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ABSTRACT 
We review our recent work on methods to study stability in nonlinear mechan- 

ics, especially for the problems of particle accelerators, and compare our ideas to 
those of other authors. We emphasize methods that (a) show promise as practical 
design tools, (b) are effective when the nonlinearity is large, and (c) have a strong 
theoretical basis. 
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1. INTRODUCTION 

Emerging problems of nonlinear mechanics in accelerators are taking on a new 
order of difficulty. Low emittance damping rings and synchrotron light sources 
have strongly nonlinear lattices and complicat,ions due to wigglers and undulators. 
Large hadron rings are hard to analyze because of their sheer size and the presence 
of high multipoles, random and systema,tic, in superconducting magnets. Large- 
aperture antiproton collectors and conventional-magnet boosters for hadron col- 
liders have prominent nonlinear effects. As the problems become more difficult. 
the short,comings of traditional analysis become more apparent. 

The traditional methods are based on tracking of single particles and perturba- 
tion theory. We first comment on efforts to extend and improve these esta.blished 
methods. 

2. TRACKING 

Tracking is the only method t,hat is generally applicable, in that it gives results 
in any region of phase space. Its drawbacks are (i) computational expense, and 
(ii) the difficulty of interpreting the results. 

To minimize expense while maintaining accuracy, it is important that the 
method used to integrate Hamilton’s equations generate a symplectic time evo- 
lution map. (Th is is true at least for circular machines; for single-pass beam 
transport the symplectic condition is less important.) Thin-element “kick codes” 
generate symplectic time evolutions. By putting together sufficiently many thin- 
element kicks, one can approximate the effect of a thick element to any desired 

1,2,3,4 accuracy. There exist more sophisticated symplectic integrators, analogous to 
standard numerical integration schemes for general differential equations. Ruth’s 
fourth-order explicit integrator 5 has been tested with good results in a skele- 
ton tracking code. A general purpose tracking code using a high order explicit 
symplectic integrator remains to be written. Also, the “numerical analysis” of 
symplectic integrators should be developed; i.e., the various algorithms should be 
compared through rigorous error analysis and experimental tests, as in the estab- 
lished theory of numerical integration of differential equations. We hope that the 
subject of symplectic integrators will thrive, since we see an important role for it 
in the general approach to stability questions outlined below. Fortunately, there is 
increasing interest on the part of mathematicians and physicists in various fields.6 

In another approach to reduction of cost, one tries to construct an explicit 
map to describe propagation through a segment of an accelerator, the segment 
being anything from a single lattice element to the whole lattice. We consider this 
idea in Section 6. 



The problem of how to interpret tracking data is sometimes easy and some- 
times difficult. If the computed trajectory leaves the desired physical aperture, we 
have the obvious conclusion that the motion is effectively unstable. To verify the 
conclusion, we need only provide a proof that there is no problem of numerical 
error, which often can be done by backtracking to the initial conditions. On the 
other hand, if the trajectory stays within the required aperture for many thou- 
sands of turns, we do not know what to conclude, since the number of possible 
turns in a computation is always very small compared to the number a.chieved 
by a real beam. In fact, there are examples of tracking runs in which the orbit 
appeared to be stable for lo5 turns or so, and then suddenly became unstable. 

In view of this ambiguity, it is interesting to examine tracking data in ways 
that go beyond the simple requirement of confinement to a defined aperture. One 
possiblity is to judge the data for degree of deviation from linear motion. The 
degree of deviation, which may be defined in several similar ways, is called the 
“smear” .7 Through experience and intuition one tries to set a safe limit for the 
smear. In Ref. 8 we gave an example, a two-resonance model, in which the smear 
was quite small even though the system was near the onset of large-scale chaotic 
motion. This and other considerations suggest that a rule-of-thumb for maximum 
allowed smear is not likely to be universal. A correct rule might depend strongly 
on the tune and be different for different kinds of lattices. Nevertheless, optimizing 
the lattice to reduce the smear is clearly a worthwhile aim. 

