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ABSTRACT 

In this paper, we study multibunch beam breakup, with emphasis on theoreti- 

cal methods applicable to the design of a linear collider with center-of-mass energy 

near 1 TeV. One way to significantly improve the luminosity and energy transfer 

efficiency of such a collider is to accelerate a train of bunches rather than just 

a single bunch each time the linac accelerating structure is filled with a pulse of 

RF energy. For the required bunch charges and intensities, the transverse insta- 

bility due to the wake fields produced in the accelerating structure is very severe 

unless measures are taken to control it. Therefore, we examine the effects of sev- 

eral methods of reducing this instability: (1) use of damped a.cceleration cavities, 

(2) placing th e b unches near nodes of the transverse wake fields produced by pre- 

ceding bunches, (3) introducing a spread (over different cells of the accelerating 

structure) of the individual mode frequencies in the transverse wake field, and 

(4) varying the strength of the transverse focusing from bunch to bunch, in such a 

way as to partially cancel the effects of the wake fields from preceding bunches. We 

present examples illustrating the effectiveness of these cures, using realistic linear 

collider design parameters. 
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1. INTRODUCTION 

+ The design of the next generation of e e - linear colliders, with center-of-mass 

energy between about 0.5 and 2 TeV, is based upon extensions of conventional 

RF technology to frequencies above 10 GHz. Even at these frequencies, the power 

requirements are high, and it is essential to use the available RF energy as effi- 

ciently as possible. Furthermore, the luminosity required by high energy physics 

experiments at these energies is close to 1O34 cmm2 set-‘. For these reasons, it is 

attractive to accelerate a train of bunches rather than a single bunch on each RF 

fill, as it is then possible to extract a higher fraction of the available energy and to 

obtain a luminosity several times higher than in the single bunch case. 

However, the passage of intense bunches through a high-frequency accelerating 

structure leaves behind strong wake fields that influence subsequent bunches in 

the train. The longitudinal wake fields produce a spread in the energies of the 

bunches (beam loading), and one must arrange the filling time and bunch spacing 

to keep the bunch-to-bunch energy variation sufficiently small.’ The transverse 

dipole wake fields are responsible for the cumulative beam breakup instability, 

which is extremely severe in the cases of interest here, unless measures are taken 

to alleviate it. Each bunch in a closely-spaced train feels the transverse dipole 

wake produced in the accelerating structure when preceding bunches are slightly 

off-axis. The spacing between adjacent bunches is only a few RF wavelengths, and 

the transverse dipole wake in a conventional accelerating structure continues to ring 

for many multiples of this spacing. Thus, the transverse amplitudes of oscillation of 

the bunches can grow rapidly as they proceed through many acceleration sections. 

Regenerative beam breakup a3 is a form of beam breakup that can occur when 

there is a buildup of deflecting fields in a single acceleration section. This buildup 
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of the fields is due to a “feedback V of energy due to backward-wave components of 

the fields and/or reflections from the end of the acceleration section. However, the 

threshold current for regenerative buildup is well above the actual beam current, 

for the parameters regimes in which we are interested here. 

The cumulative beam breakup instability in linacs was first observed in the 

SLAG linac in 1966: and the first theoretical studies were carried out during the 

V,6 next few years. A number of subsequent works have treated regimes of the beam 

breakup differing in various essential respects from that considered here. 7-16 The 

approach taken by many of these authors, which is most useful for a long beam, 

is to make a discrete or continuous Laplace transform on the equations of motion 

(depending on whether bunching of the beam and/or discreteness of the RF cavities 

are taken into account). The Laplace inversion is then performed analytically using 

asymptotic methods, to obtain results valid in the steady state limit, in which the 

bunch number is approaching infinity, or the asymptotic transient limit, in which 

the blowup has progressed significantly. 

Since we are interested in a beam consisting of a relatively short train of 

bunches, it seems more transparent to remain in the time domain. Furthermore, 

we wish to know how much transverse blowup of the beam there will be, even when 

it is only a small factor. We take two different approaches to calculating it. The 

most general is to numerically integrate a Green function integral representation 

for the transverse offset of each bunch. The other approach is to derive simple 

analytic models that illustrate the characteristics of the blowup in some limits of 

interest and can be compared with the more precise results based on the Green 

function integrals. 

