 

The Z2 group of the last term is generated by o2 if CL generates Zq. For general N 

not pime, we expect subtraction of terms proportional to Z(G/Z,) for plN would 

be necessary. For simplicity, we therefore restrict to N prime, and use (S)*. 

JC This is a significant restriction only for g = A (g is the Lie algebra of G); ZN with N prime 
covers all other cases, except for half the possibilities with g = D. 
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The T transformation is of quite simple form: 

T~IX = SXIX exp 
7G IX + PI2 ri IPI2 

k+h” - h” (10) 

Here p = CP wfi and the dual Coxeter number is h” = C, k”~w~. But the dimen- 

sion of the S-transformation matrix grows rapidly with k, and the expression for 

its elements involves a sum over the Weyl group of g. So explicitly constructing 

the S-transformation matrix is extremely tedious. This is the main obstruction 

to using formulae like (8) t o d erive orbifold partition functions. 

However, identities proved by Bernard PI allow us to bypass this difficulty. 

Consider an element A of the outer automorphism group O(G) of j acting on a 

highest weight X for a given value of the Kac-Moody central charge k (X,kp = 

k). (An example is the generator of O(s^u(N)), which permutes the fundamental 

weights as follows: Awp = wfiL+l; wN 3 w’.) Restricting to the weight lattice of 

the finite Lie algebra g, one can write 

A(X + p) = (k + hV)wA(‘) + WA@ + p) . (11) 

Here X = Cizo K& is the restriction of an affine weight K: to the g weight lattice, 

wA(‘) = Aw’, and WA is an element of the Weyl group of g acting in the following 

way: 

wA(wi) = wA(i) - kViwA(0) . (12) 

Using (11) it is easy to show PI . . 

SA(X)X’ = s,j,f E(WA) exp 27~ { . (wA(O)I A’+ p)} . (13) 

Here c(WA) is the signature of WA; i.e. c = +1(-l) for the product of an even 
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(odd) number of reflections. Now for all outer automorphisms A, we have PI 

Ed = exp 27ri { (w”(‘)Ip)} = exp {aih” lwA(‘)12) . (14) 

So (13) reduces to 

SA(X)X’ = (15) 

This last equation is the starting point. Considering it with A replaced by A’ 

yields 

(wAr (o)I A) = r (w~(o)l X) mod I (16) 

implying 

N (we/ X) = o mod I (17) 

if AN = 1. So we see that the phase on the right hand side of (15) is an Nth, 

root of unity. In fact, it is the eigenvalue of an element of B(e) of order N. So, 

as mentioned above, the modular transformation S maps elements of O(i) into 

elements of R(G). 

Now the untwisted sector partition function Zl(&‘/z~) is built from the diag- 

onal partition function Z(e) by projecting onto ZN invariant states (compare (7) 

and (5)). So 

G( ~/ZN)A~A = Sxtx $ y exp { ‘Lnir (w’(o) / A) } 

T=o 

ZX kw 61 { (WA@/ A)} 

where we have defined 

b(x) = 
1, ifz=Omodl, 

0, otherwise. 

(18) 

(19) 
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Using (15) it is then easy to show 

N-l 

s-&(~/zN)X’X = ; c b’A’(X) * (20) 
r=o 

Applying successive T-transformations yields 

N-l 

T’s.&((?/zN)X’X = $ c ~X!A’(X) exp 
r=o 

IA’(X + P)12 - IX + PI2 
2(k + h”) lb 

Since kVA(‘) = 1, 

(w~(o)l w(v)) = (w~(o)I v) mod I (22) 

for any element ‘w of the Weyl group of g, and any integral weight V. This andf 

equations (11) and (14) simplify (21) to 

N-l 

~“SZl(@ZN)X’X = $ c &‘A’@) 
T=o 

exp { -2riv [ (wAr( X) + S ]wA’(‘)12]} . 

