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ABSTRACT 

We discuss the decays KL ---) ~‘e+e- when mt is large. Unlike the case of 

KL + TT, CP violation in the decay amplitude itself is comparable to that which 

comes from the mass matrix. We study the CP violating effects, including strong 

interaction (QCD) corrections to the amplitudes which arise from one-loop dia- 

grams. Short-distance contributions from diagrams that involve a W and a 2 

or two W’s as well as from those with a photon and a W are important when 

mt IS J&V. 
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I. INTRODUCTION 

It is almost 25 years since the original observation of CP violation in long- 

lived neutral I( decays! Until very recently, all experiments were consistent with 

this phenomenon originating in a “superweak” interaction:’ whose one measurable 

manifestation was in the mass matrix of the neutral K system. As a result, the 

long-lived neutral K meson, KL M K2 + &I, is dominantly the CP-odd state 

1(2, but contains a small admixture (cc 6) of the CP-even state K1. 

A different, more definite origin of CP violation occurs in the three generation 

standard model where CP violating effects arise through the presence of a single, 
- 

nontrivial phase in the matrix which expresses the mixing of quark flavors under 

the weak interactions! For the K” mass matrix, the CP violating phase enters 

through “box” diagrams that involve heavy quarks and can connect the quarks in 

a K” (ds) to those in a K” (sd), mimicking in this regard a “superweak” theory. 

In the past year the NA31 collaboration has presented statistically significant 

evidenceL4] for a nonzero value of the parameter 6, which is a measure of CP 

violation in the K --+ TT decay amplitude itself. Experiments at FermilabL5’ and 

at CERNf4’ are continuing with the aim of reducing the statistical and systematic 

errors to a level where, if the central value of the CERN experiment holds, a 

nonzero value of e’ will be firmly established and a “superweak” explanation made 

untenable. 

k-81 Such a value of c’ is consistent, within rather large uncertainties of the rele- 

vant hadronic matrix element, with the three generation standard model. Indeed, 

it was suggested[” 10 years ago that if CP violation originated in a phase of the 

three generation quark mixing matrix and if one-loop “penguin” diagrams give an 

important part of the K + TT decay amplitude, then a nonzero and measurable 

6’ would result. 

While the three generation standard model plausibly explains CP violation as 

it is observed up to now in Nature, we would like to obtain additional evidence 

that points in this direction. If we could find several experimental processes which 
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exhibit measurable CP violating effects and all could be fit by a single value of 

the ab initio free phase in the mixing matrix, then we will have gone a long way 

toward establishing this as the correct explanation. If along the way the standard 

model cannot account for the results of these experiments, so much the better - 

we’d have evidence for physics beyond the standard model. 

There are several avenues toward accomplishing this; none of them is easy. One 

is to look for CP violating effects in the B meson system. Here the CP violating 

asymmetries potentially can be very large - of order 10-l or more in some rare 

modes, rather than the order 10m3 effects in the neutral K mass matrix. The sheer 

numbers of B mesons estimated to be necessary to get a statistically significant 

[“I effect put this exciting possibility many years in the future. Another avenue is 

to consider other K decays where CP violating effects, although very small, may 

occur with a different weighting (from that in K + rn) between effects originating 

in the mass matrix and in the decay amplitude. Although these experiments are 

also very difficult, there is the advantage of high intensity beams and sophisticated 

detectors already in existence to perform the measurements of c’ and search for 

rare K decays. 

An example of such a process is KL + 7r”e+e-. If CP were conserved, the long- 

lived eigenstate would be the CP-odd state, I( 2. It would not decay to roYvirtual + 

n’@e-, this being forbidden by CP [‘11 invariance. Since Nature has chosen to break 

CP invariance, the decay can proceed through: (1) the small part, M &1, of the 

KL wave function that is CP even (we call this “indirect” CP violation); and (2) CP 

violating effects in the K2 + w”e+e- decay amplitude itself (we call this “direct” 

CP violation). In addition to these two CP violating amplitudes, the decay can 

proceed in a CP conserving manner via the decay chain K2 + a’yy + 7r”@!-, 

where the photons are either real or virtual. Although higher order in cy, this 

latter amplitude is not necessarily negligible in comparison to either the “indirect” 

or “direct” CP violating amplitudes which are also suppressed precisely because 

they contain factors that are related to CP violation. 
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Naturally, we are most interested in the question of whether one can see the 

“direct” CP violation effects and especially to investigate if they can be the domi- 

nant amplitude contributing to the decay. This amplitude comes from “penguin” 

diagrams with a photon or 2 boson and also from box diagrams, as shown in 

Fig. 1. For values of rn: < < M&, it is the “electromagnetic penguin” that gives 

the dominant short-distance contribution to the amplitude. This was discussed, 

with estimates of the CP violating effectstl’l before evidence for the b quark was 

found. A full analysis, including QCD corrections, was carried out in the case of 

[13’ six quarks, building upon work done with four quarks!14’151 A principal conclu- 

sion of that study was that the “direct” CP violation could be comparable to the 

“indirect” effects. 

Why do we reconsider this process now ? First, the possible mass range for the 

t quark has been pushed upward considerably since Ref. 13. The QCD corrections, 

which turned out to be quite important, need to be redone when n-$/M& cannot 

be considered to be a small number. The successive steps of removing heavy 

particles from the theory and developing an effective Hamiltonian involving only 

the light quarks can no longer be carried out by first removing the W and then 

the t quark. Rather, they must be removed together. Second, the “2 penguin” 

and “W box” diagrams, which are “suppressed” by factors of mi/M& and were 

neglected in old calculations, are important for large mt. We need to consider 

the QCD corrections to them as well. Third, experiments at the required level of 

sensitivity are beginning to be considered!1s’1’1 

In what follows we consider matters in the reverse order of their fundamental 

(as we see it) interest, although not necessarily in reverse order of the magnitude 

of their contribution to the KI, -+ 7;‘[+[- decay rate. So, in Sec. II, we turn 

our attention to a brief review of the situation regarding the magnitude of the 

CP conserving amplitude. Then we discuss the contribution from “indirect” CP 

violation, followed by the main body of our work, which concerns the “direct” CP 

violation amplitudes when mt N Mw. The final section puts the various pieces 

together. 
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II. THE CP CONSERVING AMPLITUDE 

- 

As noted in the Introduction, a CP conserving contribution to the process 

K2 --+ 7r”e+e- is induced through the chain K2 + 7r”yy + w’&e-, which is shown 

in Fig. 2. We give here a brief review of the checkered history of this amplitude, 

partly because it is of interest in and of itself, but mainly to set the stage for the 

treatment of the CP violating amplitude which follows.‘“’ In that regard, the main 

issue is whether the CP conserving contribution to I’(K2 + .n’e+e-) is comparable 

to the CP violating contribution or might even “drown out” the latter. 