One such limit occurs when the wake is so strongly damped that at each bunch 



- 

only the wake from the immediately preceding bunch need be taken into account. 

For this case, a very simple analytic model is derived and is shown to be in good 

agreement with the more general approach. 

In general, the transverse wake consists of a sum of modes of different frequen- 

cies. However, the transverse wake in the type of accelerating structure we shall 

consider tends to be strongly dominated by its fundamental dipole mode. Thus 

we present a simple analytic model that is valid for bunches placed close to the 

zero-crossings of such a single-mode wake field. 

Several possible methods for alleviating the transverse instability will be stud- 

ied in this paper: 

1. Damping the transverse dipole modes by means of axial slots through the 

irises of the RF structures, with the slots coupled to radial 
17 

waveguides. 

2. Tuning the frequency of the fundamental transverse dipole mode to place the 

bunches as near as possible to zero-crossings of the wake fields. 

3. Using an RF accelerating structure in which the frequencies of corresponding 

transverse dipole modes differ from cell to cell, resulting in a reduction of the 

effective Q of each mode. 

4. Using time-varying quadrupoles to introduce a small change in the focusing 

for different bunches, so that they are not in resonance with each other. 

Multibunch beam breakup in very high energy linacs has been previously 

treated by Yokoya in Ref. 10. He obtains approximate analytic results for the case 

of a single deflecting mode or several deflecting modes whose frequencies (modulo 

the bunch frequency) are sufficiently well separated. The bunches are assumed 

to be not too close to an integer number of half-wavelengths of the (single-mode) 
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. wake field frequency. Decker and Wang in Ref. 11 have also studied the cumulative 

beam-breakup for a single deflecting mode and for two modes of slightly different 

frequency. Yokoya has studied the use of a spread in the transverse mode fre- 

quencies as a cure for the breakup (i.e., the third cure in the above list), but this 

method by itself is not sufficient to solve the problem in the high-frequency linacs 

under consideration. We shall emphasize instead the use of damped cavities and 

pla.cing the bunches near wake field zero-crossings. 

The starting conditions for the transverse instability can be initial offsets of 

one or more bunches, or can arise from misalignments of the RF cavities or focusing 

elements. In this paper, we shall consider only the breakup due to bunch offsets 

at the beginning of a linac. Misalignment effects in linacs have been discussed by 

other authors in Refs. 8 and 10. 

hiIultibunch instabilities are a potential problem in other linear collider sub- 

systems besides the main linacs. In the injector accelerators and preaccelerators, 

beam breakup is not as severe as in the main linacs, but it is still an issue in their 

design.18 Damping rings suitable for a linear collider -utilizing multibunching are 

1g’20 also being designed. The control of coupled-bunch instabilities in such rings 

is addressed separately from the present 
21,22 

work. 

The organization of the paper is as follows. First, the theory used to calcula,te 

the transverse beam blowup is treated, namely the general Green function integrals 

and the simple models for limiting cases of interest. Next, some possible methods 

of curing the instability are discussed. Finally, examples for the main linacs of 

a TeV collider are given, to illustrate the theory and to show the effectiveness of 

the proposed cures. 



2. MULTIPLE BUNCHES WITHOUT ACCELERATION 

For reasons that will become clear shortly, it is useful to begin by examining 

beam breakup without acceleration. We assume an equal charge of N electrons in 

each bunch and uniform spacing .!? between adjacent bunches; the bunch spacing 

! is of course an integer number of RF wavelengths. We use the smooth-focusing 

apprbximation Ln(s) = 1//3,(s) for th e f ocusing function of bunch n, where Pm(s) 

is an average beta function which, however, may vary slowly with s. 

The bunches are considered to be rigid macroparticles. Single bunch beam 

blowup is a separate question and can be dealt with using different techniques. It 

is controlled by opening the irises of the structure, by short bunch lengths, and by 

using BNS damping 
23 

to compensate the wake effects. In this paper, we shall only 

be concerned with the longer range wake fields, which couple each bunch to t,he 

bunches which follow it. 

