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ABSTRACT 
The two major effects from the interaction of e-e+ 

beams - beamstrahlung and disruption - are reviewed, 
with emphasis on flat beam collisions. For the disrup- 
tion effects we discuss the luminosity enhancement factor, 
the maximum and rms disruption angles, and the “kink 
instability”. All the results are obtained from computer 
simulations, and scaling laws based on these are deduced 
whenever possible. For the beamstrahlung effects, we con- 
centrate only on the final electron energy spectrum and the 
deflection angle associated with low energy particles. In 
addition to the generic studies on the beam-beam effects, 
we also list the relevant beam-beam parameters obtained 
from simulations on two sample designs: the TLC and the 
ILC. As an addendum, the newly discovered phenomenon 
of coherent beamstrahlung pair creation, together with the 
incoherent process, are discussed. 

INTRODUCTION 

There are two major phenomena induced by the beam- 
beam interaction which are imoortant to the design of 
high energy linear colliders. Na;nely, the disraptionpl,o- 
cess where particle traiectories are bent bv the field pro- 
vided by the oncoming beam, and the beamstrahlung pro- 
cess where particles radiate due to the bending of the 
trajectories. The most important impact of disruption is 
the deformation of the effective beam sizes during colli- 
sion, which causes an enhancement on the luminosity. In 
addition, the disruption angle affects the constraints on 

_ the final quadrupole aperture. When the two beams are 
colliding with certain initial offset, the disruption effect 
between the two beams would induce a kink instability, 
which imposes a constraint on beam stability. Ironically, 
this instability helps to relax the offset tolerance for flat 
beams, because the offset beams tend to find each other 
during the initial stage of the instability. Under a multi- 
hunch collision mode, however, the kink instability will 
largely degrade the luminosity through the relatively long 
growth time. On the other hand, the direct impact of 
beamstrahlung is the loss of the available energy for high 
energy events, and the degradation of beam energy reso- 
lution because of the stochastic nature of the radiation. 

l Work supported by the Department of Energy, contract 
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hlost of the issues raised above can be studied by 
decoupling the disruption and the beamstrahlung effects. 
The energy loss due to beamstrahlung may modify the lu- 
minosity enhancement but this effect can be ignored since 
we are only interested in the case where the average energy 
loss is small. Conversely, the average energy loss and the fi- 
nal energy spectrum can be studied by assuming no disrup- 
tion without compromising too much on accuracy. There 
is, however, one issue where the two effects are strongly 
coupled. This is the maximum disruption angle associated 
with the large deflections from particles that have suffered 
severe energy loss. 

In this report we summarize what has been studied on 
these issues with emphasis on flat beam collisions. The 
computer simulations are performed using the code ABEL 
(Analysis of Beam-beam Effects in Linear colliders) de- 
scribed in Ref. 1, but improved considerably since it was 
first written. Some results given here are still preliminary 
and will be refined in later papers, but their qualitative 
features will not be changed. 

LUMINOSITY ENHANCEMENT 

Our primary interest is the enhancement of luminos- 
ity due to the mutual pinching of the two colliding beams. 
The details have been discussed in Ref. 2 for round beams 
and will be given in Ref. 3 for flat beams. As was pointed 
out in Ref. 2, the luminosity is infinite if the initial beam is 
paraxial and the computation is perfectly accurate. This 
is because a paraxial beam can be focused to a singular 
point. In reality, however, a beam will always have certain 
inherent divergence, and the singularity is only approached 
asymptotically. To account for this effect, a parameter 
A z,y = QzlPZ,y is introduced,2l which is proportional to 
the emittance for a given beam size o,,~. The computed 
enhancement factor Ho = L/Lo, where Lo is the geomet- 
rical luminosity without the effect of the depth of focus 
related to A,,v taken into account, is plotted in Fig. 1 as 
a function of D, and A,, for flat beams. 

