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ABSTRACT 

The -masses of the b-quarkonium system are analyzed relativistically in a linear 

plus Coulomb potential model in order to determine whether the observed T(11020) 

is the 6s (bb) state. The quark mass and the potential parameters are determined 

by the least squares method, comparing the calculated and the observed masses of 

the system. It has been found that the r(11020) state must be assigned to a 4D 

(bb) state in the relativistic linear plus Coulomb potential model. 
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I. INTRODUCTION 

There now exist so many potential models to account for the observed heavy 

quarkonium systems that we cannot easily determine the form of confining poten- 

tial? The difficulty results from the fact that the number of parameters to be fixed 

by comparison with experimental data is not much smaller than the number of 

experimental data itself. Only qualitative arguments can be made to introduce a 

new potential form, and therefore it is better to consider simpler potentials than to 

explain experimental data and to find out the limits of the models. In this respect, 
n 

the linear plus Coulomb potential model‘ is a suitable one to start with. 

The form of the linear plus Coulomb potential is motivated from QCD asymp- 

totic behaviors. For short distances, the running coupling constant becomes so 

small that one gluon exchange is expected to be a good approximation, and the 

Coulomb potential is given by this approximation. For large separation of a quark 

and an antiquark, the intermediate gluon fields are thought to form a linear tube 

so that the potential increases linearly with distance. It is well known that various 

phenomenological potential models accomodate these two features appropriately. 

However, since the experimental data of heavy quarkonium systems are mostly 

3 in the region from short distances to the intermediate distances, it is uncertain 

whether the confining potential has the linear form. Moreover, the original po- 

tential forms must be modified if we consider relativistic corrections: which are 

essential for the explanation of the experimental spectra. For low-lying quarko- 

nium states, the spin-dependences cannot be neglected compared with the energy 

level differences between radially excited energy states. These spin-dependences are 

typical relativistic contributions to quarkonium spectra, and typically have been 

estimated with respect to the nonrelativistic wave functions obtained from assumed 
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potentials. In this procedure, it is not clear whether the potential form alone plays 

the essential role to fix the energy ‘levels or the relativistic spin-dependences have 

equally important roles. In order to figure out the right form of potential, we 

need to analyze the higher excited states with systematic treatment of relativistic 

contributions. 

In this paper, we will calculate the spectra of the bquarkonium system by using 

relativistic Hamiltonian, and determine the parameters by the least squares method 

without any averaging process. The quark mass and the potential parameters can 

be determined explicitly in this procedure, and it is possible to compare directly 

the results between different assignments of radially and orbitally excited states 

with the same quantum numbers to the observed states. Although the low-lying 

states can be assigned uniquely to the observed states, the higher states Y(lO860) 

and ‘Y( 11020) can be assigned to either S-wave states or D-wave states. We will 

concentrate on the state r(11020) and compare the two assignments. 

In Sec. II, calculational methods are presented. Calculated results are given in 

Sec. -III. The final section is devoted to some discussions. 

II. CALCULATIONAL METHODS 

The relativistic free Hamiltonian of a system with masses ml and m2 

can be approximated by 

pi2 + fi2 Ho S ml+m2+- 
2ml tG&’ (2) 
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In a center-of-mass system, we have pi = -p: z p’ and the first order spin- 

dependent potential is given by4 

(3) 

where c(r) is the static potential, si and s: are the spin angular momenta, and the 

orbital angular momentum is defined by e E ~!?r = -cs. For the bquarkonium 

system, the running coupling constant CY, is assumed to be small, so that the first 

order calculations give us a sufficient picture of the whole structure. In this paper, 

we assume that 

4 
e(r) = 3 - 3 a, ;+b , (4) 

with free parameters a and b. We want to solve the equation 

[aI + V(r)] Q = EQ (5) 

by numerical method. There is no problem for nonzero orbital angular momentum 

states; however, for S-wave states the equation becomes 

(6) 



It is impossible to solve the above equation because of the b-function term. In 

order to resolve this problem, we introduce the smeared &function5 

f(r) = -$exp 

_ with ro another parameter to be determined from experimental data. In fact, the 

calculated results turn out to be nearly independent of ro for a wide range of values. 

This is due to the fact that the spin splittings of the b-quarkonium system are not 

comparable to the splittings between radially excited states. 

Now there are all five parameters m, a, b, crs, and rs. These parameters can be 

fixed by minimizing the root mean square value 

1 
L 2 

qa' - EpbS)2 , 

where N is the total number of observed (b$) states and Ef“’ and Efbs are the 

masses of calculated and observed states. 

III. CALCULATED RESULTS 

There are 12 observed (bb) states in the table of the Particle Data Group.’ 