The absorptive part of Fig. 2 can be calculated with the two intermediate 

photons on shell. For the first part of this process, K2 + 71-‘yy, there are two 

invariant amplitudes! If we take the momenta as p, p’, ~1 and ~2, respectively, 

and define $1,~ = p-ql,2/p-p, then they may be expressed in a gauge invariant way 

as: 

< 7vyl~~2 > = A(xl, 22) [42 - 61 ~1 - ~2 - ql - q2 61 .t2] + 

qxl,~2> [P2 ZlZ2El * 62 + Ql * q2 P * El P * E2/P2 

- Xl 42 * Cl P - c2 - x2 Ql - E2 P-cl] - 

(1) 

with e1,2 the polarization vectors of the two photons. When joined with the QED 

amplitude for yy + !+e- to form the amplitude for I(2 + w’f?e-, the contribution 

from the A amplitude gets a factor of me in front of it. This is not hard to 

understand, as the total angular momentum of the yy system that pertains to the 

A amplitude is zero; the same is then true of the final e+e- system. However, 

the interactions, being electroweak, always match (massless) left-handed leptons 

to right-handed antileptons and vice wersu, causing the decay of a J = 0 system to 

massless leptons and antileptons to be forbidden. Hence, the factor of mp in the 

overall amplitude for I<2 + 7r” e+e-, so that the A amplitude provides a negligible 

contribution for K2 --$ roe+,-. A corollary of this theorem applies when the 

I(z + 7r” yy amplitude is calculated using traditional current algebra techniques 

in the limit of vanishing pion four-momentum. Only a nonvanishing A amplitude 

is predicted. The factor of m, then found[“’ to be produced in the absorptive part 
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of the amplitude for K2 + no e+e- merely reflects the presence of only an A 

amplitude in the current algebra calculation. If this were the end of the story, the 

CP conserving contribution to K2 + n’e+e- would produce negligible branching 

ratios at the lo-l3 level[lgl or smaller[181 . 

On the other hand, the contraction of the amplitude for yy + e+e- with the 

B amplitude produces no such factor of m,. B does, however, contain a coefficient 

with two more powers of momentum, and one might hope for its contribution to 

be suppressed by angular momentum barrier factors. Because of the extra powers 

of momentum, in chiral perturbation theory this amplitude is put in by hand and 

its coefficient not predicted. An order-of-magnitude estimate may be obtained by 

pulling out the known dimensionful factors in terms of powers of jr, and asserting 

that the remaining coupling strength should be of order one!” The branching ratio 

for I-C2 --+ w ’ e+e- is then of order lo- 14. Again, the CP conserving amplitude 

would make a negligible contribution to the decay rate. 

However, an old-fashioned vector dominance, pole model predicts”” compara- 

ble A and B amplitudes in K2 + 7r”yy and a branching ratio for I(2 + roe+,- of 

order 10-11, roughly at the level of that arising from the CP violating amplitudes 

(see below). The B amplitude is far biggeri’ll than would be estimated”” in chiral 

perturbation theory. The applicability of such a model, however, can be challenged 

on the grounds that the low-energy theorems and Ward identities of chiral pertur- 

bation theory are not being satisfiedF2] The consistent implementation of vector 

dominance with the chiral and other constraints may lead to an extra suppression 

factor, and to a smaller prediction than in the old fashioned model. 

At this point the burden is still on the theorists to show that the CP conserving 

contribution is truly negligible in I<L + 7r”e+e-. After a short period when factors 

of rnz seemed to assure this, we are presently not able to claim it. In the longer run, 

it will be in the hands of experimentalists to measure KL + r”yy and eventually 

to separate the A and B amplitudes by measuring the Dalitz plot distributions, 

particularly the invariant mass of the two photons.[231 
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III. THE CP VIOLATING AMPLITUDE FROM THE MASS MATRIX 

As already noted in the Introduction, the presence of CP violation in the mass 

matrix of the neutral I( system results in a small admixture of the CP-even K1 

state being found in the long-lived eigenstate: 

I-L = 
K2 + E: Kl 

[l + 1+j1’2 ’ 
(2) 

where the denominator is unity to an excellent approximation, as t241 1~1 = (2.275 f 

0.021) x lo- 3. We define “indirect” CP violation as arising from the part of the 

KL eigenstate which is proportional to E in Eq. (2): CP is violated within the mass 

matrix itself, producing the K1 admixture in the KL, while the decay K1 + r”,@e- 

itself proceeds in a CP conserving manner. 

So defined, the magnitude of “indirect” CP violation is dependent upon the 

choice of phase convention for the K” and K” states, as the value of E depends on 

this choice. We choose the commonly used convention where the weak interaction 

amplitude for K” + rr is real when the ?TT system has isospin zero. As we do 

most calculations in a quark basis where this is not true (precisely because of CP 

violation in the decay amplitude for K + ~FR), we will have to do a transformation 

IK” > + esitIKo > 

II-CO > + e+itII?o > , 
(3) 

with 15.6151 = I ‘/ I f c c rom strong interaction “penguin” effects, to get to the com- 

monly used phase convention. This induces a term in the KL --) z’[+!- amplitude 

proportional to i sin 5 M ;t (which is about an order of magnitude smaller than that 

which is proportional to c); we shall take due account of this term later, when we 

consider the total CP violating amplitude that includes both “indirect” and “di- 

rect” pieces. This net amplitude, being a physical quantity, is independent of phase 

convention. 
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With the above definition of “indirect” CP violation we may estimate its con- 

tribution to the decay rate from the identity: 

B(IiL + T’e+e-)i,di*ect E B(K+ ---f T+fZ+e-)X 

rK~ + 7r”e+e-) (4) 

I?(K+ ---, 7r+e+e-) 
X 

r(lcL + ~“e+e-)indir& 

rK+ r(IC1 + woe+,-) * 

This allows us to relate the desired quantity to the known branching ratio for 

the CP conserving decay Ii’+ + w+e+e-. Experimental values[241 of 2.7 x 10s7 

and 4.2 may be inserted for the first two factors on the right hand side, while 

the last factor is 1c12 by the definition above of what we mean by “indirect” CP 

violation. The third factor can be measured directly one day. For the moment it is 

the subject of model dependent theoretical calculations, with a value of one if the 

transition between the K and the 7r is A1 = l/2. This is the case for the short- 

distance amplitude which involves a transition from a strange to a down quark. 

