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ABSTRACT 

In this report we discuss some general optics principles and scaling laws that 

have been useful in guiding the design and operation of the Final Focus System 

for the Stanford Linear Collider. Included are expressions for the minimum pz and 

,8,* that can be expected for the present SLC design at the interaction point as a 

function of beam emittance. 
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1. Introduction 

- 

One of the unique features of a linear collider is the Final Focus System (FFS) 

whose function is to demagnify a linac beam, of finite momentum spread, and 

bring it to an achromatic focus of the smallest possible dimensions in preparation 

for high luminosity beam-beam collisions. 

This report discusses some general principles applicable to the SLC round 

beam design and provides some simple scaling laws that influenced the choice of 

the initial design parameters. 

For purposes of discussion, we show in Fig. 1 a block diagram of the SLC 

Final Focus System consisting of three main subsections: a Beam Matching Sec- 

tion, a Chromatic Correction Section (CCS), and a Final Transformer (FT). Our 

discussion addresses the choice of the design parameters for the CCS and of the 

FT. 

The principal problem to be solved in the optical design of a Final Focus 

System is the minimization of the chromatic distortions introduced by the final 

lens system nearest to the interaction point (I.P.). If the beam exiting the linac 

were monoenergetic then the FFS design would be relatively easy. It would consist 

of a simple first-order optical system demagnifying the linac beam to the small 

size needed for collisions at the I.P. The ultimate limitation would then be from 

the residual higher-order geometric aberrations of the optical system and/or from 

emittance growth caused by synchrotron radiation energy losses in the lens system. 

Unfortunately particle beams from linear accelerators are not monoenergetic, 

but have a finite momentum spread. So it usually becomes necessary to compensate 

for the chromaticity of the FFS 1 a tt ice. There are several factors that influence 

the solution of this problem. 

1. A reduction in the momentum spread or of the emittance of the linac beam 

reduces the magnitude of the problem. 

2. The chromatic distortion of a FFS lattice is a function of the distance, I*, 

of the first lens from the I.P. The closer the lens system is to the I.P. the 
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Fig. 1. A Block Diagram of the SLC Final Focus System. 
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3. 

- 

smaller the chromatic distortion. Hence strong, compact lenses near the I.P. 

are an asset to solving the problem. However the emittance growth caused 

by quantum fluctuations from the synchrotron radiation energy losses in the 

interaction region lens system will ultimately limit the smallest spot size that 

can be achieved. 

Sextupoles in combination with dipoles (to provide dispersion) can be used 

to cancel the chromaticity of the lattice. Sextupoles introduced as pairs, 

with the elements of each pair separated by a minus unity optical trans- 

form, do not generate second-order geometric aberrations. Furthermore, if 

the chromatic correction section possesses repetitive symmetry and has a 

total transformation matrix of unity, then a potentially serious second-order 

chromatic aberration, Tlss = (~16~) is eliminated. However, there are other 

problems: The dipoles introduce emittance growth via synchrotron radiation. 

This complication imposes serious constraints on the location, strengths, and 

lengths of the dipoles so as to minimize this effect. In addition, the finite 

length of the sextupoles and optical cross-coupling between families of sex- 

tupoles generate higher-order geometric and chromatic aberrations which 

limit the ultimate beam spot size that can be achieved. 

In summary, the basic problem in a final focus system design is to find a 

satisfactory balance among all of these competing factors so as to arrive at the 

maximum possible luminosity. The purpose of this paper is to derive some simple 

scaling laws, applicable to the SLC design, that provide a guide to the choice of 

the design parameters. 

In Fig. 2 we show a detailed schematic diagram of the Stanford Linear Collider 

(SLC) Final Focus System as a representative example to illustrate the principal 

components and subsystems of a typical design. The triangular objects represent 

dipoles, the lens shaped objects are quadrupoles, and the hexagonal objects are 

sextupoles. The diamond shaped objects are skew quadrupoles used to minimize 

z-y cross-plane coupling at the interaction point. 

In this design the CCS possesses repetitive symmetry and a total transforma- 
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Fig. 2. A Detailed Schematic Diagram of the SLC Final Focus System. 
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tion matrix equal to the unity matrix. The sextupoles are inserted as pairs, with 

the elements of each pair separated by minus the unity matrix. The system is also 

designed to have a beam envelope waist, in both the II: and y transverse planes, 

positioned at the center of dipole B3 in the CCS and at all positions that are a 

multiple of r phase shift downstream of this position, such as at the centers of B2 

and Bl. All of these factors are important in order to minimize the aberrations of 

the system. 