An idea with a stronger motivation is to test for confinement of the orbit to an 
invariant surface. On an invariant surface the action I is a function of the angle 
variable @ and the orbital position s which may be written as 

I = J + G*(J, a, s) - (24 

Here J is the invariant action, and G is the Hamilton-Jacobi generating function 
which solves the Hamilton-Jacobi equation, 

H(J + G*, a, s) + G, = H@)(J) . (2.2) 

The solution G generates the canonical transformation (I, ip) ---f (J, XP) which is 
defined by (2.1) togeth er with the following equation: 

!P=Q+GJ(J,+,s) P-3) 

Bold-faced quantities are vectors with dimension equal to the number of degrees 
of freedom, and subscripts denote partial derivatives. The generator G is periodic 
in @ with period 27r, and periodic in s with period C. 



The set of points on an orbit with s = 0, C, 2C,. . . are said to lie in a Poincare 
surface of section. If.the motion is regular and non-resonant, those points lie on 
a torus I = I( a; s = 0), which may be expressed in the form (2.1) . Each torus 
is labeled by a value of the invariant J, which is the average of I(+; s = 0) ovei 
a. We can approximate the torus, when it exists, by fitting tracking data to a 
smooth surface. For instance, for betatron motion in two degrees of freedom we 
can determine two smooth, two-dimensional surfaces to pass through the points 
(rr,@r,@z)(s) and (12,@r,&)(s),s = O,C,2C,... which all lie on a single orbit. 
Since the angle coordinates ((al, @z) do not lie on a regular grid, one must have a 
surface fitting program which can handle scattered data. We have used the IMSL 
program IQHSCV, which produces a piece-wise polynomial surface which passes 
through the given points and has continuous first derivatives. 

In Figures 1 and 2 we show results for the North Damping Ring of the SLC. 
Normalizing to the invariants, we plot Ir/Jr and Iz/Jz versus (@I, @z), with the 
origin at zero. Each of the surfaces was fitted to 8000 point,s obtained from 8000 
turns of a fourth order symplectic tracking code. Linear motion would correspond 
to flat surfaces, I;/ J; = 1. Th e initial displacements of the orbit correspond to 
about 3.7mm (horizontal) and 2.6 mm (vertical) at the septum magnet. These 
are large but sustainable injection offsets for the ring considered. The smear is 
impressively large. 

To gain more insight it is useful to compute the two-dimensional Fourier trans- 
form of I( @p; s = 0), which gives us the Fourier coefficients of G+: 

I = J + c img,(o)eim.” . (2.4) 
m 

It is to be emphasized that we are making a Fourier analysis of the invariant 
surface, not an analysis of the time series I(s), s = 0, C,2C,. . a. Although the 
latter is also of some interest, in that it can be compared to experiment, it is 
relatively difficult to interpret. The coefficients gm(s)ls=a of (2.4) are the familiar 
Fourier coefficients of the generating function, which may also be computed in 
perturbation theory or by direct solution of the Hamilton-Jacobi equation. If 
Y = (~1, ~2) is the tune and m . u is close to an integer, the consequent resonance 
shows up as a relatively large value of mgm in (2.4) , since, as is well known, the 
latter is amplified by a small divisor sin(nm . Y). Thus, (2.4) analyzes the motion 
according to nonlinear resonances in a most direct and elementary way. 

Taking an FFT of the surface in Fig.1 or Fig.2, and retaining modes for 
Imrl, lrnxl 5 15, we obtain a Fourier series representation of the surface which 
agrees well with the original (piecewise-polynomial) surface computed by IQH- 
SCV, and also agrees well with tracking beyond the original 8000 turns. Defining 
an appropriate metric A1 for the difference between the tracked orbit and the 
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Figure 1 : Invariant surfa.ce for SLC North Damping Ring, obtained by a 

fit to tracking data. Il(i91, @z)/Jl ,plott,ed as function of @I, G?2. Invariant action 

J1 = 2.489 - 1O-6 m 
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Figure 2 : Inva.ria,nt surface for SLC: North Damping Ring, obtained by a 

fit to tracking data. 12(@1, @‘p)/J:! plotted as function of 01, @2. Invariant action 

J2 = 1.508 . 1O-6 m 



Fourier series (2.4) (th e sum of the deviations divided by the number of orbit 
points) we find Air/Jr = 1.4 . 10m4, AI,/Jz = 2.2. 10m4 for the first 8000 turns. 
and then very similar values for an additional 8000 turns. On using more than 
8000 turns to find the piece-wise. polynomial surface and more modes in (2.4) , we 
did not see much decrease of AIi/Ji. We did, however, maintain values less than 
2 * low4 for AIi/Ji for 32000 turns. In Table 1 we give the ten largest Fourier 
coefficients of 11, divided by J1. 