For AI = 3/2, the corresponding value is 4. With both isospin amplitudes present 

and interfering, any value is possible!‘“] Using a value of unity for this factor makes 

B(I(L + roe+ e- )indirect = 0.58 x lo-l1 . 

This is quite close to the previous estimate in Ref. 13, although the discussion 

is phrased in a different manner. Instead of relating the branching ratio back 

to that for K+ + R+e+e-, one could proceed directly from the amplitude for 

Kr + 7r”e+e- using the theoretical, QCD corrected, short-distance contribution to 

the real part of this amplitude. This is dangerous; the QCD corrections to the real 

part of the short-distance contribution are so large as to change its sign, as pointed 

out in Ref. 13, and discussed in Sec. IV. As a result, its magnitude cannot be 

calculated reliably. It is too small to explain I’(K+ + r+e+e-) and there is a high 

likelihood that long-distance contributions are important. Ultimately all of this 

discussion can be bypassed by an experimental measurement of I’(Ks + r’e+e-). 

This will provide a direct determination of the third factor on the right-hand side 

of Eq. (4), removing all the present uncertainty that stems from our theoretical 

inability to supply a precise prediction for this decay rate. 
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Iv. CP VIOLATION FROM THE DECAY AMPLITUDE 

We now turn to the principal part of our investigation, the calculation of the 

CP violating contributions to the I(2 -+ 7r”@e- amplitude itself. We work in 

the standard model with six quarks arranged in left-handed doublets with respect 

to weak isospin, quark weak eigenstates related to quark mass eigenstates by the 

Kobayashi-Maskawa matrix, and CP violating contributions to the decay ampli- 

tude possible because of the nontrivial phase present in that matrix. 

We will express our calculation in the language of forming an effective Hamil- 

tonian written in terms of the low mass quarks u, d, and s which are involved in 
- 

the initial and final states of strange particle decays. The calculation proceeds by 

starting with the theory written in terms of the weak gauge boson and quark fields, 

and successively integrating out the heavy quanta from the theory. One starts at 

the largest momentum scale and moves to the lowest, at each stage making use 

of renormalization group equations to calculate the coefficients of the operators in 

the effective theory composed of those quarks still extant at that stage! 

In previous calculations applied to this process, the succession of scales was 

characterized by Mw, mt, mb, m,, and finally /.L, which represents the momentum 

scale relevant to the hadrons involved in the decay. In this paper we consider t 

quark masses comparable to or greater than that of the W, and the first step ceases 

to exist. Instead, we remove the t quark and W from the theory togetherr7’ 

At each stage of the calculation, we will be left with an effective Hamiltonian 

in the form of a sum of Wilson coefficients times operators: 

‘is&d c ci(p2)Qi + h. c. , 
i 

(5) 

where, for example, at the last stage, 
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Ql = (wp(l - -dda)(~pyp(l - 75)~~) 

Q2 = &r~p(l -x)dp)(qY(l -Y~)G) 

Q3 = (W,(l - Y~)~Y)[&YY~(~ - ~5)up) + (+t‘(l - -/s)dp) + (spyyl - y5)sp)] 

Q4 = &Y& - 75)dp)[(W‘(l - -/5)4 + (+y”(l - yi)da) + (q+‘(l - -&)] 
Q5 = @a(1 - ~5)da)h37~(l+ ~5)up) + (+t‘(l + ys)dp) + (qy‘(l + y5)sp)] 

Q6 = (M’dl - ~5)43)[@/3+‘(1+ ~5)ua) + (dpy’“(l + -&Ax) + (spyp(l + y5)4] 

e2 
QW = q,(Gyp(l - r5)da)(eype) 

QTA = -$Grp(l - y5)da)(Eypy5e) . 

The color indices cy and p are summed over the three colors, while the combination 

v,*,v,d of Kobayashi-Maskawa matrix elements is the usual one involved in decays 

of strange particles. The quark fields appearing in the second factor in the definition 

of Q3, Q4, Q5, and Q6 generally include all those which have not yet been removed 

from the theory. At the last stage, where this includes only the u, d and s quarks, 

one of the operators in Eq. (6) is linearly dependent (this is usually taken to be 

Q4). We have chosen the same operators as in Ref. 13, with the addition of QUA, 

whose presence is required now that we include the contributions from the “Z 

penguin” and “W box” graphs in Fig. l!” We have neglected operators of the 

form m, Scpv Fp”d as giving a very small contribution to the net amplitude. 

If we think first about the situation in the absence of strong interactions, then 

the only one of the first six operators with a nonzero coefficient (to order g2 in 

weak interactions) is Q2, with c2 = 1. To order g2 in weak interactions and order 

e2 in electromagnetic interactions, the diagrams in Fig. 1 generally give nonzero 

coefficients of &TV and &VA!” For example, if we consider mt - Mw , then at the 

scale Mw, we have an “electromagnetic penguin” contribution [Fig. l(a)] involving 

the t quark: 

C$$,(M$) = , (7) 
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. 
where the coefficient with the Kobayashi-Maskawa factor removed is represented 

with a tilde over it: 

(3x4 - 30X: + 54X: - 32X; + S)ZOg(Xi) 

36a(xi - 1)4 
, (8) 

and xi = mf/M$,. The “2 penguin” contributes [Fig. l(b)]: 

C#(M&) = , 

- 

where 

C$, (M$) = > E %;,(M&) , 

(94 

W) 