Although we are interested here in the dynamics of a train of rigid bunches, it 

is useful to begin by looking at a treatment of single-bunch beam breakup, in which 

the structure of the single bunch is modelled as two macroparticles, representing 

the “head” and “tail” of the bunch. The case of ?z bunches is a generalization of this 

simpler problem, when each of the n bunches is regarded as a rigid macroparticle. 

The standard treatment of single-bunch beam breakup using two macroparti- 

cles 24-26 starts from the equations of motion 

xy+ kfx1 = 0 (24 

x; + k;x2 = Ne2WP) x1 
E ’ (2.2) 

Here, x1 and x2 are the transverse displacements of the two bunches (assumed to 
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be in a single plane), E is the energy of the electrons in the bunches, and primes 
. 

denote derivatives with respect to longitudinal distance s. The bunch spacing is 

denoted by !, and l4’~(f!) is the transverse dipole wake function at the second bunch 

due to the first bunch. The wake function I471 is a sum of modes of the following 

form (Ref. 26): 

W_L(Z) = --$ C $f sin(K,z)e-Kmr/2Q’ , 
m 

where 
z = distance behind exciting bunch 

I--, = wm/c = wavenumber of mode m 

Qm = quality factor of mode m 

Km = loss factor of mode m at the iris [V/Coul/cell] 

p = cell length 

(2.3) 

a = iris radius . 

The units of W_L(Z), the wake function per unit length, are [V/Coul/m’]. The 

wake function W_L(Z) is multiplied by the charge and transverse displacement of 

the exciting bunch to get the wake field a distance z behind that bunch. Note that 

to include the effect of the finite length of a Gaussian bunch, each term in the sum 

over m in Eq. (2.3) should be multiplied by the factor e-Kkuz, where crZ is the 

rms bunch length. We do not explicitly include these factors, since we assume that 

the modes included in the long-range wake have wavelengths much longer than the 

bunch length. 

Suppose the focusing is the same for both bunches, that is, kl = k2 = k. Then 

if xl(s) = aleik9 and x2(0) = al, the solution 22(s) for the second bunch satisfies 

x2 - Xl = Ne2wJ-(e)seiks 

al 2ikE (24 



Note the linear growth of the envelope of the difference 22 - xl with longitudinal 

distance s. 

Now suppose that the focusing of the two bunches is made slightly different, 

for instance by using time-varying quadrupoles. If kl = k and k2 = k + Ak, with 

Ak < k, then 

x2 - Xl ~ 1 _ Ne2Kt.(4 

2EkAk I 

2i sin(Al;s/2) ,i(k+(AkP)b . (2.5) 
a1 

In this case, the envelope beats with wavelength 4n/Ak instead of growing linearly. 

If the coefficient in front is made zero by the proper choice of Ak, then there is no 

growth of the transverse amplitude of the second bunch. 

As another example, we may consider the case where the two bunches start 

out with equal but opposite offsets, namely .rl(O) = -x2(0) = al. This could also 

be regarded as a simple model for a bunch that is “crabbed” so that its head and 

tail start on opposite sides of the linac axis. Then, instead of Eq. (2.4), we obtain 

x2 -x1 = Ne2wJ-(e)s _ 2 ,iks 

2ikE 1 , al (2.6) 

and, instead of Eq. (2.5), 

52 - Xl M 
Ne2Wl(l) 

a1 
2cos(Aks/2) + 2EkAk 2i sin(Aksl2) 

I 
ei(k+(Ak/2))s . (2.7) 

In this approach, acceleration has not been taken explicitly into account; the 

energy E of the bunches has been assumed constant. However, we shall see that 

for a particular choice of focusing function, we can directly use the results obtained 

from the equations of motion without acceleration if the variables are interpreted 
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appropriately. Thus, we proceed to the case of n bunches without acceleration. The 
. 

equation of motion for the transverse displacement of bunch n (n > 1) ignoring 

acceleration is 

x; + k;x, = f&) , (2-S) 

where the driving term is 

. (2.9) 

We look for a solution of the form x,(s) = an(s)eitns, which leads to 

ai + 2ik,uL = fn(s)eSikns . (2.10) 

Assuming the variation of a, with s’ is sufficiently slow, we may neglect the ai 

term. Solving for a, then yields 

3 

an(s) = anto> + & 
J 

fn ( s’)e-ikns’ds’ , 

0 

so that the solution for x, is given by 

(2.11) 

x,t(S) = Wl((n - j)P)rj(s’)ds’ 
I 

e ik,s . (2.12) 
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i 3. MULTIPLE BUNCHES WITH ADIABATIC ACCELERATION 

Taking acceleration into account, the equation of motion for x, is 

where we define 

(3.3) 

Here m. is the rest mass of the electron, and y is the usual Lorentz factor E/me”. 