2. Definitions and Notation 

For the theoretical discussion, we use the six dimensional phase space param- 

eters defined by the TRANSPORT ‘y2 notation; namely 

‘Xl 

x2 

x3 
= 

x4 

x5 

26 

X 

X’ 

Y 

Y’ 
1 

6 

(1) 

where S = (p - po)/po and I is the path length difference. 

The first, second, and third-order optics is represented by the R, T, and U 

matrix elements as follows: 

x; = &RijXj + 2 Tijk~jxl; + f: uijkl XjXkXl + . . . (2) 
j=l j,k=l j,k,l=l 

For a system possessing midplane symmetry, the R matrix has the form: 
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R= 

R11 R12 0 0 0 Rl6 

R21 R22 0 0 0 R26 

0 0 R33 R34 0 0 

0 0 R43 R44 0 0 

R51 R52 0 0 1 R56 

0 0 0 001 

(3) 

The initial objective in the SLC design was to find a way of eliminating all of 

the second-order geometric and chromatic aberrations, Tijky and be left with only 

the appropriate linear terms and the residual third- and higher-order aberrations. 

These residual aberrations combined with synchrotron radiation emittance growth 

and constraints imposed by the SLAC site then determined the minimum spot size 

that could be achieved at the interaction point. 

3. Chromatic Aberrations 

We use the Courant-Snyder notation /3, y and o to describe the transformation 

of a phase space ellipse from a position 0 to a position 1 in a beam transport line. 

,Br at position 1 may be expressed as a function of the R matrix between position 0 

and 1 and the values of the Courant-Snyder parameters ,Bo, tug and yo at position 

0 via the equation2 

h = Rf, PO - 2 Rll R12 a0 + RT2 y. 

where 

If we assume an upright ellipse, i.e. tug = 0, at the beginning of the system, then 

the equation for ,Br simplifies to 



01 = R;,po + p 
0 

(4) 

We now define the matrix elements Rll(S) and R12(S) for the x plane as, 

dRl1 1 d2R11 2 
R1l(S) = Rdo) + -jg- 6 + syg- 6 + . . . = Rll(0) + Tl16 s + i-24166 ~2 + . . . 

dR12 1 d2R12 2 
R12(S) = R12(0) + x6 + s-$-$- s + . . . = R12(0) + Tl26 6 + Ul266 b2 + . . . 

(5) 
where the partial derivatives are evaluated for 6 = 0. R11(0) and Rlz(O) are the 

values of the matrix elements for the central momentum po. ,f?,* at the I.P, as a 

function of momentum, is then expressed by the equation 

P;(S) = R:,(b)/9, + v. 

,& is the value of ,& at the beginning of the FFS, and R11 and R12 are matrix 

elements measured from the beginning of the FFS to the I.P. We assume that PO 

is independent of 6. 

Ideally it is desired that ,8,* and ,8,* be independent of momentum. But, in 

practice, it is only possible to correct to some order in 6. For the SLC, where the 

sextupole families are interlaced, the system is corrected to second-order in the 

chromatic and geometric aberrations and the residual terms, limiting the perfor- 

mance of the system, begin with the third-order aberrations. 

If, as in the SLC, the design is based on the use of telescopic modules213, as 

illustrated in Figs. 3 and 4, then for the z plane we have: 

R12(0) = 0 because of point to point imaging. 

T116 21 0 if the telescopic modules are symmetric as in Fig. 3. 
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Fig. 3. A Thin Lens Telescopic Transformer. 
- 

Fig. 4. Telescopic Transformers using Doublets and Triplets. 



Rll(0)= th e d emagnification in the x plane from the beginning of the FFS to 

the interaction point, and Tr26 can be made to vanish by the use of sextupoles. 

Then, for the x plane, the dominant terms in the expansion become: 

&l(S) = &(O) and &2(J) - ul266 6:. (7) 

Substitution into EQ. (6) yields 

P,‘(4 21 P,*(O) + 
[Rll(O) ul266 &;I2 

P,‘(O) * 
(8) 

- 

where p,*(O) = R:,(O)@ 0 is the monoenergetic size of ,Bz: at the I.P. and 

[Rll(O) umis] is th e magnitude of the dominant residual chromatic distortion in 

the x plane of the FFS. It should be noted here that if the entire length of the final 

focus system is scaled with I* then the residual chromatic distortion, [Rll(O) Ul266], 

also scales linearly with I*. Similar results occur for the y plane optics. 