Table 1: Fourier Amplitudes of Ga, 

ml m2 Re( imlgm) Im(imlgm) 

2 -2 -2.06.10-7 -9.54.10-g 

1 0 6.76.10-8 -1.91.10-g 

3 0 -6.61.10-S 2.40 .lO-lo 

4 -4 -4.12.10-8 -3.77.10-g 

2 2 1.21*10-8 -9.57.10-11 

5 -2 1.17.1o-8 5.09*10-10 

6 -6 -1.16.10-’ -1.59.10-g 

1 2 -9.34.10-g 4.4s*10-10 

8 -8 -4.15.10-g -7.64~10-~’ 

7 -4 2.98.10-9 2.62.10-r’ 

Thus, we have a surface in the form (2.4) which appears to approximate an 
invariant surface. We comment presently on means to improve the approximation, 
but first remark that we have already obtained very reliable information on the 
important resonances, by means of a modest and convenient computation. Such 
information might be used to optimize the lattice. For instance, one might try to 
adjust sextupoles so as to minimize a “figure of demerit” such as the following: 

The approximate invariant surface in the form (2.4) for s = 0 can be extended 
to all s by integration of the Hamilton-Jacobi equation. One then has a generator 
which can be refined in accuracy through further iterations of the Hamilton-Jacobi 
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equation, possibly on a bigger mode set. This is a possible starting point for a 
thorough stability study, as is explained in Sections 4 and 5. 

At large amplitudes, or even at small amplitudes with bad tunes, one en- 
counters resonant structures associated with periodic orbits, which preclude the 
presence of invariant surfaces. In one degree of freedom the resonant structures 
are the familiar island chains, which can be graphed in a two-dimensional surface 
of section. In two degrees of freedom the resonant structures can be projected 
onto a section in which s and one of the angles, say @I, are constant. In track- 
ing through a finite number of turns we get essentially zero population of such 
a section. In a thin slice, I@11 < 6, we might hope to get enough points to see 
a structure (slightly smeared out), provided that we can do very long tracking 
runs. This might be an interesting application of full-turn maps, which have the 
potential of greatly reducing computation times; see Section 6. 

3. PERTURBd4TION THEORY 

Perturbation theory9 is used primarily to find approximations to invariant 
surfaces and related quantities such as tune shifts, although it may be used as 

lo well to discuss time dependence. It is an excellent method for situations in which 
n&&near effects are weak. Those situations may be defined as cases in which 
the first term of the perturbation series, or at most the first and second terms, 
provide a good approximat’ion. Unfortunately, there is no such case in the region 
of ph.ase space near t,he dynamic aperture of an accelerator. In the example of 
the previous section low order perturbation theory would fail drastically, as can 
be seen immediately from the rich mode spectrum of Table 1. There are many 
appreciable modes that simply do not appear in low orders. 

- There have been attempts to estimate the dynamic aperture using perturba- 
tion theory and certain recipes, but the recipes lack theoretical foundation and 

10 
may be unreliable. 

One might hope to save the day by going to higher orders in the perturbation 
series, but in our view there is little motivation for doing so. Higher order com- 
putations require symbol manipulation on a computer. The result is an analytic 
form for a higher order term, but so complicated as to have little intuitive value. 
Remembering also that convergence is in doubt, and that only a few terms of the 
series can be handled, one is better advised to seek a nonperturbative numerical 
method. 