The acceleration is assumed to be linear: y = yo + Gs, with G a constant. We 

assume the smooth focusing functions kn(s) vary as the inverse power p of the 

energy: 

P 
k. . 

Then, the WKB solutions of the homogeneous equation are 

x;(s) = x$(O) [?;~~~~~~)]li2exp [*i jk,,(s’)ds’] 

= xz(0)[-$]Pexp [&i~kn~s’)ds’] . 

0 

(3.3) 

(3.4) 

Note the presence of the “adiabatic damping factor” (-yo/-y)p, due to acceleration. 

The WKB approximation assumes that the fractional energy change in a betatron 

wavelength is small, that is, (T’)~ < y 2 k 2. This is well satisfied for the cases of 

interest to us. 
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Now look for a solution to the inhomogeneous equation (3.1) of the form 

x(s) = u+(s)x+(s) + u--(s)x-(s) (3.5) 

(suppressing subscript n for the moment). Without loss of generality we may 

assume that 

uI,x+ + u’_x- = 0 . (3.6) 

Substituting into the inhomogeneous equation, we obtain 

y(?&xI+ +tLx’-) = F(s) * (3.7) 

Thus, we have two simultaneous equations [(3.6) and (3.7)] for u’+ and u’_, which 

we may solve and integrate to obtain 

3 

u*(s) = u*(O) +’ 

J 

Fx, 

+/(x-x’+ - x+x’-) 
ds’ . WV 

0 

It is easy to show that the denominator y(x-xi - x+xL) = 2i. Thus the general 

solution to the inhomogeneous equation for bunch n is 

Xcn(S) = u;x;t(s> + Q,(S) + J G& s’)Fn(s’)ds’ , (3.9) 
0 

where a: and a; are arbitrary constants. The Green function is given by 

Gn(s, s’) = [y(s)+y(s’)k,(s)k,(s’)]-‘I2 sin $n(s, s’) , (3.10) 

where 

$,(s,s’) E j k,&“)ds” 

3’ 

(3.11) 

is the phase advance for bunch n. Let us take the “positive phase” WKB solution 
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as the motion for the first bunch, 

Xl(S) = x1(0> (-$Jp=p [P,(sJ9] y (3.12) 

and assume a; = 0 for all n > 1. Then upon substituting the explicit expressions 

(3.2). and (3.10) fox ’ 1 

(3.9), we obtain 

the driving term Fn(s) and the Green function Gn(s,s’) into 

(3.13) 

0 

n-l 

x C Wl((n - j)d)xj(s’)ds’ . 
j=l 

It is useful to write this in a slightly different form for comparison with later results 

and for convenience of numerical integration. Upon writing sin $,(s, s’) in terms 

of exponentials, and dropping a rapidly oscillating term, the solution for the offset 

of bunch n becomes 

xn(O> + 
Ne2 

3 

h(S) = 
Yo 9 

2iyomc2k,(0) J(--> Yb’) 
exp[-ih(s’, O)] 

x 2 Wl((n - j) f!)x,(I’)ds’] (--$) p exp[i&(s, 0)] . 

(3.14) 

i 
j=l 
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3.1. MULTIPLE BUNCHES IN THE “EFFECTIVE LENGTH" REPRESENTATION 

Let us assume that the focusing function varies as 

k(s) = yo ( > 
112 

Y(S) kf) . (3.15) 