We arbitrarily define the momentum bandwidth of the FFS as the value of 

S, = 625 for which /3(S) grows by 25 percent, i.e. 

p(S2s) = 1.25p*(O). (9) 

Substituting into Eq. 8 we have for the x plane 

P;(o) -2&(O) ul266 b:, (10) 

from which the momentum bandwidth in the x plane is 

Similarly for the y plane the result is 

P;(o) 21 2R33(0) u3466 $, (12) -i 

with a corresponding momentum bandwidth in the y plane of 

(13) 

Where Ur266 and us466 are assumed to be the dominant residual aberrations in 
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the x and y planes respectively. To assure that this is the case, we now discuss 

the geometric (monoenergetic) aberrations and a mechanism of controlling their 

magnitudes relative to the dominant chromatic terms. 

4. Geometric Aberrations 

We define geometric aberrations as those which are associated with the mo- 

noenergetic trajectories in a beam transport system, i.e. for those trajectories 

having a momentum ~0. 

If the system is designed using sextupole pairs, separated by a minus unity 

optical transform as illustrated in Figs. 5 and 6, then all second-order geometric 

aberrations, introduced by the sextupoles, will vanish at the exit of the chromatic 

correction section, and the residual geometric aberrations will all be of third-order 

and higher. We note that separated function quadrupoles do not generate second- 

order geometric aberrations. 

The magnitude of the residual geometric aberrations is a non-linear function of 

the betatron amplitudes that trajectories, having a momentum po, experience as 

they traverse the optical system. Similarly, the magnitude of the chromatic aber- 

rations is a non-linear function of the amplitudes of the 08 momentum trajectories 

as they traverse the system. 

So it can be expected that the residual geometric and chromatic aberrations will 

be of comparable importance when the monoenergetic excursions of the beam and 

the chromatic excursions are approximately equal in magnitude. 

The controlling factor establishing this balance for the SLC design is the 

strength of the first dipole used in the Chromatic Correction Section (CCS). To 

quantify this concept we equate the monoenergetic angular spread of the beam 

exiting from the first CCS dipole to the chromatic angular spread created by the 

dipole. If we assume, as is the case in the SLC design, that there is a beam enve- 

lope waist in both the x and y planes at the center of the dipole, then this equality 

of the geometric and chromatic aberrations occurs when 
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Fig. 6. Interlaced Sextupole Families for Chromatic Corrections. 
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(14) 

where Crg is the bending angle of the dipole, as illustrated in Fig. 7. E, and cy 

are the beam emittances in the x and y planes respectively, 15, is the momentum 

bandwidth in the x plane and ,BZo and &D are the values of the ,B functions at the 

center of the CCS dipole. Note that only S, and not S, appears in Eq. 14. This 

is because the SLC final focus system is designed with dispersion in the x plane 

only. 

In the SLC final focus system, the most important residual x plane aberrations, 

as determined by TRANSPORT ‘, are the third order terms: ur266, ul446, Ul222 

and ur244. It is also found from TRANSPORT simulations that 
- 

Ul266 = (xl x’J2) (15) 

is independent of the magnitude of the bending angle CYD. Another, but less 

important chromatic aberration is 

ul446 = (xl y’2h), 

whose magnitude varies approximately as ~/LYD. 

The important residual geometric aberrations in the x plane are 

u1222 = (XI x’3) and ul244 = (XI &‘2)- 

(16) 

(17) 

whose magnitudes vary approximately as l/a&. 

So we observe that the last three aberrations may be suppressed relative to the 

dominant chromatic aberration, ur266, by just increasing the magnitude of the 

CCS dipole bending angle CYD. However, as will be discussed below, there is a 

practical limit to the maximum size of CUD that is allowed because of quantum 

fluctuations coming from synchrotron radiation energy losses in the dipoles. 
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Fig. 7. Arrangement of Dipoles in the Chromatic Correction Section. 
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Similar residual chromatic and geometric aberrations occur in the y plane 

optics. 