@);(M&) > 4sin26w - 1 Xi (xi - = 6)(x; - 1) + (32; + Z)Zog(xi) 
sin2 0~ 16~ (Xi 

, (104 - 1)2 1 
and 

~~~‘i(M~) 7 (Xi - 6)(xi - 1) + (3xi + = 2)Jog(xi) 
(Xi - 1)2 

1 . (10b) 

The “W box” contributes [Fig. l(c)]: 

(A&$) = $+ @;y)(M&) 
:s ud 

C$y)(M$) = E @I) , 
u*s ud 

where 

@;;‘)(M$) = ’ z; 1 - Xi + ZOg(Xi) 

, sin2 9~ 8~ (Xi - 1)2 1 

(114 

W) 

w-4 
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. and 

@y)(M&) = - ’ =G” 1 - Xi + ZOg(Xi) 

, sin2 8~ 87r (Xi - 1)2 1 * Wb) 

The contribution of the t quark to c.$$ at the scale p is given by: 

M& 
$&(p”) = e$y?,(M$) - 2 , , J 

dQ2[cz+3c~] , 97r q2 
LJ2 

(13) 

- 
where, since we are considering mt N Mw and there are no large logarithms of the 

form Zog(M&/mi), we take the full expression for &v,t (M&) as given in Eq. (8). 

Since in the absence of QCD the coefficients C2 = 1 and Cl = 0, the integral 

contributes the large logarithm in the problem, 

- 2 log - M& 
97r 2) P2 ’ 

to the right-hand side of Eq. (13). 

Note that if we had considered the situation where rnf << M$, i.e., xi << 1, 

then the full contribution from the quark i is generated at scales from m; down to 

,Y and the leading term is 

e7v,i(P2) = E$$(p2) x ) - $ ~2 ) ( > 
/og~ (14) 

as in Ref. 13. The other contributions in Eqs. (10) and (12) due to the “2 penguin” 

and “W box” graphs, respectively, all vanish in comparison to Eq. (14) in the same 

limit by at least one power of xi. In the limit xi + 0 such nonleading contributions 

are numerically small and therefore dropped, as are the nonleading terms in the 

“electromagnetic penguin” contribution. 
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Even though there is a p dependence in the Wilson coefficient in Eq. (13), 

we know that there can be no dependence upon p in the total amplitude, as it 

represents a physical observable. This p dependence is cancelled by a correspond- 

ing dependence which occurs when we take the matrix elements of the effective 

Hamiltonian, 3-1, to order e 2. This occurs as follows: The contribution involving 

C~V is of order e2 from the operator itself, and of order e” from taking its matrix 

element. There also is a contribution from Q:! involving “light” quarks, where the 

coefficient and operator is of order e ‘, but the matrix element is of order e2 by hav- 

ing a “light” quark and antiquark annihilate through a virtual photon into PP. 

This gives a term which has an exactly cancelling p dependence. Note also that 

Eq. (8) may contain different (nonleading) constant terms, depending upon which 

renormalization scheme is used, but that in going from one scheme to another, 

changes in the coefficient of C,v are compensated by corresponding changes in the 

matrix element of Q2, as they must be. 

Now let us introduce the strong interactions in the form of Quantum Chromo- 

dynamics (QCD). First, to order e”, nonzero coefficients are generated for the first 

six operators as we move successively down from the weak scale to one quark mass 

and then another. The operators Q3, Q4, Q5, and Q6 arise from “penguin” dia- 

grams involving gluons. The operators Qh = (1/2)[Q, f &I] are multiplicatively 

renormalized: 

C*(p2) = a,(M&) ‘* [ 1 4P2> ~*Wzv) 7 (15) 

with C*(M&) = 1, and where a+ = 6/(33 - 2Nf) and a- = -12/(33 - 2Nf) 

for Nf quark flavors in leading logarithmic approximation between the scale Mw 

and the scale p. At the same time, to order e2 the coefficients of the operators 

&TV and &,A are generated from their values at Mw plus mixing effects of the 

operators &I and Q2 with &TV or QUA. The “penguin” operators, Q3, Q4, Q5, 

and Q6, which arise only through QCD effects, have coefficients which start out 

at zero at the weak scale. They typically never grow to be more than an order of 

magnitude smaller than the coefficients for &A. So, while we in principle consider 
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the whole 8 x 8 anomalous dimension matrixL3” which describes the mixing among 

all the operators in Eq. (6) as we go from one scale to another, it is an excellent 

approximation to consider the mixing only of Qh with &TV and QTA[~~’ and the 

renormalization of Q& as in Eq. (15). In the same spirit we neglect the effect of 

taking order e2 matrix elements of the “penguin operators,” which is also known 

to give a small effect Y1 

The derivation of the QCD corrected contributions when mt - Mw proceeds 

in a straightforward manner, if one follows the general method given in Ref. 13. 

This is outlined in Appendix A. Instead, we give here an account of the derivation 

following along the lines of the correct results for four quarksy2’ illustrating it for 

the case of the “electromagnetic penguin” contribution. 

For this purpose, we start with the case of the contribution to C$J from the t 

quark without QCD given in Eq. (13). Th e corrections to this due to QCD arise 

simply from the fact that C2 + 3C1 acquires a q2 dependence: 

C2(q2) + 3 C1(q2) = 2 C+(q2) - CL(q2) 

= 2 [ y@fF&‘l”+ _ [ yy$]~- . (16) 

To carry out the integral in Eq. (13), we need only remember that 

&cl2 127r 

42=- 
d%(!12> 

33 - 2Nf a;(q2) ’ 

and then to split the region of integration into subregions characterized by different 

numbers of active fermion species to obtain: 

@$,(p”, = $&(M&) + 7 
16 - 

( 
1 _ 1~~~~3/27)h’c/~/25~~~~3 - l6 

gg~S(m~) 93cu,(mi) 
(1 - I<c$1’25)$~3 

16 - 
( 1 - K*$‘““) + 8 

874M&) 454mZ) 
(1 - I(;;c5’2’)I~~~~251(~~~3 
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8 
+ 39cu,(mi) 

(1 - K;;3’25) K;;;” + 33a,;MG) (1 - K;kiz3) , (17) 

where KblW = a,(m~)/a,(M&), K,p, = as(m~)/as(m& and I(,/, = ~s(p2>/~s(m~> 

in effective five, four and three quark theories, respectively. 

In the case of EC’) 7vc, the situation is much simpler since the relevant Wilson 

coefficient is only generated at scales between p and m,: 

2 mc 

J 
dq2 42 [& +%I . 

P2 

(18) 

The result of putting in the QCD induced dependence of C2 and Cl on q2 is then 

$$@) = - l6 7 gh(m9) ( 1 - K;;c3/27)1(c-$125K-$3 

8 
(19) 

+ 45a,(mz) 
(1 - K;;f’27) K;;[25K;;g3 . 

In both these examples, the recovery of “free quarks” as the limiting case 

(Y, + 0 is obtained trivially by looking back to the starting point in Eqs. (16) and 

(18). It also may be obtained from the final answer by expanding the factors of 

I(;/j to order as, keeping the leading term as aS + 0. 

The situation with an experimentally reasonable as(q2) is far from the free 