- Of the 12 states, 10 states have been assigned to S- and P-waves and the other 

2 states, T(lO860) and r(11020), h ave not been assigned to any particular wave 

states. These two states can be assigned to either S- or D-waves. However, the 

leptonic decay width Ice of r(10860) is 0.31 KeV - much larger than 0.24 KeV of 

T(4S) - so that it is reasonable to assume that the wave function at the origin of 

T(lO860) state is larger than that of T(4S), implying that r(lO860) is an S-wave 

state. Thus, we can safely assign r(lO860) t o a 5s triplet state. Then there remain 
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two possibilities: one with T(11020) assigned to a 6s triplet state, and the other 

with ‘r( 11020) assigned to a 4D triplet state. 

For the conventional assignment of T( 11020) t o a 6s triplet state, the variations 

of Am as functions of m are shown in Fig. 1, where three cases with a = 2.0, 2.5, 

and 3.0 GeV-1 have been presented. In each case, the running coupling constant 

cys has been set to three values - 0.2, 0.3, and 0.4 - which are in a reasonable 

range of variation for b-quarkoniums. The value of ro is taken to be 1.0 GeV-1 

and it has been found that the final result is not very dependent on the value of 

ro. Finally, in Fig. 1 the value of b is taken in such a way that the calculated mass 

of the 1s triplet state coincides with that of T(9460). For a = 2.0 GeV-‘, the 

fits become better as the value of crs decreases and the &quark mass m increases. 

However, in Fig. l(b) we find that the best fit comes with os = 0.3 for the case of 

the a = 2.5 GeV-I, and when a = 3.0 GeV-I, the situation changes between the 

QfS = 0.2 and crs = 0.4 cases. The minimum Am occurs near m = 12 GeV, with 

OS = 0.3 and b = -14.352 GeV. In order to find out precise values of m and a, we 

use these values of crS and b. The determined values of m and a are 

m= 12.061 GeV , U = 2.26 GeV-1 . (9) 

- For these values, the dependences on os and b are shown in the upper portions of 

Figs. 2(a) and (b). The final results are 

%l = 0.297 , b = -14.356 GeV , and Am = 50.6 MeV . (10) 

The predicted and the observed masses are shown in Table 1. It can be seen that 

the difference between the calculated and the observed values of Y (11020) is more 
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than 100 MeV, and Y (10860) is closer to a 4D triplet state than to a 5s state. One 

unconventional point is that the determined mass m and displacement b have very 

large values compared with the values determined mainly by the lowest lying states. 

The value of the running coupling constant cr, agrees well with other calculations. 

The other choice with T(11020) assigned to a 4D triplet state can be calculated 

in the same way as for the above 6s case. The calculated results are shown in Fig. 3 

with a = 2.0, 2.5, and 3.0 GeV-1 and with three CY, values. Since the minimum 

occurrs with CY, = 0.3, rg = 1.0 GeV-l, and b = -9.864 GeV in Fig. 3(b), we fix 

these parameters and vary m and a to find out the minimum value of Am. The 

determined values are 

m = 9.772 GeV , a = 2.22 GeV-1 , (11) 

and for these parameters the dependences on CY. and b are shown in the lower part 

of Figs. 2(a) and (b). The final minimum is given by 

% = 0.299 , b = -9.865 GeV , and Am = 27.8 MeV . (12) 

The calculated masses are shown in Table 2. 

In both cases, the determined &quark mass m is very large and this is related 

to the large value of the parameter b. When the quark mass becomes larger, the 

first order spin-dependent potential gives a better approximation since the spin- 

dependent terms have been obtained by expansion in inverse powers of m. To 

compensate for this large value of m, we need large negative displacement in the 

potential. At first it seems arbitrary to vary quark mass m and the potential 

parameter b; however, we can determine the values explicitly by requiring the 
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best fit to the observed spectra. Moreover, we can directly compare different 

assignments of observed states to ‘various radially and orbitally excited states of 

quarkoniums. The value of Am = 27.8 MeV is much better than Am = 50.6 MeV 

for the bquarkonium system. 

Iv. DISCUSSIONS 

In this paper, we have calculated the mass spectra of bquarkonium system in 

a relativistic linear plus Coulomb potential model with the Y(11020) assigned to 

6s and 4D triplet states, respectively. The quark mass and the potential parame- 

ters have been determined by the least squares method, comparing the calculated 

and the observed masses. The root mean square value of the differences between 

calculated and observed spectra becomes much smaller when Y(11020) is taken to 

be a 4D triplet state than when taken to be a 6s state. In this method, the quark 

mass has been determined to be very large compared with the conventional values 

obtained by fitting to lowest-lying states. The large quark mass gives a better ap- 

proximation of spin-dependent potentials and is related to the large displacement 

parameter in static potential. If we accept the determined parameters and use the 

linear plus Coulomb potential, the conventional assignment to the 6s state must 

be changed to a 4D state. 