If we rewrite Eq. 14. in the form, 

sp p Ex N 54 
P 

(18) 
xDQ 5 PyD a”D 

and define the monoenergetic demagnifications Mx and My of the final telescopic 

transformer( FT) as 

then it follows that 

(19) 

Substituting Eq. 19 into Eq. 10, we conclude that the first-order monoenergetic 

beta function at the interaction point in the x plane is given by the expression 

P,*(O) 215 . [2Ex &l(O) hxl~, (20) 

and from Eq. 11, it follows that the momentum bandwidth in the IC plane is 

i 
6, N 1 ’ (21) 

From Eq. 19 we conclude that the monoenergetic beta function in the y plane is 

Kp) N [ $1 2 * (z) * Pm 
and from Eq. 13, we obtain the momentum bandwidth in the y plane 

s, N 
P;(o) + 1 2R33(0) u3466 * 

(23) 

P,*(O) and PiJ(O), as expressed by Eqs. 20 and 22, are the approximate values 

of the first-order monoenergetic beta functions at the interaction point when the 
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higher-order geometric and chromatic aberrations are approximately equal in mag- 

nitude. The corresponding first-order spot sizes o;(O) and o;(O) are then given by 

the equations 

(XX> 

If we set iklx = My, which it is for the present SLC design, then it follows from 

the above equations that 

- = &P) EY qo) - = - 
4 (0) P,‘(O) Ex 

w> 

One of the consequences of Eq.(YY) is that the first-order angular spread of 

the beam at the interaction point is the same in the z and y planes, independent 

of the ratio of the z and y emittances. i.e. 

o;= J/ = J& =G 

Substituting Eq.(20) into (ZZ) it is readily concluded that 

2 &l(F) ul266 .I 
It is also interesting to note that 

(-w 

1 h 
(AA) 

1 
2. (24) a;(o) . a;(O) 21 % . [2 6x Rll(o) Ul26t 

The total spot size in each plane may then be calculated by folding the first- 

and higher-order effects together. The smallest total spot size that is achievable 

may be found by varying the first-order p,“(O) and p,*( 0) around the above values 

until a minimum total spot size is found. This exercise is easily done using a ray 

tracing program such as TURTLE 6. Obviously the minimum total spot size will 

be somewhat greater than the first-order size calculated by the above equations. 

Typical examples for the SLC are shown below in Figs. 8 through 11. 
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Within the space limitations of the SLAC site and with conventional room tem- 

perature quadrupole triplets, the design values applicable to the Mark11 detector, 

. for the parameters appearing in the above equations are the following: 

I* = 2.82 meters, Mx = My = l/4, CXD = 1157. 

For the North final focus system (Electrons) 

[Rll(o) Ul266] ? 354 meters [R33(0)U3466] ? 159 meters 

and for the South final focus system (Positrons) 

[Rll(o) ul266] N 429 meters [fl33(0)U3466] N 169 mete?-.5 

- 
as calculated from third-order TRANSPORT. 

For the SLD detector superconducting quadrupoles will be used and the pa- 

rameters change to the following for the TRANSPORT file called SUPlD FFS: 

I* = 2.21 meters, A!fx = My = l/5, erg = l/57, and 

[Rll(O) Ul266] N 236 meters [R33(0)U3466] 21 167 mete?-.5 

4. Emittance Growth in the Chromatic Correction Section Dipoles 

As stated above there is a practical limit to the maximum size of the dipole 

bending angle erg. This is imposed by the emittance growth that results from 

the quantum fluctuations in the synchrotron radiation energy losses as the beam 

traverses the CCS dipoles. The emittance growth is a very sensitive function of 

the beam energy and of oD. For each dipole it can be expressed in the following 

form: 

where K is a numerical factor that depends upon the beam parameters at the 

dipole4, E is the beam energy in GeV and LD is the length of the dipole in 
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meters. K typically falls in the range of 4 to 12 depending upon the magnitude 

of the dispersion function within the dipole. However the more important point is 

that the emittance growth varies as the fifth power of the bending angle CUD. 

So it is necessary to limit the size of ag in order to keep At sufficiently small. 

Because of the large exponent in Eq. 24 this will typically occur somewhere in the 

range of 

For the SLC design, where po = 50 GeV, the bending angle CrD of each dipole in 

the CCS was chosen to be approximately l/E, i.e. one degree. This was large 

enough to significantly reduce, but not eliminate, the geometric aberrations listed 

above. 

