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Abstract 

. Neural Nets(NN) have been described as a solution looking for a problem. In the last conference, Artificial InteIligence(A1) was 
considered in the accelerator context. While good for local surveillance and control, its use for large complex systems(LCS) was 
much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to 
multi-loop feedback/forward control of faulty systems and therefore provide an ideal adaptive control system. Thus, where AI 
may be good for maintaining a ‘golden orbit: NN should be good for obtaining it via a quantitative approach to ‘look and adjust’ 
methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or 
errors aa well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow 
one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications 
are discussed and several LCS of current interest are compared and contrasted. 

1. Introduction 
While there are many beam diagnostic schemes for on-line control 
and off-line simulation, there have been no attempts to simulate 
a whole facility to predict quantities like integrated luminosity 
or average, real data rates - presumably because no one can 
compute the mean probability of failure [I] of LCS. The growing 
size and complexity has made real-time control so complicated 
and hard to verify that even ‘trivial’ changes can make systems 
unworkable. Since this problem is not limited to accelerators, it 
is clear that new concepts, hardware and software are needed. In 
the last conference[2] we explored AI for such reasons. Here we 
look at NN which are complementary to AI e.g. one finds rules 
for LCS rather than following models that may be too simple 
or rigid. Reinterpreted and generalized, ideas from NN provide 
missing and necessary capabilities for future generation systems. 

1.1 Motivations and Disclaimers 
Physicists often ignore noblesse oblige[3] when other fields are 
considered[3]. It may be excusable in this case due to the greater 
evil theory i.e. by an equally pernicious problem in control theory 
that is widespread and largely ignored. In a sense, the ‘field’ 
doesn’t exist and so provides no antidotes for ad hoc arguments 
that arise when old systems are upgraded or new ones proposed. 
The problem is: How to predict and guarantee the performance 
of LCS? To solve the problem rather than shift it elsewhere, we 
first try to understand its origins to find means to deal with it. 

Finally, a word about terminology. Being interested in general 
networks of ‘things’ such as neurons, transistors or people, it is 
often useful to think of them interchangeably. I hope this causes 
no problems. Clearly, a transistor is neither a neuron nor any 
other form of sentient protoplasm with or without taxonomic 
definition. 

1.2 History and Description of NN 
Ideas on simulating the brain provide an interesting history. For 
us, the subject begins wifh the transistor(l947) - a simple device 
that its developers compared to the neuron[4]. Their device was 
much faster and more economical per bit of information. The 
obvious problem was how to use it in large circuits to best ad- 
vantage. The simulation of the brain quickly became academic 
because of the many applications resulting from the transistor’s 
size, reliability and power requirements compared to the vacuum 
tube. However, it &as the early fifties befor&the idea of the 
integrated circuit(IC) occurred and 1959 before one appeared. 
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Even so, it was the mid-sixties before circuit timing in IC’s 
surpassed discrete transistors. By then, the serial as opposed to 
parallel computing machine was well established due to rapidly 
improving component switching times and the fact that many 
people weren’t aware of what was or could be available. The sit- 
uation now seems reversed on both counts. The inherent capabili- 
ties of the serial machine(51 are no longer compatible with demand 
which explains the interest in ‘new’ materials like GaAs[G]. One ’ 
reason for the slow progress with such materials is their lack of in- 
tegration with Si with its broad use and large capital investment. 
One can view the slow progress with NN or the transistor in re- 
lated ways. Another reason was stated recently in relation to the 
development of the transistor: “The field was held back mainly 
by the reluctance of engineers . . . to try, or to learn, something 
new[7].” While work on new materials is important, it is hard to 
overestimate the importance of work on new logic elements with 
more connectivity. 

Work by von Neumann in 1952[S] was the stimulus prompting 
this paper - if not the subsequent development of the field[9]. 
The acronym ‘NN’ originated from models of the neuron and its 
connectivity in the central nervous system. Applicability of such 
models to other problems such as parallel processing machines 
and their programming produced the acronym ‘PDP’ for Parallel 
Distributed Processing as described in the basic reference(lO] on . 
this subject. 

1.3 Relation Between AI and NN 
Many distinctions have been made between AI and NN such as 
the ironic one that NN is not a branch of AI. Seymour Papert has 
described them as two distinct offsprings of cybernetics with AI 
being the more productive and popular until quite recently. The 
historical development is an interesting story which explains the 
clear but controversial distinctions. Many are directly related to 
the available ‘hardware’ - the brain and conventional computing 
machine( Some distinctions which seem valid on technical 
grounds, at least for now, can be represented as follows: 
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Figure 1: A Schematic Comparison Between AI and NN. 
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2. Reliability, Stability and Durability 
LCS rely on and sponsor a ‘specialist’ system and so risk being 
dominated by their weakest links without effective feedback and 
redundancy. Computer and teleconferencing are ways of increas- 
ing connectivity in organizations. Grouping experts at consoles 
in a control room(or boardroom) is another. Such connectivity 
is useful and must occur but is inefficient and doesn’t solve the 
problem. Real NN don’t simply fail or crash when a neuron dies 
like a CC might. While performance might deteriorate, it could 
improve given time to adapt[lO]. One of many examples follows. 