This is a physically reasonable scaling of the focusing function for the following 

reasons. We would like to focus strongly at the beginning of the linac to control 

wake field effects. The quadrupole “lens strength” q (i.e., inverse focal length) in, 

for example, the z plane, scales as 

dB, 1 
Q m ‘&ad-j--y 7 (3.16) 

where LgUad is the length of the quadrupole. Since there are practical limits to 

the magnetic field gradient achievable in quadrupoles, it is most efficient to keep 

this gradient (here, dB,/dz) constant near its maximum value. We also assume 

a FODO lattice (each cell of which consists of a focusing quadrupole, drift spa.ce, 

defocusing quadrupole, and another drift space) with cell length Lce.l allowed to 

vary along the linac. The phase advance /.L per cell is 

sin!! = - qJL11 
2 4 ’ 

(3.17) 

and the average of the minimum and maximum of the ,B function in a cell is 

p+. (3.18) 

Let us also assume that both the phase advance per cell and the “filling fraction” 

(i.e., the length occupied by quadrupoles divided by the total length of the linac) 
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are kept approximately constant as we go down the linac. Then both Lgvad and 

L cell must scale as y rj2. In this case, ,8 0: y rj2, and the corresponding smooth 

focusing approximation is just Eq. (3.15). 

For this choice of focusing function, the result (2.12), derived without accelera- 

tion, gives the same result as (3.14) except for adiabatic damping factors, provided 

we interpret the variables appropriately. In particular, E and the k, in (2.12) are 

taken to be the energy and the focusing functions at the beginning of the linac? 

and s is taken to be not the true distance along the accelerator, but rather an 

“effective distance.” The effective distance is just $(s,O)/Jz(O), where $(s, 0) is the 

phase advance in the actual distance from 0 to s along the linac and k(0) is the 

focusing function at the beginning of the linac, that is, 

(3.19) 

Note that if y(L) >> yo at s = L, the end of the linac, the effective length of the 

linac is approximately 

[ 1 
l/2 

L 70 
ejj = 2 - 

Y(L) 
L . (3.20) 

3.2. INTEGRATION OF EQUATIONS OF MOTION 

A computer program (LINACBBU) was written to numerically integrate the 

equations of motion in the effective length approximation (2.12), or for more general 

focusing, Eq. (3.14). Th e wake field at the needed bunch spacings is computed from 

an appropriate input set of transverse dipole modes. The focusing function may 

15 



be the same for all bunches or may be varied, for instance linearly or sinusoidally, 

from bunch to bunch. 

A number of examples using this program will be given in later sections. In 

all cases of interest here, the assumption of adiabatic acceleration is an excellent 

approximation. 

4. VERY STRONGLY DAMPED WAKE 

In cases where the wake field is strongly damped, a bunch will only see a 

significant wake from the immediately preceding bunch, and we can use a simple 

“daisy chain” model to estimate the transverse blowup of each bunch in the train. 

Let us assume that the focusing function is the same for all bunches. Then, the 

equations of motion in the effective length approximation are 

x:‘i + k2x1 = 0 

x; + k2x, = Ne2Wd~) x 
E n 

-l (n > 1) . 
(44 

We assume 21 (s) = al eiLs where al is a constant, and look for solutions xn(s) = 

an(s)eiks. Neglecting the a: terms, we obtain 

a:, = --iaa,-1 , (4.2) 

where 

CTE 
Ne2W~(1) 

2kE . 

It is straightforward to show that the solution is 

an(s> = C j, n-1 (-4i an-i(0) , j=o - 

(4.3) 

(4.4) 
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and if we take as initial condition an(O) = 1 for all n, this simplifies to 

n-1 (-ias)j 
%x(S) = C jr - 

j=o - 
(4.5) 

We see that (a2 - ur) grows linearly with effective distance s, as we noted earlier, 

and in general, for sufficiently large OS, the amplitude of oscillation of bunch n 

would grow approximately as sn-‘. However, for the strongly damped wakes we 

are considering in this model, CTS does not necessarily become large in the distances 

s of interest. It is apparent that the criterion for little or no blowup in the 1ina.c is 

joL,jfI < 1, that is, 

Ne21wL(91Lejj < 1 
2kE 7 P-6) 

where L,ff is the effective length of the linac. Recall that k and E are the values 

of focusing function and energy at the beginning of the linac. 