One non-perturbative approach is the simple surface-fitting method of the 
previous section, which may well turn out to be the most practical technique 
for getting a good first approximation in cases of strong nonlinearity. Another 
useful approach is iterative numerical solution of the Hamilton-Jacobi equation, 
as outlined in Section 4. 
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Forest and collaborators”, extending earlier work of Dragt and Finn, have 
developed an improvement to perturbation theory, which depends on prior con- 
struction of a full-turn map for propagation in the lattice. The map is trans- 
formed to a certain normal form by a perturbative technique, thereby providing 
an analysis according to resonances, and giving an approximate invariant surface 
in implicit form. The advantage of this approach is that repeated integrations over 
the lattice are avoided, making it feasible for large lattices. The Hamiltonian and 
equations of motion are used only once, in construction of the map. The normal 
form analysis is still basically perturbative, however, and is probably no more ef- 
fective than usual perturbation theory when nonlinearities are strong. We should 
reserve judgment on this point, however, until nontrivial results with comparisons 
to tracking are published. 

4. HAMILTON-JACOBI METHOD 

Perturbation theory is a method for approximate solution of the Hamilton- 
Jacobi equation (2.2) , b ased on expansion in powers of the perturbat’ion strength. 
There are other methods to find approximate solutions which are superior with 
respect to accuracy, region of convergence, and simplicity of programming. We 
have in mind iterative methods,8’12 which depend on writing the Hamilton-Jacobi 
equation as a fixed-point problem, 

9 = $9) . (4-l) 

Here 9 = [gm] is a vector made up of the Fourier coefficients of the generating 
function. The only approximation arises from truncation of the Fourier series. 
We have considered various formulations leading to different realizations of the 
nonlinear operator 8’13114 A. The best formulation to date for accelerator problems 
is that of Ref. 14 , in which the periodicity of gm(s) in s is achieved by a shooting 
method. In many cases the equation (4.1) can be solved by simple iteration, 

g(n+l) = A(g(n)) , P-2) 

With g(O) = 0, the first iterate g(l) is identical with the result of lowest order 
perturbation theory; on the other hand g t2) entails all orders in the perturba- 
tion strength. In difficult cases, for instance strongly nonlinear lattices near the 
dynamic aperture, the iteration (4.2) d iverges unless the set of allowed modes is 
rather small. For such cases we. can resort to the more powerful Newton iteration 
and recover convergence even on relatively large mode sets. We refer the reader 
to Ref. 14 for details. 

9 



If Newton’s method must be used, and the lat,tice contains more than a few 
nonlinear cells, the computations become expensive. We are considering several 
promising ways-to reduce the expense, which we can only list briefly: 

(i) Use the approximate generator, obtained by a fit to tracking data as in 
Section 2, as the first guess for a Newton iteration. 

(ii) Use Broyden’s formula15 in place of the full Jacobian matrix after the first 
iterate of Newton’s method. 

(iii) Use plain iteration (4.2) on a small mode set, perform a canonical trans- 
formation with the resultant generator, and again do plain iteration on the new 
Hamilton-Jacobi equation in the new variables, but now on a bigger mode set. 
This is possible because the number of modes allowed in a convergent iteration 
increases when the perturbation decreases in strength. 

If the step of item (iii) is repeated indefinitely, one has an accelerated version of 
16 

the K.-A.-M. algorithm, which leads to an invariant surface of arbitrary accuracy. 
Although Newton’s method as such is not used, the iteration will have super- 
exponential convergence. In the past it has been awkward to carry out such a 
program, because of the nonlinear character of the equation (2.3) relating old and 
new angle variables. In Ref. 8 we introduced an effective nonperturbative method 
of-solving (2.3) , which is based on the Fourier expansion 

ip = *+~A,(J,.+~.* . (4.3) 
m 

It is easy to calculate the coefficients A, numerically, in terms of the generator 
G. We represent the J-dependence of G by polynomial interpolation of solutions 
G(Ji, a’, s) computed at a few values Ji,i = 1,2, * 9 *, r. The new Hamiltonian, 
H(‘)(J, XV, s), may be represented similarly as a Fourier series in \E. 

The advent of a compact and manageable method for successive canonical 
transformations should open up new possibilities for precise results on stability, 
as explained in the following section. 

For large lattices it may be advantageous to work with a functional equation 
for the invariant surface at a fixed value of s, in lieu of the Hamilton-Jacobi 
equation. Such an equation can be formulated in terms of a full-turn map, as is 
indicated in Section 7. 