5. Emittance Growth in the Interaction Region Quadrupoles 

K. Oide5 has shown that the quantum fluctuations occuring in the last 

quadrupole of a final focus system represents another limit on the minimum size 

of the beam that can be attained at the interaction point. This is a function of 

the normalized emittance, EN, of the beam and may be expressed as follows: 

0* cli 3.5 X 10-4(c~)$ meters (27) 

where cN = y c. 

This result is of greatest interest at high energies and for flat beam final focus 

systems, where the beam size in the y plane is much smaller than in the z plane. 

For the SLC system it is not a problem because the limiting beam size calculated 

from Eq. 19 is 0.2 microns, which is significantly smaller than the theoretical round 

beam design size of 1 to 2 microns. 

6. Examples 

In Figs. 8 through 11 we show the result of computer simulations, using 

TURTLE’, for the values of a:(&) and a;(S), as a function of momentum, at the 



. 

interaction point. The plots using the symbols X for the z plane and 0 for the 

y plane show the effects of the higher-order geometric and chromatic aberrations. 

These results are representative of what is to be expected with real beams in the 

control room. The single points, represented by the asterisk symbol at S = 0 are 

the calculated values of a;(O) = dm and a;(O) = JP,:(o) cy using Eqs. 20 

and 22. 

- 

In Fig. 8, we show the predicted beam size, as a function of momentum for the 

Mark II detector for a beam emittance ex = cy = 3 . 10-l’ meters. Fig. 9 shows 

the expected results when E, = 9.10-10 meters and cy = 5.10-10 meters. Fig. 10 

shows the predicted beam sizes for the SLD detector for the design emittance in 

the 2 and y planes of 3 . 10V1’ meters. Fig. 11 is the result when E, = 9 . 10-l’ 

meters and cy = 5 . 10-l’ meters. 
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FIG. 8 SIGMA(m) FOR THE AS BUILT SLC FINAL FOCUS SYSTEM 
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FIG. 8B SIGMA(n) FOR THE AS BUILT SLC FINAL FOCUS SYSTEM 
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FIG. 9 SIGMA(n) FOR AS BUILT SLC FINAL FOCUS SYSTEM 
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APPENDIX 

7. Scaling Laws for Triplets and Doublets in the Interaction Region 

In the SLC design the last lens module nearest the interaction point is a sym- 

metric quadrupole triplet3. The reason for this is that the system is designed 

to produce round beam spots at the I.P. If a flat beam spot is desired then a 

quadrupole doublet is more appropriate. It is useful to have a simple triplet or 

doublet module as a starting point for a design that is easily scaled to different I* 

values or to different energies. Two such modules are illustrated in Figs. 12 and 

13. 

The symmetric triplet module illustrated in Fig. 12 has been optimized to 

provide the maximum I* for a given total length LT. It has also been designed 

to have the same chromatic distortion in the z and y planes in anticipation of a 

round beam spot. The optical fitting condition for the module is shown by the R 

matrix in Fig. 12 and corresponds to simultaneous point to parallel and parallel 

to point imaging, i.e. a 90 degree phase shift in both planes. If one desires to scale 

the system keeping the same optical constraints, then the kl of every element of 

the system should remain constant, where k2 = &/aBp, I is the length of the 

element and &/a is the field gradient. We may therefore express a scaling law for 

the triplet in the following form: 

1 Bo 5- 
LT - [ 1 >E 

aBp -3 (28) 

Lz where LT is the total length of the module and I’ N 4 . 

The numerical constant on the right side of the equation has been determined 

empirical by fitting the optical constraints using TRANSPORT ‘. The inequality 

sign allows for the possibility that one may not choose to scale the separation 

distance, d, between quadrupoles but instead fix its value to the minimum distance 

that is acceptable for a good engineering design. Our model assumes that the field 

gradients in all of the quadrupole elements are the same but the lengths of the 
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TRIPLETS (Round Beams) 
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Fig. 12. A Symmetric Quadrupole Triplet Module. 
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elements are allowed to vary during the fitting process. 

A similar scaling law for the doublet has the form: 

1 Bo z 
LD - [ 1 >A! 

aBp -3 (29) 

where LD is the total length of the doublet module, and I* N LD 3 . 

This module is shown in Fig. 13 along with the optical constraint used to 

fit it. It differs from the triplet in that only point to parallel imaging is imposed 

in each plane since lack of left right symmetry does not allow the possibility of 

simultanous point to parallel and parallel to point imaging in the doublet. 
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DOUBLETS (Fiat Beams) 
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Fig. 13. A Quadrupole Doublet Module. 
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