The data in Fig. 1 are obtained by using a distribution 
function which is uniform in z and Gaussian in 9 and z 
(UGG), instead of a three-dimensional Gaussian distribu- 
tion (GGG), for easiness of computation. The enhance- 
ment factor of GGG distributions for a given D, can be 
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Fig. 1. Luminosity enhancement factor for flat beams. 

deduced from a superposition of UGG results with disrup- 
tion parameters ranging from 0 near the horizontal edge 
to mDl at the beam center. The enhancement factor 
for round beams is shown in Fig. 2. 
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Fig.. 2. Luminosity enhancement factor, wund beams. 

By comparing Figs. 1 and 2, one finds that the en- 
hancement factor for flat beams scales roughly as the cube- 
root of the corresponding value for round beams; which 
obeys the following empirical scaling law that fits all data 

- points in Fig. 2 to within 10% accuracy: 

HD = 1+D1f4(1 $, -+ [In(fi+l)+2+$)] . (1) 

The reason for the flat beam enhancement not being scaled 
a~ a square root of the corresponding value for the round 
beam is because the horizontal focusing can enhance the 
vertical pinch effect (and vice versa) in the round beam 
case, whereas for flat beams the pinch in the major (hor- 
izontal) dimension can hardly affect the disruption in the 
minor dimension. 

In both cases, our results indicate a logrithmic diver- 
gence of HD as a function of A, or A,,. In addition, HD is 
monotonically increasing as a function of D, or D,, at least 
up to D =lOO. This second finding of ours is qualitatively 
the same as that found by Fawley and Lee’) but in contra-r 
diction to Holebeek”’ and Solyak:’ where the enhancement 
by:or first saturates before eventually decreases at large 

The difference appears to be due to the different ways 
of handling stochastic errors. In a Monte Carlo simulation 
such as ours, the initial condition is generated by random 
numbers, which introduces a statistical fluctuation, and 
therefore an asymmetry, of the order l/&, NP being 
the number of macro particles. This asymmetry will be 
amplified during collision (i.e., kink instability) due to the 
beam-beam force, especially when the disruption parame- 
ter is large. The fact that the number of macro particles 
in a simulation is typically much smaller than the actual 
particle number, this fluctuation is artificially enhanced if 
no proper action is taken. To minimize this computation 
error, the particle distribution function is symmetrized at 
every time step in our calculation, so that the beam-beam 
force has the up-down symmetry at all t imes for the flat 
beam case. Similarly, in the round beam case only the 
radial force is computed. This process eliminates the pos- 
sible instability triggered by computation errors. 

The actual collisions are expected to have some un- 
avoidable initial offset in alignment and skewness in dis- 
tributions. Since the asymmetry in distributions tend to 
shift the center-of-gravity of the beams, it gives rise to the 
same effect as the initial alignment offsets. For this reason 
our study on the effect of imperfections is concentrated on 
initial offsets only. 

As will be discussed in the next section, an initial offset 
triggers a kink instability, especially when the disruption 
parameter becomes large. As it occurs, this instability is 
not always harmful because, in the initial phase of the in- 

- stability, the beams always tend to find each other, which 
prevents the otherwise rapid degradation of the luminos- 
ity for large initial offsets. Figure 3 shows the luminosity 
enhancement factor as a function of offset AV (in units of- 
Q) for various values of D,. The dotted curve is the ge- 
ometrical enhancement factor without beam-beain force, 
which is equal to exp (-Ai/4). UGG distribution is used 
and A, =0.2 for all curves. The up-down symnietry is not 
enforced except for the cases at AV =O. 

From Fig. 3 one finds that the tolerance on alignment 
offset reaches an optimum for values of D, between 5 and 
10. Within this range of D,, HD is still above unity even 
at A,, N  3. Beyond this region of D, the beam-breakup 
becomes severe while below which the beam-beam attrac- 
tion is not yet strong enough. 