10 



5. CANONICAL TRANSFORMATIONS AND 
B.OUNDS ON THE MOTION FOR TIME T 

We have mentioned several, ways to approximate invariant surfaces (equiv- 
alently, periodic solutions G of the Hamilton-Jacobi equation). Although the 
approximations that we obtain in practice seem rather close, in the sense that 
they agree with tracking to about 1 part in lo5 for several thousand turns, one 
should ask about their real value in settling the stability question. Mathematical 
analysis (K.-A.-M. theory) assures the existence of exact invariant surfaces only 
on a strange set of Cantor type in action space, and such surfaces cannot be rep- 
resented in terms of a finite number of Fourier modes. Also, the invariant surfa.ces 
do not divide phase space into disjoint regions if the number of degrees of freedom 
is sufficiently large (2 2 for our case of a periodic time-dependent Hamiltonian, 
2 3 for autonomous systems). This allows Arnol’d Diffusion, a slow drift from 
one region of phase space to a far removed region. In view of this apparently dis- 
couraging theoretical situation, what is the meaning or value of an “approximate 
invariant surface” ? 

One answer is provided by the line of argument used in the Nekhoroshev 
I7 Theorem. An approximate invariant surface is associated with a generator of a 

canonical transformation. Whatever the genesis or pedigree of this transformation, 
it has the property of reducing the perturbation term in the Hamiltonian, so that 
the motion in the new variable is closer to being linear. For instance, in Ref. 8 the 
transformation obtained from an approximate iterative solution of the Hamihon- 
Jacobi equation reduced the perturbation by a factor of 107, even in a region not 
too far from the onset of chaos. As in the final step of Nekhoroshev’s argument 
(a trivial but important step) one can make a simple estimate using Hamilton’s 
equations in the new variables. This estimate gives a lower bound on the time T 
during which an orbit will stay in a chosen region of phase space. This rigorous 
bound allows for the complications mentioned above, Cantor sets and Arnol’d 
Diffusion. 

The better the canonical transformation, i.e., the smaller the residual depen- 
dence of the transformed Hamiltonian on (a, s), the larger the lower bound on T. 
This impels research in the direction of finding highly accurate approximations to 
invariant surfaces, using if necessary the method of successive canonical transfor- 
mations as outlined in the previous section. We anticipate much better bounds 
on T than those of Nekhoroshev, since to prove a theorem he had to make ana- 
lytical estimates, necessarily very crude, on a canonical transformation obtained 
from high-order perturbation theory. Since we compute our transformation nu- 
merically, we have a closer knowledge of what it actually accomplishes. Moreover, 
there is no important lapse of rigor in resorting to numerical methods in this con- 
text, since the only source of error is in the problem of numerical determination 
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of an upper bound for a well-defined function of a few variables. It is easy t,o show 
that the new action J(t) will be confined to a strip 

[J(t) - J(O)1 < AJ (5.1) 

for 0 < t < T, 

TZ AJ 
SUP 3 

I “-4&j,‘,” J 
O<Z<T 

~+lG’Jm~IH(J+Gm,~,i)+Gllj 
(5.2) 

T being the time for one revolution. (We state the formula for one degree of 
freedom; it is easily generalized). However G was obtained, by fair means or 
foul, it is a precisely defined function given by a truncated Fourier series, and we 
should be able to evaluate the denominator of (5.2) , or an upper bound to that, 
denominator, without appreciable error. 

6. FULL TURN MAPS 

Maps to describe propagation through one or more nonlinear elements of an 
accelerator or beam transport line have been utilized for a long time, for instance 
in the code TRANSPORT since the early 1960’s.r8 The map 

W ; s, s’) = z’ (64 

takes a phase space point z at orbital location s into a point z’ at orbital loca- 
tion s’. It has been usual to represent M as a power series in the components of 
z. Until recently only the first few Taylor coefficients could be computed in the 
case of a realistic full-turn map, even with the help of a Lie-algebraic formalism 
and symbol manipulation codes. By applying a technique for automatic differ- 