quark model, however. The QCD corrections to c.$, are large. Those for @$, 9 , 
are enormous, for they can easily change not only the magnitude but the sign 

of this coefficient. As pointed out in Ref. 13, this is readily understandable by 

considering the right-hand side of Eq. (18), rewritten as 

2 

2 mc dq2 -- 
97r J 42 [2 C+k2) - C-(q2)] * 

P2 

Before QCD effects are considered, the integrand is [2 x 1 - l] = 1. When QCD 

is included, the coefficient C+(q2) decreases and C- (q2) increases so that the can- 

cellation between the terms in the integrand becomes more complete. In fact, over 
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most or all of the region of integration from p2 to rnz the second term overwhelms 

the first and the integrand is negative. 

For the real (CP conserving) part of the short-distance generated amplitude, 

the contribution from the top quark is negligible because of the Kobayashi-Maskawa 

factor in Eq. (7). Th e c h arm quark gives the important short-distance contribution 

to the real part of the amplitude for K + a,@[-, and the possibilities for making a 

precise theoretical prediction are nil because of the situation we have just described: 

The QCD corrections typically change not just the magnitude but even the sign of 

the coefficient of Q~v. Aside from this explicit indication of danger from delicate 

cancellations in the calculation, a comparison of the magnitude of the resulting 

amplitude with that required from the measured rate for I<+ + r+e+e- shows 

that the theoretical calculation gives a result that is much too small to explain the 

data. Long-distance contributions, not unexpectedly, are necessary to understand 

the magnitude of the real part of the amplitude. 

This is entirely different than the situation with regard to the imaginary (CP 

violating) part of the amplitude. The Kobayashi-Maskawa factors for charm and 

top are the same, up to a sign: 

These quantities are all invariant under a (quark field) rephasingy3’341 and in 

Eq. (20) have been kept in a form to exhibit that fact. The numerator on the 

right-hand side is just a form of the invariant measure of CP nonconservation 

proposed by Jarlskog[““’ for three generations. In the original parametrization of 

Ref. 3, the quantities in Eq. (20) are expressible as sin 02 sin 193 sin S = ~2~3~6, with 

cosines of small angles set equal to unity. We shall use this shorthand to refer to 

the rephase invariant quantity in Eq. (20) in what follows. 

Because of the Kobayashi-Maskawa factors, it is momentum scales from rnz 

to rni that contribute to the imaginary part. This can be seen, for example, 
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by combining the charm and top quark leading logarithmic contributions to the . 

- 

imaginary part of C$$ in the absence of &CD: 

ImC$ = SpS3Sg [ E$),(p2) - i7$~c(p2) 1 
= s2s3s(j [ - $ i”$+& i”!$ 

= -s2s3sb [-& j!!$, . p2 
m2, 

(21) 

Thus, the dependence on the scale p cancels out. There is every reason to expect 

the short-distance contributions to give the dominant part of the “direct” CP 

violating amplitude.[351 

Once QCD corrections are applied, the integrand is reduced, but over most or 

all of the range of integration it does not change sign (from that for free quarks). 

Thus, while the QCD corrections are nonnegligible, they are fairly insensitive to 

changes in parameters and reliably calculable for the imaginary part. This is shown 

in Fig. 3, where the QCD corrected @$ = 6+$gt - 8’) , 7v,c, calculated from Eqs. (17) 

and (19), is indicated with solid curves for AQCD = 100 and 250 MeV as a function 

of the top quark mass. The result is independent of ~1~. While about a factor of two 

smaller than the result without QCD (d as e curve), the result does not depend h d 

strongly on AQCD or top quark mass. 

To assemble the full coefficient, C~V, we need to add the “2 penguin” and “W 

box” contributions. For those involving the t quark, they may be taken directly 

from Eqs. (lOa) and (12a), respectively. When mt - Mw there are no QCD correc- 

tions to be applied, as these contributions are generated at momentum scales from 

mt to Mw where there are no large logarithms? For those contributions involving 

the c quark, there are important QCD corrections. However, these contributions, 

being proportional to xc = mz/M&, are themselves so small as to be negligible. 
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The total coefficient 67~ and the contributions from each of its components is 

shown in Fig. 4. Even after being reduced by QCD corrections, the contribution 
-37) from the “electromagnetic penguin,” CTV, is the largest of the three. This is in 

good part due to the smallness of the vector coupling of the 2 to charged leptons 

(which is proportional to 1 - 4 sin’ 0~). Otherwise the contribution of the “Z 

penguin” would dominate for large values of mt. 

The dominance of the “Z penguin” contributions at large mt can be seen in 

Fig. 5, where the total and component parts of the coefficient 67,~ are shown. As 

mt + 00, e,$2jt grows as rnf, while e$,) goes to a constant. In ETA the “box” 

contribution is less than that from the “Z penguin” for mt 2 Mw. 

Note that in the opposite situation where rni << iV&, both these contributions 

behave as zt Iog(xt) and are nonleading when compared to the “electromagnetic 

penguin” contribution (to &), which behaves in the same limit as Iog(zt). QCD 

provides corrections to such large logarithms, which can arise when there is a large 

ratio of momentum scales. Our philosophy here, with mt - i&y, has been to 

keep the leading and nonleading contributions at the scale Mw, and to also carry 

out the QCD corrections to the large logarithms that arise from integration over 

scales with a big ratio. In fact, the contribution from C -2&m is a small part 

of the full 6$$. Some of the ambiguities in the charm or top quark contributions 

by themselves (e.g., at a low scale p) also cancel out in the imaginary part of the 

amplitude where the different sign in Kobayashi-Maskawa factors for charm and 

top makes the resulting amplitude arise from scales larger than m,. 

To proceed to actual branching ratios or decay rates, we may avoid some arith- 

metic by relating the hadronic matrix element of the operator, (S,y,(l - YS)&), 

which occurs in &TV and &A, to that of the corresponding charged current opera- 