The same data as in Fig. 3 is replotted in Fig. 4 as 
a function of D, and each curve corresponds to a fixed 
value of AV. (The region of large D, and small A,, is 
not very accurate because of its sensitivity to computing 
errors.) One sees a saturation and decrease of HD as a 
function of D, unless A,, =‘O. One also notices that the 
curves with small offsets, e.g., A,, = 0.2, resemble the re- 
sults in Refs. 5 and 6, except that our offset was explicitly 
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Fig. ,?. HD as a function of offset; Flat beams. 

introduced. In designing a linear collider, one needs to es- 
timat,e HD for the chosen D and A. This depends on the 
assesment of potential imperfections of beam-beam colli- 
sion. Though arbitrary, it may be safer to adopt the curve 
for A, = 0.2 or 0.4, instead of A, = 0, as the effective 
enhancement factor. 

2 5 10 20 50 

mu DY ‘,S7&5 

Fig. 4. HD as a function of D,; Flat beams. 

Similar exercise for round beams are shown in Fig. 5 
for D  up to 50. Here we find the generic behavior as in 
the case for flat beams. 

DISRUPTION ANGLE 

Information on the final direction of the electron tra- 
jectory after collision is necessary in designing the interac- 
tion region, especially for the aperture of the final quadrupole 
magnets. If the disruption parameter is very small, the 
transverse location of a particle during collision is nearly 
constant. Then we can estimate the disruption angle 0, 
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Fig. 5. HD as a junction of offset; Round beams. 

and BV as functions of the initial transverse coordinates zo 
and yo. For very flat Gaussian beams we have 

where the quantities in the square brackets can be ex- 
pressed by the complex error function w(zo/fio,) and 
the real error function erf(yo/&,). Here the emittance 
is ignored. One finds that the maximum and r.m.s. dis- 
ruption angles to be 

I9 2,maz - - 0.7650.: , (20 = 1.31a,) (4) 

e y,moz = @D,z , ( IO = 0, yo = 00) (5) 

ey,rms = j/aDyz . (6) 

(Rigorously speaking, for flat beams with large but finite 
aspect ratio, 8, reaches a maximum near yo N o, and then 
decreases; but this is not important.) 

The distribution functions of 8. and 0s are shown in 
Fig. 6. The actual singularities at 0, = 6’z,maz and eY = 0 
are not supposed to be as sharp as those in Fig. 6 because 
of finite emittance, various errors, and the disruption ef- 
fect. However,  we found from simulations that the qualita- 
tive difference between the horizontal and vertical angles 
still holds even for D,,v not much less than unity. 
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Fig. 6. Distribution of O,,, for small D,,,. 

Figure 7 shows the maximum and r.m.s. vertical dis- 
ruption angle, in units of Dyuy/u,, as a function of D,. 
Here we consider the case for small D, only. The four 
curves corrrspond to A, = 0.1, 0.2, 0.4, 0.8, respectively. 
The dependence on A, is not as significant as in the case 
of HD except for the small D, region, where the beam 
divergence is emittance dominated. (The distribution of 
initial u,~ is truncated at 2.5 standard deviations in the 
simulation.) 
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Fig. 7. ndazimum and r.m.s. vertical disruption angle. 

The simulation results can roughly be fitted by 

@y,rms - 4 
Sfiuz [l + (0.5D,)5]1/6 (7) 

d ey,maz - 2.5e,,rms. Here the contribution of the initial 
emittance (= A,u,/u, for By,rms) has not been included. 
The reason that the angle does not increase linearly in D, 
is that the particle trajectories are bent backwards and 
oscillate when D, is large. 

So far, the collision is assumed to be head-on. For 
flat beams the disruption angle in the presense of vertical 
offset is also important in determining the aperture of the 

final quads. The mean deflection angle of the entire bunch 
can be written in the form 7) 

0, = 5 FD,H,(D,, A,) , 
z  

where Ar, is the vertical offset in units of uy and the weak 
dependence on A, is ignored. For small disruptions, the 
function H, approaches the following analytic form 

A” 
H,(D,,A,) = J emY214dy . (9) 

0 

Figure 8 shows H, as a function of A, computed by sim. 
ulations, where U G G  distribution is assumed. 
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Fig. 8. Effective center-of-mass deflection. 