19 
entiation , which encodes the rules for differentiation of functions composed of 
truncated power series, one can go to much higher order. This technique is to be 
distinguished from derivative evaluation by symbol manipulation or by divided 
differences. It provides values that are exact to machine precision. Berzl’ has 
implemented the method in codes which allow one to find the Taylor coefficients 
of the map defined by an arbitrary tracking program. In principle, derivatives 
of any order can be handled, but in practice there are restrictions due to limited 
computer power. 
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Although Berz’s work certainly advances the art of Taylor series maps, we 
are not convinced that Taylor series provide the most efficient representation of 
the map M. Taylor series are rarely used in modern numerical analysis for global 
approximation of functions. The, reason is elementary: interpolation through mul- 
tiple points is usually more accurate and more convenient than extrapolation by 
Taylor series from a single point. Orthogonal expansions, in particular Fourier 
series, also provide a tool with a much wider range of validity than Taylor ex- 
pansions. The practice and theory of interpolation and orthogonal expansions are 
highly developed 20, and necessary software is readily available. 

We have implemented a representation of maps using a combination of inter- 
polation and Fourier developments. The data required to const’ruct the maps are 
merely the values of M(z ; s, s’) on some set of initial points z = z; ; the values 
can be taken from any tracking code by running it from s to s’ for each z;. In 
contrast to Berz’s method, we need not deal with the mathematical operations 
within the code. We write the map in terms of angle-action coordinates: 

@‘=@+A(I,iD) , (6.2) 

I’=I+B(I,@) . (6.3) 

The functions A and B are periodic in 9 with period 2x. In vigw of general 
experience in nonlinear mechanics, it seems natural to expand these functions in 
Fourier series in a. As in the computation of invariant surfaces, we find that a 
rather sparse set of Fourier modes is dominant. That is, for a given accuracy we 
have to include modes up to some maximum mode number, but for many mode 
numbers below that maximum the Fourier coefficients are negligible. Thus, it is 
efficient to represent A and B in a form such as 

A(1, a) = c A,(I)eim’* , (64 
mES 

where the set S includes all m for which IAm] is greater than some E times the 
largest I Am I. Th e F ourier coefficients are calculated by evaluating the map on a 
rectangular grid of points in @ space, then taking an FFT of the values. 

By numerical evaluation we find that the Fourier coefficients of (6.4) are 
smooth, uneventful functions of I , usually monotonic and with small curvature 
over the region encountered on a typical orbit. We have experimented with two 
ways to represent these functions: 20()*t pit’ a m er o a ion by polynomials in the vari- 

ables [i = 1: ‘“, the Ii being components of the vector I , and (b) spline inter- 
polation in the same variables. Here we report results from choice (a), while 
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noting that choice (b) g ives similar results in most cases that we have tried. In 
one dimension, the polynomial approximation of the Fourier coefficient is given in 
Lagrange form as 

&z(J) = f)m(Js)Xa(F) , 
s=l 

where the Lagrange factors A,(<) are 

(6.5) 

(6.6) 

For the interpolation points [t we take the expanded Chebyshev points, as given 
20 in Eq. (2.6e) of de Boor , which in a certain sense make an optimal choice. The 

denominator of (6.6) is computed once for all, while the numerator is evaluated 
once for each iteration of the map. 

To give an example we construct maps for the SLC North Damping Ring, to 
cover a region including the orbit that yielded Figures 1 and 2. The interpolation 
polynomials are sixth degree in each variable ti, with minimum and maximum 
interpolation points at the ends of the intervals 

1.5 e 1O-6 < I1 5 3.25. 10-6, 1O-6 5 I2 < 2.5 - 1O-6 , (6.7) 

with actions given in meters. The Fourier modes are chosen from an initial set 
with Imrl, Irn2l 5 11. For each of the four components of the map we retain all 
modes with coefficients larger than 10m7 of the largest coefficient, this selection 
being made at maximum values of the actions. For a one-turn map this yields a 
total of 223 coefficients to describe all four components of the map; for a two-turn 
map there are 246. The initial, unselected set had 972 independent coefficients. 

To test accuracy of the n-th iterate of the map, we compare its value to the 
corresponding value obtained from the underlying tracking code (a 4th-order sym- 
plectic integrator) that was used to construct the map. We define the discrepancy 
6 between the map and the tracking code as 

The coordinates from the tracking code have superscript t, those from the map 
do not. 