2.1 Importance of Connectivity - The ‘Rule of 100' 
Neurons fire in ~1 ms and ‘decisions’ take about 100 steps e.g. 
response times are ~100 ms(ll]. If we cease functioning due to 
loss of decision capacity e.g. contol of various functions, then for 
1O’O neurons in the brain and a loss rate of a3x103 per day(2 
per minute) we have a life expectancy of 100 years assuming very 
high connectivity. Assuming more neurons allows more units of 
100 with differing roles and locations. Thus, while we may not 
use them effectively we definitely don’t have more than enough! 

3. Prediction and Methodology 
We need a method to describe various aspects of LCS that allows 
us to reduce them to simpler forms while preserving important 
practical characteristics. Graph theory is especially useful. 

Cost breakeven occurs for: 

3.1 Graph Theory - Undirected Graphs 
A connected graph G is composed of sets of links and vertices 
{f&V} which can be characterized by the number of vertices {nt} 
each having t’ legs. The total number of links is 2N = xt!. nc 
and the number of loops L is: 

L(G) = 1 + f x(! - 2)?2< . (1) 

Connectivity is defined by the minimum cardinality of either the 
set of nodes n(G) which separate a graph into subgraphs or set of 
links X(G) which separate a node from the graph. These integers 
are a measure of a graph’s node and link vulnerability so we 
may want to make them as large as practicable. However, there 
are two constraints: cost and complexity which, for simplicity, 
we take as proportional to the number of links, which we want 
to minimize. This dichotomy leads to controversies [12] due to 
inadequate means to assess difficulty and cost consistently. 

3.2 Reliability 
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A particularly useful expression[l3] for the reliability of a graph 
G was given in the context of electronic networks: 

R(G)=piR(G*i)+(l-pi)R(G-i) (2) 
where i is any link and pi its reliability. G*i and G-i are graphs 
with i contracted and deleted. Full dots in Fig. 2 are ‘terminals’ 
that must communicate and R is the probability of doing so: 

722~4; pizO.9 l c c c 2 l R=O.590490 

(A) 

n4=4; pi=O.9 m R=0.950990 

(B) 
Figure 2: Series and Series-Parallel Separable Graphs. 

One can make such graphs arbitrarily reliable but not perfect. 
Many are impressed-with anything that fails once in every lo6 
trys but in LCS this is often inadequate e.g. it’s only a second’s 
worth of turns in a storage ring or 1 ms’s operation of a high-speed 
IC element in a mainframe. Fig. 3 shows an example with large 
increases in connectivity, cost and complexity without reliability. 
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Figure 3: More Complicate cl Series-Parallel Graphs. 

3.3 Simple Cost Analysis 
Comparing Fig. 3A to 2A shows a 27% improvement for a G3% 
increase in cost while 2B gives a 61% improvement for a 100% 
increase in cost which raises the question of multiplexing. 

3.3.1 Single Link Redundancy of Varying Degree 
If one or more links are added in parallel with link pi, increasing 
the degree of two vertices by j e.g. {nz = 4}+ {nz = 2, ni+j = 2) 
in Fig. 2A, there is a fractional increase: 

6R 
-= 
R yJ2Pi.j(l -Pi.j+l(l -Pi,j+l(l - “‘) (3) 

SQ j N-l SR > -=N g$ pi<- 
R-Q h' (4) 

where Q is the total cost for the original system with N links and ’ 
reliability R assuming new links equal in cost and reliability i.e. 
pi,j = pi. For N = 2, the breakeven is pi 5 f and for the case 
shown in Fig. 2 with N = 5, pi 5 0.8. We need to go to N = 10 
before pi 5 0.9 when all of the links cost the same. 

3.4 Graph Theory - Directed Graphs 
Regular graphs like Fig. 2, with all open vertices of the same 
degree[l4], are undirected until one specifies a sequence of ordered 
pairs of vertices. We can then speak in terms of arcs or cycles 
as well as links and let pi + pij between vertices (i, j): An n- 
vertex cycle C, is a path beginning and ending on the same node 
taking n steps. We call this degree 1 i.e. Ci or simply C,. For 
m-traversals or periods we use Cz and can talk in terms of an 
ordered sequence of arcs or periods with sub- or super-periods. 