Roughly speaking, the maximum disruption angle in 
the presense of offsets is the sum of the center-of-mass 
deflection angle 0, and the maximum angle in the absense 
of offsets, ey,moz. 

KINK INSTABILITY 

If one of the beams is displaced vertically for some 
reason, this offset triggers a vertical oscillation and, when 
D is large, the oscillation is enhanced by the beam-beam 
force. This phenomena is known as the kink instability. 
Figure 9 shows a specific example. 

In the above figure the bunch is sliced longitudinally 
and the vertical coordinate y of the center-of-mass of each 
slice (in units of us) is plotted against the longitudinal 
coordinate s (in units of a,). Each graph corresponds to a 
snapshot of the beam vertical position at a particular time 
t (in units of us/c). The development of the instability can 
be seen in time sequence. The initial offset in this example 
is chosen to be 0.20, (full) and the disruption parameter 
is D, = 20. 
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Fig. 9. An ezample of kink instability. 
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Positron 
MUI Bunch Train 

e- and  e+ beams is varified to be  x/3, and  the gro\ytli 
rate is as  predicted. Furthermore, Fig. 9  clearly demon 
strates the standing-wave nature of the kink instability, 
which agrees with the descript ion of Eq. (11). 

So far our  discussion on  the kink instability deals with 
collisions of two bunches.  Another type of kink instabil- 
ity occurs dur ing the collision of two bunch trains, each 
consists of NE bunches.  One  of the major problems of 
such a  mult ibunch operat ion is the interactions between 
bunches before and  after their collisions at the central col- 
lision point. The  z “* bunch in the electron bunch train will 
coll ide not only with the ii” bunch in the positron train, 
but also with the j(< i)rh positron bunch before its coming 
to the central collision point. Colliding two flat beams at a  
relatively large crossing angle can help to avoid unwanted 
direct encounters between the outgoing bunch debris and  
the incoming fresh bunches.  However,  due  to the long- 
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Fig. 10. Schematic d iagram for collisions of bunch trains. 

For uniform beams and  small ampli tude oscillations, 
the equat ion of motion for the beam particles can be  ob- 

_  tamed from fluid dynamics (the flat beam version of the 
equat ion is given in Ref. 8), 

where yf is the y coordinate of e+and e- beams.  The 
most unstable solution is found to be  

yk = const. X exp 
[ 

a 1  
fi(2~ss - 5) +  -&I 

2  
. (11) 

This solution is in reasonable agreement  with the simula- . 
t ion shown in Fig. 9. Namely, the phase difference between 

range nature of the Coulomb interaction, there still exists 
undesirable interference between two separated bunches 
at a  distance. Since the crossing angle cannot  be  made  
arbitrarily large due  to the luminosity consideration, this 
long range interaction cannot  be  entirely suppressed.  In 
fact, it imposes a  severe restriction on  the stability of the 
beams.  

Consider the encounter  between the nib positron bunch 
after collision and  the rnrh (m > n) electron bunch be- 
fore collision at a  distance L  from the collision point. A 
schematic d iagram of the system is shown in Fig. 10. W e  
assume that all the bunch encounters occur within the drift 
space around the central collision point. 

According to Eq. (8), the center-of-mass deflection an- 
gle for the rath positron bunch is 

(12) 



where Ayn is the relative offset between the mrh electron 
and the nth positron bunch, in units of or,, at their closest 
encounter. The cumulative offset for the rnfh bunch before 
arriving at the central collision point is therefore 

A,,, = C c H,(D,,An) t&n , (13) 
I&<f7I 

where 6, is the initial offset of the mth beam, and the 
coefficient C is 

C=D,D,(~)2 , 

. and 0d = ar/ur is the diagonal angle of the bunch. 