The results of the daisy chain model, where applicable, will be compared with 

the integration of the equations of motion in the section on numerical results. We 

will see that for the main linacs of a TeV collider, with highly damped acceleration 

cavities, we in fact have laL,ffI N 1. Thus for n greater than a few, a,(s) is 

approximately e--ias, and there is almost no blowup for bunches beyond the first 

few in the train. 
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5. LINEARIZED WAKE-ZERO-CROSSING MODEL 

Let us now consider the case where the bunches are placed near the zero- 

crossings of a single mode wake function, given by 

r/l/l( 2) = Wl sin( li’r z)eeK1 2’2Q . (5.1) 

For simplicity, we use the effective length formalism, and we assume a focusing 

function k that is the same for all bunches. The bunch spacing P is assumed to be 

close to an integer number q of half-wavelengths of the wake function. We define 

the quantity A by 

A E 7rq - Kle . (5.2) 

Then, provided that (n - 1) IAl < 1, we can approximate the driving term for 

bunch n, given by Eq. (2.9), by expanding the wake function to first order about 

the zero-crossings: 

Ne2 n-1 dWl 
fn = ?-- j=l dz c 6z,+ xj . 

&l--J 
(5.3) 

Here 

Zn-j G dn - j)r 
I<1 (5.4) 

is the posit,ion of the bunch-j wake zero-crossing that is nearest to bunch n, and 

6Zn-j = (n - j)$ (5.5) 

is the distance of bunch n from this nearby zero-crossing. It is convenient to express 

A in terms of the fractional deviation of the wavenumber li’r from the nearby 
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wavenumber 1;‘: for which the bunches would be exactly at the zero-crossings. So, 

suppose Ir’r = I<,0 + SKI. Using the fact that I<:[ = qr, we can write 

(5.6) 

Thus, the condition for the validity of this linearized wake-zero-crossing model is 

< 1 . (5.7) 

The derivatives of the wake function at the zero-crossings of interest are just 

dW = (-1) dn-j)WII<le -q(n-i)aPQ 9 (5.S) 
dz Klz=q(n-j)r 

and so the driving term is 

fn = NeT A gcn _ j)[-,-*12Q]dn-dxj . 

j=l 

(5.9) 

Substituting into Eq. (2.11), we obtain the bunch amplitude function 

an(s) = an(O) - iA nc(yl -j)Bn-j 1 ai(s’ ) (5.10) 
j=l 0 

where 

and 

e2 
A(A) G N2k;A (5.11) 

B E [-e-r/2Q]q . (5.12) 
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5.1. INITIAL OFFSET OF FIRST BUNCH ONLY 

Suppose the first bunch starts with offset al = 2 and all the other bunches 

start with offset an(O) = 0. It is easy to see that in this case the solution for a, 

will be of the form 

n-1 (-iAs)j 
an(s) = iBn-’ cc; 

j! ’ 
(5.13) 

j=O 

where the Cy are constant coefficients defined for j = 0 to n - 1. Since al = i?, we 

have Ci = 1. Upon substituting aj of the form given in Eq. (5.13) into Eq. (5.10) 

and simplifying, we obtain for n > 1 

n-l n-l k (-iAs)j 
U,(S) = iB”-’ C c(n - k)Cj-1 

j=l k=j 
j! * 

Comparing Eqs. (5.13) and (5.14), we obtain 

c; = 0 ) (n > 1) , 

and, for j > 0, the recursion relation 

n-l 

CT = c(n - k)Cj”-, . 
k=j 

5.2. EQUAL INITIAL OFFSET OF ALL BUNCHES 

(5.14) 

(5.15) 

(5.16) 

It is only somewhat more complicated to treat the case where all bunches start 

out with the same offset an(O) = i. Then one can see that the solution will be of 
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the form 

an(s) = ii 1 + CC C;IB’(-:‘)I] , 
j=l &j 

(5.17) 

where the G,“[ are another set of constant coeffients, defined for j = 1 to n - 1, and 

for ! = j to n - 1. When we substitute aj of this form into Eq. (5.10), we obtain 

after- some manipulation 

n-l n-l e-1 

a,(s) = i 1 + cc c (n -e)U”-‘tt’C~-l,~,B’(-:4s)~] , 
[ 

(5.1s) 
j=l kj k’=j-1 

where we have defined the “initial” coefficients 

C& = 1 

C,“, = 0 , (e > 0) . 
(5.19) 

Comparing Eqs. (5.17) and (5.1S), we find that 

eye = &n - e)Bn-2e+k’-‘c~_l,,,_l . 
k'=j 

(5.20) 

In order to have a relation among the coefficients that is independent of B, the 

exponent of B must be zero. This yields the recursion relation 

ct”e = ‘&e-k+ l)C;-l,k-l 3 (j21) ) (5.21) 
k=j 

which together with Eq. (5.19) d e t ermines the desired coefficients C,“,. 