(23) 

Twisting a string by cz N = 1 must make no difference. Replacing ‘u with ZI + N 

in (23) therefore demands 

fi wA'(O) 2 
I I 

= ‘0 mod 1 
2 

for all r. This can be simplified, however, since 

!!!! w4O) 2 
2 I I = 0 mod I 

is sufficient to ensure (24) and furthermore that 

k 5 ( I wA’(o) wA”(o) + wA’P) ) = f (WA’J”) 1 ,A’+‘(O)) mod 1 . 

(24) 

(25) 

(26) 

Equation (25) d isa 11 ows certain integer values of KaE-Moody central charge k. 

It was derived in reference 6 by requiring consistency of the Wess-Zumino term on 
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a torus, with one of its cycles mapped into a nontrivial closed path in G. Thus it 

is a consequence of the nontrivial fundamental group 7rr(G = G/ZN) = ZN. 

Substituting (23) into the general formula (8), and using (26), we finally obtain 

-@/zN),9 = -&(e/ZN)X’X + 
N-l 

c 6XrAr(X) k z exp { -2rir [ (WAY(‘) 1 x + iwAr( } . (27) 

T=l 

Since N is prime the factor r outside the square brackets may be dropped, and we 

can write 

N-l 

-@/ZN)X’X = $ c b4’“(X) exp { -2ri (weal x + kw~~(s))} . (28) 
m,n=O 

This is exactly the form found by Felder, Gawedzki and Kupiainen [61* .Furthermore, 

it- is easy to convince oneself that 

an) = &X’Arn(X) exp { -27ri (wAn( X + kwAm(‘))} . (29) 

The condition (25) g uarantees the integrality of the elements of the matrix 

i(&/zN). Th’ IS must be, since these quantities count the numbers of primary 

fields. We may rewrite the final result in a way that manifests this property: 

N-l 

@/ZN)X’X = c &M”(X) 61 . (30) 
m=O 

This last equation assumes (25) is obeyed; (28) is a modular invariant for all cases, 

but not a physically sensible partition function. 

* The authors of reference 6 also considered the unique semi-simple possibility for e simple: 
B = 22 x 22 for g = Dl, 1 even. 
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We will now write the partition function in a more compact notation, and use 

it to verify modular invariance. Considering an outer automorphism A as acting 

on the space of highest weights of unitary representations, we have 

-40 = bl(X) . 

Then (15) becomes in matrix notation 

AS = Sa 

where a E B(e) is of course diagonal 

OdA’A = 6x1~ exp 2na [ . (dqX)] . 

(32) 

(33) 

Thus the modular transformation S diagonalises the outer automorphisms of i. 

If we have another related pair A’ E O(G), a’ E R(6), i.e. A’S = SCY’, we 

define 

A’ o a = A’a exp 

cy o A’ = aA’ exp [ -rik (uA(‘) / uA’(‘))] 

so that 

A’oa = croA’. 

Then the partition function may be written simply as 

Z(6/2~) = ; Ne A” 02 . 
m,n=O 

If C is the charge conjugation matrix, we have 

S2 = C, CA = A-% ; 

(34) 

(35) 

(36) 

(37) 

9 



so that (32) also implies 

S+aS = A-’ . 

Therefore 

s=@/ziv) = $-Earn o A-” = @/z,) . 
m,n 

Finally, it is straightforward to prove 

T+(A o a’)T = A o cm , 

(38) 

(39) 

establishing the T-invariance of Z(G/ZN). 

The simple structure just discussed may exist in a more general class of rational 

conformal field theories, perhaps those obtained by the coset construction l121.Then 

partition functions for these theories of the type (36) could be easily obtained. We 

hope to report on this possibility in the future. 

In conclusion, let us emphasise that the advantage of the orbifold approa,ch 

used here is simplicity, and consequent generality. It remains to be seen if the 

elegant methods of reference 6 are applicable to more general rational conformal 

field theories. 

It is a pleasure to acknowledge useful conversations with members of the SLAC 

Theory Group, especially I. Klebanov, D. Lewellen, M. Peskin and J. Sonnenschein. 
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