tor, (%yp(l -75)~~)~ h’ h w ic occurs in Kes decay. Then the form factors and phase 

space involved in this latter decay are automatically entered by Nature into the 

measured branching ratio for that mode. Using this, we find from the measured[241 
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branching ratio for Kes decay that 

B(K2 + 7r”e+e-) = 1.0 x lom5 (S2S3~?g)~ [(&V)’ + (&A)“] . (22) 

The factor in square brackets is shown in Fig. 6. With QCD corrections, and with 

mt between 50 and 200 GeV, it ranges between about 0.1 and 1.0. While the com- 

bination .QS~S~ enters other CP violating quantities such as E and c’, imprecisely 

known hadronic matrix elements and mt presently allow a broad range of values 

of this combination. From measurement of Kobayashi-Maskawa matrix elements, 

LQ.S~S~ 5 2.5 x lo- 3. For mt at the low end of the acceptable range (as constrained 

by B” - B” mixing), the allowed region of Kobayashi-Maskawa parameters con- 

tracts and ,QS~S~ must be quite close’71 to 10s3. More generally, a typical value 

is in this neighborhood. Putting this information into Eq. (22), we see that the 

branching ratio for 1<~ + r ’ + - from CP violation in the decay amplitude alone e e 

is around 10-ll. 

V. CONCLUSIONS 

From the results of the previous three sections, it appears that from our present 

knowledge, the three contributions to the process 1c~ + w’e+f!- could each give 

rise to a branching ratio in the lo-l1 range. With further theoretical and/or exper- 

imental work, discussed in Sec. II, it is possible that the CP conserving contribution 

might yet be shown to be well below this level. 

This is not the case for the effects of CP violation in the mass matrix and in 

the decay amplitude. Their contributions are comparable, roughly at the lo-l1 

level in branching ratio, and in general will interfere in the expression for the total 

decay rate. 

Some care must be exercised about phase conventions in calculating this in- 

terference. We have been calculating the CP violation in the decay amplitude in 

terms of what happens at the quark level, where strong interaction “penguin” di- 

agrams induce a AI = (l/2) I( + 7rr transition which has a CP violating phase. 
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The standard convention, on the other hand, where E M (2.275 x 10-3)e”r/4, starts 

from making the amplitude for K -+ ~7r real when the final state has I = 0 [as it 

would from a A1 = (l/2) t ransition]. To get to the standard convention from the 

quark basis requires absorbing a phase [ proportional to 6’ into the neutral K field, 

as described in Sec. III. As a result, in the amplitude for “indirect” CP violation, 

6 + e - it, if ]<I is small. A somewhat abbreviated expression for the branching 

ratio from all CP violating effects is then, 

B(KL -b 7r”e+e-) M { IO.76 (eiri4 -ih) [(ri <~~e~~!j]“2 

+i(+ & /2 + 1 (%)&A[} * lo--l1 , 

where we have taken into account the phase conventions mentioned above. In the 

last term of Eq. (23) we have neglected the contribution from E times the real part 

of CTA, which is less than 1% of the imaginary part of CvA. Eq. (23) indicates 

the interference of amplitudes coming from “indirect” and “direct” CP violation. 

Neglected is the fact that the two interfering amplitudes (which involve vector 

coupling to the lepton pair) can have a different dependence on the pair invariant- 

mass and the interference can then vary with this quantity. If both amplitudes 

came from short-distance effects (which we have indicated is very unlikely for 

the “indirect” CP violation), then [I’(Kl + r’e+e-)/I’(K+ + r+e+e-)]1/2 is 

negative, the interference is the same for all values of the pair invariant-mass, and 

Eq. (23) stands as written. 

Since e//c = -15.6( x 3 x 10m3, the extra piece from the change of basis 

is small, but interferes constructively with that from E. The terms coming from 

“direct” CP violation are comparable to those from the mass matrix (“indirect” CP 

violation), and we can’t give a definitive conclusion as to their relative magnitudes 

without further knowledge of A(K1 -+ 7r”f?4?-), ~2~3.~6, and mt. Nor can we give 

a statement as to constructive or destructive interference without a model for the 

long-distance effects which we suspect are inherent in the “indirect” CP violation 
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amplitude. As mt becomes larger, more of the “direct” CP violation comes through 

QUA (see Figs. 4, 5 and 6). As a result, the theoretical predictions become more 

definitive, as the QCD corrections to C’~A are very small and this contribution 

does not interfere in the expression for the decay rate with that from “indirect” 

CP violation. Even for large mt, however, it is hard to get a branching ratio that 

is more than a few times 10-ll. 

We have a major advantage over calculations of other CP violating effects 

in the K” system in that the hadronic matrix element of the relevant operators 

(Q~v and QUA) from the short-distance physics is given to us from Ke3 decay. 

There is no uncertainty here. Nevertheless, we would assign an uncertainty from 

the QCD corrections, the neglect of nonleading QCD terms, and possible “direct” 

CP violating contributions from order e2 matrix elements of &I to Qs, of 10 to 

20% for C~V, even if we knew mt precisely along with all the Kobayashi-Maskawa 

parameters. Conversely, if there were both a precise measurement of mt and of 

the KL --f 7r”@e- branching ratio that resulted in an isolation of the amplitude 

for “direct” CP violation, there would be an uncertainty of this magnitude in the 

extracted value of EQS~.S~. While not as precise as one might like, this would be 

far better than the determination from E and c’, where nontrivial hadronic matrix 

elements enter. 

There are a number of experimental observations which would help to sort 

out various contributions and their magnitudes. We conclude by briefly discussing 

some of them: 

l The short-distance generated amplitudes have a dependence on the kinematic 

variables of the final state which is identical to that in I<ls decay, with 

obvious substitutions of particle names. This allows an easy calculation of 

decay rates with cuts on final state kinematic variables, e.g., restrictions 

on mej. Comparison with observations of I(+ + w+@e-, KS + r'l+l-, 

and KL + 7r”!+e-, would help to sort out long-distance contributions from 

short-distance ones. 