The cumulative offset A,,, (in units of 6(1+ C)m-l) is 
plotted as a function of the number of bunches in Fig. 11. 
Since the factor 8*/t), must be larger than unity in or- 
der that the crossing angle does not reduce the luminosity 
significantly, the condition for negligible growth of the in- 
stability, i.e., A,, ,$ 6, according to Fig. ll., is roughly 

(NE-~) D,D,62 . (15) 

This imposes a constraint on the allowable number of 
bunches per train. 
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Fig. 11. Cumulative offset as a junction of the 
number of bunches. 

ENERGY SPECTRUM OF FINAL ELECTRONS 

The energy spectrum of the electrons is important for 
two reasons: The tip of the spectrum, i.e., the distribution 
near the initial beam energy, provides information on the 
energy resolution for high energy physics events. On the 
other hand, the tail of the spectrum, i.e., the distribution of 
the low energy electrons, which had suffered severe energy 
loss through hard beamstrahlung, reveals the likelyhood 
of finding large disruption angles. This second issue will 
be addressed in the next section. 

The energy spectrum of radiation can be characterized 
by the beamstrahlung parameter T, defined as 

where B is the effective field strength of the beam, and 
Bc = m2c3/eh - 4.4 x lOI Gauss is the Schwinger critical 
field. For historical reasons, this parameter is related to 
the parameter [ introduced by Sokolov and Ternov, by a 
simple factor 

(critical energy) = 3r,y2 = 3 
’ = (initial energy) 2 ap 5’ ’ (17) 

where p is the instantaneous radius of curvature. Since t,he 
two parameters are trivially related, we shall employ either 
of them depending on the convenience of the situation. 
The typical value of [ during collision is 

r2~N 2 &=“--.--- . 
cruzuy 1 + R (18) 

The average value of t is a bit smaller than Eq. (18) (by 
about a factor 2/3) but we adopt Eq. (18) for the better 
description of the spectrum tail which is contributed more 
effectively from beamstrahlung with larger [. 

The number of emitted photons per electron is 

N, = NJJs(&), with Ncl = 2.12s , (19) 
z Y 

where Ncl is the number of photons computed by the 
classical formula and Uo(<) is the ratio of the quantum- 
theoretical number of photons to that from the classical 
theory, and is found to be” 

Uo(O = 
1 - 0.598[ + 1.061[5/3 

1 + 0.922<2 ’ (20) 

where the relative error is within 0.7%. 
An approximate formula for the energy spectrum of 

electrons after collision has been derived recently. The 
details will be given in Ref. 10. Here we only quote the 
results. The distribution function $(E) (E = E/Es), nor- 
malized as Jr,b(~)dc = 1, can be written as 

G(E) = e -NT 
[ 6(& - 1) + f$h(Nd3)] , (21) 

with 

X+ioo 

h(s) = &  / exp(zrp-‘/3 + p)dp (A > 0) 
x-i00 

=gj 

(22) 
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and 

Y=$$-1) ) 

N, = LN,, + - 
1 +tlY 

ClY N 
l+tlY 7 * 

(23) 

(This formula does not exactly satisfy the normalization 
condition except for (1 + 0 which leads to Nr = N-, = 
N,l.) The function h(s) can be estimated very accurately 
by with relative error less than 2%. Figure 12 compares 
Eq. (21) with the simulation results using the parameters 
for the TLC and the ILC.“’ The design parameters of the 
two colliders are summarized in Table 1. The histograms 
in Fig. 12 are from simulations and the dotted data are 
computed from Eq. (21). The agreement is excellent. 

Table 1. Parameters for TLC and ILC (X,f = 17mm) 

* Quantities computed by simulations. 

MAXIMUM DEFLECTION ANGLE 
UNDER BEAMSTRAHLUNG 

The particle which once lost a large fraction of its ini- 
tial energy through beamstrahlung would in principle be 
severely deflected by the beam-beam field and cause back- 
ground problems for high energy experiments. Consider 
an electron which emits a hard photon at a particular 
time during the collision and results in an energy E&, 

w&Y E/Eo 6151A12 

Fig. 12. Electron energy spectrum for TLC and 
ILC pammeters. 

with E << 1. The effective disruption parameter for this 
particle becomes D=/E and D,/e. One might think that 
Eqs. (4) and (5) are still applicable by replacing D by D/E. 
However, the collision of a single particle on a beam with 
the disruption parameter D/E is different from the colli- 
sion between two beams with D/E, although the qualita- 
tive feature is the same; i.e., the disruption angle increases 
linearly in D for D .$ 1 and more slowly for D 2 1. 