14 



We give results for mapping from initial conditions the same as those of Figure 
1: @‘1 = ip2 = 0, 11 = 12 = 2 * 10m6. For a one-turn map the discrepancy at 
one turn was 8 = 5.3 . 10m8, whereas for a two turn map the discrepancy at two 
turns was 5 = 2.9 + lo-‘. In Table 2 we give the discrepancies for lop turns, with 
p= I,... ,4. We find it remarkable that the discrepancy is quite small for at least 
10000 turns. It is likely that the orbit generated by the map stays close to the 
correct invariant surface for many turns beyond 10000, since it is usual for phase 
error to build up faster than amplitude error. That is, the orbit generated by the 
map might lie close to the surface, without having the correct angular location 
(@I, &) at a particular turn. 

Table 2 : Discrepancy 6 between Map and Tracking Code 

n = number of turns 

10 

100 

1000 

10000 

w 
One-turn map Two-turn map 

2.2.10-7 6.S.10-8 

1.6 .10-7 1.3.10-6 

7.9 -10-6 9.9.10-6 

5.8 *lo-4 6.2.10-4 

w 

We have not imposed the symplectic condition, beyond maintaining good 
agreement with the underlying symplectic tracking code. It is possible to en- 
force the symplectic condition precisely (modulo round-off error) by constructing 
a canonical transformation that induces a map nearly the same as the one we 
have constructed. We have invented an algorithm, based on a Fourier inversion 
technique, to derive the generator of such a transformation from the map itself. 
It is also possible to find the generator by solving the Hamilton-Jacobi equation, 
later obtaining the explicit (but not exactly symplectic) map by the Fourier in- 
version method. This latter program, complementary and inverse to the present 
approach, was implemented in Ref. 23 in one degree of freedom. 

Results concerning computation time to iterate the maps are encouraging, 
especially in view of the fact that we have not yet done much to optimize com- 
puting. On the IBM 3081 at SLAC the time for one iteration of the one-turn map 
described above is about five times greater than the time to track for one turn with 
the underlying tracking code. Since the ring has 72 sextupoles, the map would go 
faster than element-by-element tracking in a ring with more than 5 x 72 = 360 
sextupoles, provided that a map of the same complexity would suffice. In a ring as 
big as the SSC, with about 10000 nonlinear elements, one would gain a factor of 28 

15 



in speed by this reckoning. Actually, much bigger gains can be anticipated, since 
iteration of the -map is a very simple computational problem which undoubtedly 
can be handled with great efficiency through better programming and hardware. 
In particular, it lends itself to vector processing to a much greater degree than 
ordinary tracking. 

The outlook for the cost of constructing maps is perhaps not quite as favorable, 
but by no means discouraging. It took the equivalent of 28224 turns of element- 
by-element tracking to construct the one-turn map described above, and twice 
that much for the two-turn map. Furthermore, the maps do not cover the full 
domain of interest in action space. It might take three times as much computing 
to make maps for the full domain. Once the maps are available, however, they can 
be used to track economically (f or ar 1 g e rings) from any initial condition, and also 
to study invariant surfaces by the method of the following section. Furthermore, 
one could make maps for several values of tune, and interpolate between them to 
explore tune space. 

It may very well be that the map of our example is much more accurate 
than necessary. If the symplectic condition were enforced, a less accurate and 
less expensive map might suffice. In order to check accuracy while allowing for 
innocuous phase error, one could calculate the distance between the orbit of a 
proposed map and an accurate, previously established invariant surface. That is, 
if the map gave the point (I, ip) t a some iterate, one could compare I with the 
action value on the invariant surface at the same a. 

The question of whether one should work with a one-turn map or a multi-turn 
map deserves continued study. In Table 2 we see that the one- and two-turn maps 
give comparable accuracy at the n-th turn. Tracking by the two-turn map goes 
almost twice as fast (not exactly twice as fast, because it has a few more Fourier 
modes) but the map takes twice as long to construct. Using the two-turn map, 
one might be able to study invariant curves in the neighborhood of a closed orbit 
of period two, by the method of the following section. Also, one could ima.gine 
a bootstrap operation in which a one-turn map, say, could be used to generate a 
map for many turns. Essentially this is what we have already done in going from 
the single-element maps of the tracking code to full-turn maps. 