The new assignment is also inferred from the leptonic decay width Fee of 

Y(11020). For highly excited states, the linear potential becomes more impor- 

tant and the wave function at origin is not reduced for higher S-waves. This can 

be seen for Y(4S) and 5s Y(lO860) b ecause ree is even larger for Y( 10860) than 

for Y (4s). This occurs because the Coulomb part changes into a linear part in this 

region. However, Fee for Y (11020) is much smaller than that of Y (lOGSO), implying 
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that Y (11020) is not a higher S-wave state. 

We need more study on the impact of the large quark mass and the implications 

of the large negative value of b. It may be related to more complicated spin- 

independent potentials: or the least squares method is not adequate. 
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FIGURE CAPTIONS 

Fig. l(a) : Root mean square values Am as functions of the quark mass for u = 2.0 GeV-1 

and Y(11020) assigned to a 6s triplet state. The unit of Am is MeV, and 

that of m is GeV. Three cases are shown with os = 0.2, 0.3, and 0.4 and the 

value of ro is fixed to be 1.0 GeV-1 and b chosen to fit the Y (9460). 

Fig. l(b) : Th ree 6s cases for a = 2.5 GeV-‘. 

Fig. l(c) : Curves for a = 3.0 GeV-‘. 

Fig. 2(a) : Am as functions of the running coupling constant as. The upper graph 

represents the case of Y(11020) assigned to a 6s triplet state and the lower 

graph corresponds to a 4D triplet state. The unit of Am is MeV. 

Fig. 2(b) i Ro o mean square values in MeV as functions of the displacement parameter t 

b. The parameter b is varied between -14.40 5 b 5 -14.30 (GeV) for a 6s 

case and -9.90 2 b 2 -9.80 (GeV) for a 4D case. 

Fig. 3(a) : Am in MeV as functions of m for a = 2.0 GeV-1 with Y(11020) assigned to 

a 4D triplet state. The unit of m is GeV. 

Fig. 3(b) : Curves for 2.5 GeV-1 corresponding to 4D assignment. 

Fig. 3(c) : 4D cases for 3.0 GeV-‘. 
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TABLE CAPTIONS 

Table 1. The calculated masses with Y (11020) assigned to a 6s triplet state. The pa- 

rameters are m = 12.061 GeV, a = 2.26 GeV-‘, cr, = 0.297, ro = 1.00 GeV-‘, 

b = -14.356 GeV, and Am = 50.6 MeV. Experimental values are shown in 

the right columns. 

Table 2. The calculated and observed masses with Y( 11020) assigned to a 4D triplet 

state. The parameters are m = 9.772 GeV, a = 2.22 GeV-l, o, = 0.297, 

ro = 1 .OO GeV-l, b = -9.865 GeV, and Am = 27.8 MeV. 
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Table 1. 

1 3s1 9.411 

2 3s1 10.005 

3 3s1 10.304 

4 3s1 10.547 

5 3s1 10.810 

6 3S1 11.141 

7 3s1 11.544 

.l 3D1 10.162 3 3Pl 10.480 

2 3D1 10.405 3 3P2 10.488 

3 3D1 10.629 4 3Po 10.704 

4 3D1 10.892 4 3Pl 10.721 

5 3D1 11.223 4 3P2 10.732 

Cal. Exp. Cal. Exp. 

9.460 

10.023 

10.355 

10.580 

10.865 

11.019 

1 3PlJ 9.914 

1 3Pl 9.934 

1 3P2 9.946 

2 3PrJ 10.225 

2 3Pl 10.240 

2 3P2 10.249 

3 3Po 10.466 

9.860 

9.892 

9.913 

10.235 

10.255 

10.269 
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Table 2. 

1 3s1 9.436 

2 3s1 10.002 

3 3s1 10.315 

4 3s1 10.591 

5 3s1 10.921 

6 3S1 11.338 

7 3s1 11.843 

1 3Dl 10.150 

2 3D1 10.413 

3 3D1 10.675 

4 3D1 11.005 

5 3D1 11.420 

Cal. Exp. Cal. Exp. 

9.460 

10.023 

10.355 

10.580 

10.865 

11.019 

1 3Po 9.896 

1 3Pl 9.919 

1 3P2 9.932 

2 3Po 10.220 

2 3Pl 10.239 

2 3P2 10.249 

3 3Po 10.484 

3 3Pl 10.504 

3 3P2 10.514 

4 3Po 10.771 

4 3Pl 10.798 

4 3P2 10.812 

9.860 

9.892 

9.913 

10.235 

10.255 

10.269 
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