A simulation was done by monitoring low energy test 
particles through the collision process. The maximum de- _ 
flection angle for a given E is found to be roughly 

e 
u Die 

mllz - - 
Qz ,/l + (0.750/~)~/~ 

9 (-cl) (24) 

/ 
where D = D,(D,) and o = uZ(o,,) for the horizontal 
(vertical) angle. 

The minimum value of E can in principle be as small as 
l/y. But the real problem is about how small a E should 
one care. Since the number of photons NY per beam par- 
ticle for linear colliders in the near future is of order unity, 
the spectral function $(E) given in Eq. (21) is always dom- 
inated by the factor e--Y in the spectrum tail, where y >> 1 
(in logarithmic sense). Therefore, if the acceptable back- 
ground counts is n out of N  electrons, then the minimum c 
of concern is approximately determined by y = log(N/n), 
or 

1 
& - m’” - I+ (1 log(Nln) . 

(25) 

With this value of E, one can directly estimate the maxi- 
mum deflection angle using Eq. (24). Since the dependence 
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on n is only logarithmic, one can set n = 1. Thus, for ex- 
ample, emin = 0.013(0.188), e,,,,, = 10 (0.95) mrad and 
e v,mor = 0.4 (0.15) mrad for TLC (ILC) parameters. 

ADDENDUM: 
BEAMSTFtAHjXJNd PAIR CREATION 

After the completion of this paper, the author iden- 
tified a new phenomenon called “coherent beamstrahlung 
pair creation” :” which, together with the incoherent pro- 
cess studied earlier~s”O would have impacts on linear col- 
lider designs. Recall that in the case of radiation by e-(e+) 
during beam-beam collision, there are essentially two mech- 
anisms that induce the radiation. Namely, there is an “in- 
coherent” process, or Bremsstrahlung, associated with the 
‘individual e-e+ scatterings, and there is also a “coher- 
ent” process due to the interaction between the radiat- 
ing charged particle and the macroscopic beam-beam EM 
field. At high energies and strong fields, the coherent pro- 
cess tends to dominate over the incoherent one. This is 
actually why our discussion on beam energy loss has been 
focused only on the beamstrahlung process. 

The beamstrahlung photons once emmited would have 
to travel through the remainder of the oncoming beam 
before entering into free space, and would therefore turn 
themselves into e-e+ pairs. Analogous to the case of ra- 
diation, photon pair creation also involves coherent and 
incoherent processes. Here again, at high energies and 
strong fields the coherent process will dominate over the 
incoherent one. Once the e-e+ pairs are created with lower 
energies--in general, one of the two particles in each pair 
will‘have the same sign of charge as the oncoming beam 
(For the sake of argument, consider a low energy e+ mov- 
ing against the positron beam). Unlike the case of low 
energy e- moving against a positron beam, where the po- 
tential tends to confine the particle in the beam profile, in 
the case of a positron the potential is unconfining, and the 
particle can in principle be deflected by a large angle and 
thus create severe background problems. This effect would 
therefore impose a contraint on the final focus design. 

It is well known that the cross section for incoherent 
pair-creation is 

28 
o(7e --* ee+e-) N -or: log 2iJE 2 

9 ( > ,2cm , (26) 

which is a very slowly varying function of the photon en- 
ergy w. For TLC, 7 = 1 x 106, the cross section is N 
5 x 1O-26 cm2 for photons at full energy. The beam param- 
eters for TLC listed in the above Table gives the average 
number of the beamstrahlung photon per beam particle as 
N-, N  1.3. On the other hand, it can be shown”‘that the 
effective luminosity for such a cascading process is l/2 of 
the original. Thus, the number of e-e+ pairs created per 
bunch crossing can be easily evaluated to be 

1 N&e Ni+,- = y(ye + ee+e-)- N  
f 

2 x lo5 ( (27) 
rep 

where L,, = 1.3 x 1033cm-2sec-1, and frep = 220 set-l 
in this design. To be sure, this process provides a non- 
negligible amount of e-e+ pairs. 