%=4; &=O.g mm-- R=0.590f90 

Figure 4: A Simple, Series Directed Feedback Graph 
Fig. 4 is reducible to Fig. 2A when antiparallel pairs(annihilation 
loops) are equal to undirected links with pi. We also allow pi to 
be a function of m or time t SO pi + pi(m). Degree of complexity 
is taken as the minimum cardinality of vertices between in/out 
terminals e.g. the shortest directed path. 

3.5 Feedback - Stability, Reliability and Memory 
Introducing time introduces stability via feedback which improves 
figure of merit as well as reliability by increasing bandwidth. This - 
increases the equivalent pi of antiparallel loops but also intro- 
duces memory. Manipulating directed graphs can generate feed- 
back loops which generally exist in all systems with at least one 
dependent and one independent variable. One can associate de- 
pendent variables with open nodes and independent with input 
terminals. In LCS with many variables of both kinds(usually 
more than we know or can control) one needs to minimize and 
carefully monitor and control independent variables but this is 
not necessarily true for couplings between dependent variables. ’ 
This is one of the more fundamental aspects of the design process 
and is where NN applies because there are intentional couplings 
e.g. controllable feedback as well as inherent and unintended. 



4. Acyclic Graphs - Neural Nets and Learning 
As indicated in Sect. 2.1, neural systems need only about 100 
steps for many complex, real-time tasks. People simulate NN 
on a CC or parallel computer(or coprocessor board) but rarely 
a ‘neurocomputer’ such as shown in Fig. 5. It proceeds from 
input terminals(receptor neurons) to logic units(brain cells) and 
produces output patterns(on axons/motor neurons) from input 

.patterns(dendrites) and patterns of weights(synapses). Weights 
and states represent the knowledge base. Weights(or pi’s) occur 
only on inputs because of potential ambiguities and the directed 
character of the graph. Feedback, which can make the graph 
acyclic by autonomously changing weights, is not shown. 

With one output per unit a complete propositional cdculus[8, 
lo] is possible. One can think of individual units as multi-emitter 
transistors or op-amps but a real transistor analog might use =5- 
5OK per neuron. With several levels, such systems can set weights 
i.e. learn and make decisions. A problem is how to determine 
weights in a changing or noisy environment when little is known. 
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Figure 5: Schematic General Neural Net with Learning 

4.1 Examples 
One could take a set predicted by experts and vary it[2] or let 
them vary it to determine an expert system or automaton for a 
problem. One could diagnose fault modes, avoid random walk, 
maintain stability or improve ‘golden’ solutions[2] via real-time 
feedback where weights transform measured orbit harmonics to 
magnet excitation harmonics. The training of PDP models[lO] 
on complicated subsystems like klystrons [15] is also possible. 

5. Discussion 
We were interested in understanding the problems and needs of 
LCS. hIany aspects were considered that can be summarized 
roughly by Fig. 1. With this split personality, optimal control 
is virtually impossible. Further, the split runs so deep that it 
has become a fundamental presupposition in the sense of R.G. 
Collingwood. NN, as a metaphor for the ‘other’helps us find com- 
plimentary ways. It provides each of us with an almost ideal, i.e. 
totally transparent, control system. Ironically, this transparency 
may explain our oversight of this field. I quote A.N. Whitehead: 
“Civilization advances by extending the number of important op- 
erations we can perform without thinking.” Because ‘thinking’ 
is defined by the left side of Fig. 1, progress can be defined by 
the number of problems we are able to pass to the right. Thus, 
by itself NN is not the answer any more than our current ‘id- 
iot savant’ system of central CC. However, it provides(or will) a 
fundamentally different and necessary approach. 

By the law of multiplicative probability for serial systems, the 
more complex a system or unreliable its subsystems, the less the 
liklihood of success. Control of LCS by large CC’s has become a 
negative example. For accelerators, the storage ring is a positive 
example because it provides nearly ideal stationary time series 
based on cycles, natural damping and feedback. Thus, it doesn’t 
need a CC once trained which is all strong justification for SSC 
and negative for SD1 and low rep-rate, conventional colliders. 
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; It seems questionable to attempt higher accelerator energies 
with old techniques or systems even though they are easier to 
extrapolate reliably. Old systems provide good benchmarks to 
gauge new ones or to say where and how to upgrade. Scaling 
the Tevatron, with its present reliability, to SSC is an exam- 
ple. Another is the reliability of SLC klystrons(SLC Handbook) 
for a collider with 10 times the energy, 10 times the number of 
klystrons and orders of magnitude smaller spots. 

Ultimately, the goal is a method that is computable, consis- 
tent and decidable i.e. capable of computation, comparison and 
optimization. That LCS are generally indeterminant implies only 
that the design and control are inseparable because feedback, in 
one form or another, can subvert such effects when fast enough, 
clean enough and based on an adequate time history. Clearly, one 
needs new technology that integrates data acquisition, analysis 
and control in an autonomous way at all levels. 
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