Talman’s21 recent study of maps for a simple model (the physical pendulum) 
led to a more pessimistic outlook than we have attained, but gave one result with 
which we agree: maps based on interpolation are more promising than those based 
on the Taylor expansion. Hagel and 22 Zotter, using slightly more relevant but still 
very simple models, have reexamined Talman’s conclusions. We have demon- 
strated that one can easily make maps for real accelerators, using any tracking 
code; it is not necessary, and potentially misleading , to work with over-simplified 
models. 
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7. FUNCTIONAL EQUATION FOR INVARIANT SURFACES 

In his original paper on the K.-A.-M. theorem, Jiirgen Moser 24 
studied the 

invariant curves of area preserving maps of an annulus. He based his analysis on 
a functional equation for the curve. We seek to generalize Moser’s approach, so 
as to capture its advantages in the case of a general Hamiltonian system. 

We begin with an n-turn ma.p in the form (6.2) ,(6.3) , where n is an integer. 
say n = 1. The map may be represented explicitly, as in the work of the previ- 
ous section, or may be regarded as the result of applying an element-by-element 
tracking code for n turns. The desired invariant surfa.ce may be parametrized in 
terms of the angular torus coordinates @, and developed in a Fourier series, just 
as in (2.1) . Replacing the notation of (2.1) we write 

I = up) = c Urn@+@ ) (7.1) 
m 

where u, is the invariant action K. The requirement that the surface be invariant 
under the map is 

I=u(@) + I’ = up’) . 

In terms of the functions A, B of (6.2) , (6.3) this means that 

(7.2) 

I + B(I, a) = u(ip + A(1, a)) (7.3) 

whenever I = u(a), which is to say 

u(*) = u(+ + A@(+), Cp)) - B(u(+), a) . (7.4) 

Eq. (7.4) is the generalized Moser equation. (Actually, Moser used an auxiliary 
curve parameter rather than the torus coordinate G to parametrize his invariant 
curve, which led to a pair of equations rather than one). 

If we introduce (7.1) in (7.4) , then take the Fourier transform of (7.4) , we 
obtain a nonlinear system of equations for the coefficients um. After truncation of 
the Fourier series, the system can be solved by iteration, as in our treatment of the 
Hamilton-Jacobi equation. There are several possible iteration schemes, including 
a scheme similar to Moser’s method of successive (non-canonical!) coordinate 
changes, which should allow one to include more and more Fourier modes as the 
iteration goes on, and thus achieve very high accuracy. 
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Although we have not yet implemented this method, it seems highly promising 
in light of our experience with the Hamilton-Jacobi system, which has similar 
mathematical properties, but is more awkward to handle in a context of successive 
coordinate changes. The method yields G+ at one point in the lattice, say s = 0, 

which can be taken as the initial value in an integration of the Hamilton- Jacobi 
equation with respect to s over the whole lattice, to s = C. Thus we obtain the 
generator for a canonical transformation which can lead to bounds for long term 
stability, along the lines of Section 5. 

As was remarked in Section 3, this approach retains the advantage of Forest’s 
scheme by working with the map rather than the Hamiltonian, but allows precise, 
non-perturbative solutjions. 

8. CONCLUSION 

We have discussed two methods for single-particle tracking: symplectic in- 
tegration and full-turn maps. These techniques support and complement three 
methods for determination of invariant surfaces: surface fitting, the Hamilt,on- 
Jacobi method, and the generalized Moser method. Knowledge of approximate in- 
variant surfaces is essentially equivalent to knowledge of an approximate Hamilton- 
Jacobi generator, which leads to precise bounds on the motion over a finite time 
T. It is too early to say whether T will be large enough to be interesting; we 
have mentioned the possibility mainly to point out a long range goal, the ideal 
completion of the program through definite statements on long term stability. 

Numerical work to date has been devoted to assessing the relative advantages 
of the various approaches. This aspect of the task is still not complete, but results 
are sufficient to convince us that real advances in the art are possible. As soon 
as a preferred method comes into focus, we hope to take advantage of advanced 
programming and hardware, and also produce software for general use. 

Finally, we should mention that the methods under study should be of interest 
beyond accelerator theory, for instance in chemical physics (through semi-classical 
quantum mechanics) and in celestial mechanics. 
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