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l The relative rates for I(L + roe+,- and KL + 7r”~+~u- are sensitive as well 

to the CP conserving two-photon contribution, with the factor of me that 

accompanies the A amplitude (see Sec. II) acting to enhance its contribution 

in the latter reaction in comparison to the former. 

l The direct measurement of KL + ~‘77 can be used as an input to calcula- 

_ tions of the two-photon, CP conserving contribution to KL + r”l+l-. In 

particular, one could separate the A and B amplitudes by measuring the 

Dalitz plot distributions, such as the invariant mass distribution of the two 

photons.[231 
- 

l If both CP conserving and CP violating amplitudes are present with even 

roughly comparable strengths, they will in general interfere on the Dalitz 

plot, giving rise to a large lepton-antilepton energy asymmetry? 

l The “indirect” CP violating amplitude can be obtained from a measurement 

of I(s + n°FF. Any deviation in the then measured rate for KL + 

roe+!- from the straightforward prediction involving multiplication of the 

former rate by 16 - i[l2 is then evidence for “direct” CP violation in the 

decay amplitude (assuming the CP conserving contribution has been shown 

experimentally or theoretically to be small). 

l One can imagine a full interference pattern being measured, as was done for 

the 7rr mode, where one sees both the regime of KS + a”@F decay followed 

by that for KL + 7r”e+F, with an interference region between the two 

regimes of exponential decay. This would permit not only the measurement of 

the two rates, but the phase between the “indirect” and “direct” amplitudes 

whose interference is indicated in Eq. (23). 

As of now, we have a long way to go experimentally. While recent upper 
limits I37234 are around 4 x 10V8, and are improvements by orders of magnitude on 

earlier limit sr41 we have about three orders of magnitude further improvement in 

sensitivity needed to see the standard model signal. 
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Finally, we note that in the large mt regime all the decays I(+ + T+VY, I(L + 
. 

7r”&+e- 7 and K L + ~‘VV have amplitudes which are dominated by contributions 

from the “2 penguin” and “W box” graphs. The latter two, which are CP violating, 

have comparable rates in this regime. The decay KL -+ W’VV arises almost entirely 

from “direct” CP violatior? The first of the three offers a different combination of 

Kobayashi-Maskawa parameters and the ratio of its branching ratio to that for the 

third process is a function purely of Kobayashi-Maskawa angles which is especially 

clean and free of theoretical ambiguities. 
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APPENDIX 

In Sec. IV, the leading logarithmic QCD corrections to the “electromagnetic 

penguin” were derived following the approach of Ref. 32. Here we carry out this 

calculation using an effective Hamiltonian formalism, as in Ref. 13, where the 

heavy fields are removed from the theory in successive steps, and the coefficients 

of the operators appearing in the effective Hamiltonian are determined by means 

of renormalization group equations. 

At the scale of Mw or above, the terms in the Hamiltonian are taken to be those 

in a free (no strong interactions), six quark theoryrgl Below Mw, the effects of QCD 

are included through the mixing of the effective operators using the machinery of 

the renormalization group. We first assume a succession of scales characterized by 
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the “old” hierarchy of scales: Mw, mt, mb, m, and finally p. At the end of the 

Appendix we remove the W boson and the top quark together in order to treat 

the case mt X Mw. 

After the W is treated as heavy and removed from the theory, the effective 

Hamiltonian can be expressed as: 

?t Ai(qbi(4) + h. c. , (A4 

where 

4’ - ; GYY,P - r5M [@Y”(l - Y5)431 (A.21 
f bdl - Y5)dal kprV - 75hpI) * 

Note that each of the operators 02) only involves the charge 2e/3 quark, Q; 

we do not follow the more traditional procedure [13’ of using the unitarity of the 

Kobayashi-Maskawa matrix to rewrite Eq. (A.l) in terms of operators 02’ - 02’ 

and a sum over only charm and top. Instead, we follow the evolution of the contri- 

bution from each quark to lower scales, imposing unitarity only at the end when 

just u, d, and s quarks are left in the theory. 

We recognize that Oy’ E ( 1 Q*, and that the appropriate operators 07* for 

q = u,c, t are 

Op’ 1 07 - $Qw . (A-3) 

A factor of l/a, is absorbed in the normalization of 07 to make all the elements 

of the anomalous dimension matrix be of the same order in a, (see below). At 

the end of the calculation the effective Hamiltonian will be expressed in terms of 

the operators Q* and &TV, and the factor l/a, put back into the coefficient of 

the latter operator. The operators Ok) appear only at scales above ma where the 

quark q is still extant in the theory and where they mix with Op’ through one- 

loop corrections. The operator 07 appears at all scales, and its coefficient contains 

leading logarithmic QCD corrections as well as nonleading terms coming from the 
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free quark theory above i&w. As discussed in the text, the mixing of the strong 

interaction “penguin” operators [Qs to Qs in Eq. (6)] with &TV has been neglected, 

as their effects are small. This has allowed us to truncate Eq. (A.l) with just the 

three operators Oh and 07 (rather than seven operators). 

As we go to scales p below Mw, these operators satisfy a set of coupled renor- 

malization group equations of the form: 

[D&j + y;J otq) = 0 3 7 

with a summation over j implicit, and 

2, = p-g + B(Y)-& 
a 

+ rm(s> %K * 
q 

(A.4 

(A-5) 

(q) Since the Hamiltonian is p-independent, the coefficients A, must satisfy the equa- 

tion: 

[~~ij - YTi~] A~~’ ~ = 0 , 
( > 

(A-6) 

with the boundary conditions at p = Mw given by .At’(l) = A?)(l) = 1. The 

value of A?‘(l) corresponds to the coefficient of 07 in an effective free quark 

theory at the scale Mw . In the case where all quarks are much lighter than the W 

boson, the coefficient of Op) at Mw is negligibly small compared to the leading 

logarithmic contributions to it from mixing with 02’. It can be taken to be zero, as 

was done in Ref. 13. However, for the case where mt X Mw, discussed at the end 