The rate of photon pair creation in a homogeneous 
magnetic field has been studied by many people:” and 
has been generalized to inhomogeneous fields by Baier and 
Katkov.‘a’ In the asymptotic limits the rate can be ex- 
pressed as 

+5 3 3 OT ,-0/3x 
dl 16 2 x,-r ? x<l ; 
-= 
dt 

q ())““$# +-l/3] ) x > 1 . 
(28) 

Here x = Tw/E plays the similar role as T in the case of 
beamstrahlung. Notice that x is independent of the initial 
particle energy 7, as the process does not care where the 
photon was originated from. Let 

To a very good approximatio$’ 

(29) 

(30) 

for all values of x. 

Integrating over the collision time - again, only half 
of the e-e+ collision time - we have 

I= Jij iEcT(X) 
2 x,7 

= ;tl~qX) . 
(31) 

Next we evaluate the mean value of T(X) by weighting over 
the beamstrahlung spectral function, 

dnb 1 QUZ -= -- 
dw A r2 

(32) 
and 

(T(T)) = jT(x)zdw/ jzdw . (33) 
0 0 

The total number of e-e+ pairs created through this co- 
herent process is therefore 

A plot of (T(T)) is shown in Fig. 13, where the solid curve 
is from the exact form of dnb/dw in Eq. (32), and the 
dashed curve corresponds to an asymptotic expression for 
dnb/dw at large y. The closeness between the two curves 
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Fig. 13. The function (T(T)) vs. r. 

suggests that only the spectrum tip contribute effectively 
to the coherent pair creation process. From the TLC pa- 
rameters, n,l N  1.9, so we find that 

r;l,"+,- - 5 x 10’ , (35) 

which is much larger than the incoherent process. 
It should be noticed, however, that (T) drops expo- 

nentially for Y S 1. Therefore, for next generation linear 
colliders at the range of 1 TeV, which would typically have 
Y N 1, it is not at all difficult to redesign the machine 
such that the coherent process can be entirely suppressed. 
For the above-mentioned TLC parameters the condition is 
Y C 0.3. This, ironically, is an over-kill of the issue since 
theincoherent process corresponds to Y N 0.6, as can be 
read from Fig. 13. 

Since to a large extent N7 is of the order unity and 
quite insensitive to other parameters, and since we usually 
choose to fix the luminosity in a design, the incoherent 
e-e+ pairs can not be easily suppressed. It is thus impor- 
tant to evaluate the energy spectrum of the pair created 
e+. Assuming constant probability in finding the e+ at 
energy eE 2 w, the spectrum can be derived to be 

N,+(E) = 7(3/2)2’3 ?ND Y213F(s y) . (36) 
18x21(1/3)ym ’ ’ 

The spectral function F(e, Y) is plotted in Fig. 14 for Y = 
0.2. At the small e limit, F(E, Y) 0: l/s. 

Finally, we evaluate the deflection angle of these low 
energy positrons by the beam-beam field. As a rough esti- 
mation, we assume that the vertical field beyond the beam 
height extents constantly to a distance equal to the beam 
width cr,. It can be shown”’ that the deflection angle for 
the e+ with energy E is 

10-6 
12-88 G!lw? 

0.01 0.1 
E 

Fig. 14. The spectral function for incoherent pair 
created e+. 

The deflection angle in the above expression is plotted 
in Fig. 15. For a 1 GeV e+, & N 45 mrad. The information 
on the transverse monemtum can be easily deduced from 
the above expressions via pl = EOc. 

12-m 
6216A3 Gx 

Fig. 15. The dejlection angle as a function ofe+energy. 
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