of this Appendix At)(l) 7 receives important nonleading-logarithmic contributions, 

which should not be neglected. 

If all the elements of the anomalous dimension matrix y are of the same order 

in the strong coupling g and the quark masses mq, the solution to Eq. (A.4) can 

be readily found by first transforming to a basis where y is diagonal, solving a set 

of uncoupled differential equations, and finally transforming the solution back to 

25 



the original basis. Although numerical values change from one region to another, 
. 

the anomalous dimension matrices, in the basis 0, , (q) O(g) and 0, +I) and above mq, 

have the general form: 

- 

(A-7) 

Below mq, all entries are zero except 77. The transformation matrices that 

diagonalize the matrix y in Eq. (A.7) are of the form: 

(Y+ - Ydh7 0 0 

T= 0 h- - Yd/Y-7 

1 1 1 
(A4 

For the “electromagnetic penguin” the anomalous dimension matrices to order g2 

are: 

g2/47r2 0 -2g2/97r2 

Y= 0 -g2/27r2 g2/97r2 . (A-9) 
0 0 -(33 - 2Nf)g2/24a2 

If we let y(o) d enote the eigenvalues of y/g2, then the solution of Eq. (A.4) takes 

the form 

C( ) T i,a Kg; (T-‘),,j A;!)(l) , 
ff,j 

(A.lO) 

with Greek indices for the diagonal basis, the factor ICwip G cys(Mw)/as(p), 

~(a) 3 24r2y(a)/(33 - 2Nf), and Nf denoting the number of quark flavors op- 

erative at the scale under consideration. For scales above the top quark mass, 

Nf = 6. 

Similar steps in scale to that outlined for Mw to mt, allow us to move from 

mt to mb, from mb to m,, and finally from m, to p, a somewhat ill-defined scale 
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. 
characteristic of a typical momentum in K decay. In consequence, the effective 

Hamiltonian at a scale p below m, is given by an expression of the form: 

- 

c+Q+ + C-Q-) + c (v;vqd E7,q 
q=u,c,t 

where 

C+ = I-$;; I$;” Kf/z5 K;;;’ (A.12) 

(A.13) 

+ &$I21 I11;:2/23 (1 _ K;;/25 
) (-6) } astmb) 

+ Kf@$f3 I~;;;” (1 - Kf;L2, 
16 

)( > 99 

+ K;;/211{t$2/23 I($/25 (1 _ K;;;“’ 

c7,c = A?)( 1) + (1 - I~;/;’ > (if) + 6 -K%) (4) } as(l4w) 

+{K$;(LK;;/““) (;)+K;:‘“(l-K;;[23) (-;)}A 

( 
1 - K;;i25 l6 

)( > 93 

+ K;;:‘21 K$2’23 (1 - K;;L25 ) (-ii) } CYstmb) 
(A.15) 
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& = A?)(l) + 

{ (1 -Gf) (i) + (1 -G!;;) (-&)}as(;w) +w 

In order to fix the boundary conditions API(l) at the scale of Mw, we require 

that the Hamiltonian of the free electroweak theory[“’ coincide with the cr, + 0 

limit of the effective Hamiltonian: 

@) + 0”’ + A?)(l) - 27i-(y+, + +/-,)a, log 

Ay)(l) - 2++, + y-&x, log (A.17) 

In addition, we must consider the matrix element of OF) to one loop order, which 

is: 

< op + o? > = 2+/+, + y-,)as log (A.18) 

Equations (A.17) and (A.18), while written for the cr9 + 0 limit, are illustra- 

tive of general properties with respect to ,V dependence, renormalization-scheme- 

dependent matrix elements, and subleading terms in ‘N,ff. Although these points 

are only of academic interest (see below) for our calculation of the contributions 

to “direct” CP violation, we note them here for completeness. First, the ~1 de- 

pendence explicitly cancels between Eqs. (A.17) and (A.18), as it should. Second, 

there are possible subleading terms on the right-hand side of Eq. (A.18) which 

depend on the renormalization scheme, as do subleading terms in Xeff. Since we 

use the anomalous dimensions and beta function calculated in leading order we do 

not consistently predict subleading terms in the expansion of l-teff; consequently 

only the leading logarithmic terms in Eq. (A.18) are meaningful. The subleading 

terms are introduced only as boundary conditions in A?)(l), which are obtained 
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. by comparing the free Hamiltonian with the limit of the effective Hamiltonian in 

Eq. (A.17): 

A?)(l) = Egq(M&) + %og 2 , 9n q’ (A.19) . 

where the @zq( MC) are given in Eq. (8). 

While the Hamiltonian separates into three pieces, for q = u,c and t, there 

are cancellations among these terms due to unitarity of the Kobayashi-Maskawa 

matrix. In particular, v,*,V&+V~~V~d+Vt~Vtd = 0 implies that the “electromagnetic 

penguin” contributions to 07 due to mixing from O* cancel in the region between 
- Mw and mt. Finally, but very importantly, the contributions to “direct” CP 

violation in KL + 71-‘[+[- come from Im’FI. Since vz*,Vud is real, the contribution 

from the “electromagnetic penguin” are restricted to the region between mt (or 

Mw, if mt X Mw) and m,, and the matrix elements of Of) are irrelevant [as are 

subleading, renormalization-scheme-dependent constants in A?)( 1) 1. 

The above expressions were developed for rni << M$. The case where 

mt 2 Mw can be easily obtained by simply letting Icwlt + 1, Kt/b + IcW/b, 

and as(mt) + as(Mw) in Eqs. (A.ll) to (A.16) and dropping the second term 

on the right-hand side of Eq. (A.19) for q = t. Using the unitarity relation of 

the Kobayashi-Maskawa matrix, the terms involving. V,*,Vud in Eq. (A.ll) can be 

absorbed into the other terms, casting the expression for the effective Hamilto- 

nian into a form identical to Eq. (5) in the text; then the coefficients C -gi(P2) = 

c,,i - CT,, can be read off and proven to agree with the expressions in Eqs. (17) 

and (19) of Sec. IV. 
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FIGURE CAPTIONS 

1) Three diagrams giving a short distance contribution to the process I( + 

7r@e-: (a) the “electromagnetic penguin;” (b) the “2 penguin;” (c) the 

“W box.” 

2) Diagrams involving I(2 + n’yy + r”e+e- which give a CP conserving 

contribution to I(L + 7r”k’+e-. 

3) Lq’? = qg - c$, as a function of rnt without (dashed curve) and with 

(solid curves) QCD corrections for RQCD = 100 and 250 MeV. 

4) Contributions to the coefficient ~TJJ from each of its components, the “elec- 

tromagnetic penguin,” the “Z penguin” and the “box” diagrams and the 

total e+rv with QCD corrections (solid curves) with AQCD = 150 MeV, and 

the total coefficient without QCD corrections (dashed curve) as a function 

of ml. 

5) Contributions to the coefficient C,A from the “Z penguin” and “box” dia- 

grams as a function of mt. 

6) The quantities (&v)” and (ETA)~ as a function of ma, and their sum, (e~v)~+ 

(&A)~, with (solid curve, AQCD = 150 MeV) and without (dashed curve) 

QCD corrections, which enters the branching ratio induced for A’L + 7r”l+e- 

by CP violation in the decay amplitude. 
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