Low-Q limit. Actually, for a damped wake the requirement (n. - l)A < 1 may be 

more stringent than necessary. We really only need (?Zd - 1)A << 1, where nd is 

the number of bunch spacings at which the wake field has damped to a negligible 

value. 
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Obviously, we recover the daisy chain result when Q is low enough. In the case 

where the wake is negligible beyond one bunch spacing and each bunch is close to 

a zero-crossing of the wake from the preceding bunch, we can write the criterion 

(4.6) for little blowup as 

Ne2 \WrAle-q”/2QLeff < 1 
2kE 7 (A < 1) . (5.22) 

High-Q limit. For a single-mode wake field with little damping (Q + OS), we have 

B M (-1)Q. Th us, for the case al = ?, and an(O) = 0 for n > 1, the amplitude 

function of bunch n is 

n-1 (-&)j 
a,(s) = S(-l)q(n-l) C Cj” j, . 

j=l 

For the case a,( 0) = ? for all n, we have 

[ 
n-1 (-&)j n-1 

an(S) = i 1 + C j, 
j=l ’ 

C( -l)y(c:;] . 
P=j 

(5.23) 

(5.24) 

Note that for a given j, the terms in the sum over e are positive for q even and alter- 

nating in sign for q odd. Thus for a given value of A, we expect the amplitudes to 

be larger when the bunch-to-bunch spacing 4 is an even number of half-wavelengths 

of the wake function than when it is an odd number of half-wavelengths. This just 

reflects the fact that the contributions to the driving force on bunch n due to the 

n - 1 preceding bunches are the same sign (alternate in sign) for q even (odd), be- 

cause the corresponding wake function values are the same sign (alternate signs). 

Remember that we assumed the bunches start out with the same offset, and since 

the focusing function was assumed the same for all the bunches, they will tend to 

stay in phase. 
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. 
A similar effect (odd q versus even q) also occurs in Eq. (5.1s). Although it 

is most pronounced for longer range wakes, the effect can be seen in our examples 

even when the wake is significant for a distance of only a few bunch spacings. 

Illustrations will be given in later sections, where we will also compare this model 

with results from the LINACBBU program. 

6. CURES FOR THE TRANSVERSE INSTABILITY 

- 
We now turn to the study of ways to prevent multi-bunch beam breakup in 

linacs. The four cures that we shall study are damping the transverse wake, min- 

imizing the wake effects by placing the bunches close to nodes of the wake field, 

introducing a spread in the frequency of corresponding transverse dipole modes, 

and varying the focusing to partly cancel the wake force at the bunches (BNS 

damping). As noted earlier, a cell-to-cell frequency spread in the transverse modes 

is present in the existing SLAC linac and has also been examined by Yokoya in the 

context of a next-generation collider (Ref. 10). We also note that BNS damping 

is used to control single bunch emittance growth, in essentially all extant designs 

for a next-generation 27 collider. We shall emphasize the usefulness of the first two 

cures, in a very high energy collider utilizing multibunching. 

6.1. DAMPED CAVITIES 

Theoretical and experimental studies show that it is possible to construct 

damped acceleration cavities that significantly reduce the Q’s of the transverse 

dipole wake modes (Ref. 17). 0 ne way to construct such cavities is to cut axial 

slots through the irises of the structure and couple these slots to radial waveguides. 

Transverse mode Q’s as low as 10 can be obtained in this way. Measurements have 
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shown that there is no significant adverse effect of such slots on the accelerating 
. 

mode. Another type of damped cavity has side-coupled slots that go into the cav- 

ity without cutting the irises. These slots perturb the accelerating mode to some 

extent, but do not transmit it. The Q’s of the transverse modes can be as low as 

about 40 in this case. 

The Q’s obtained for the higher-order modes should be at least as low as the Q 

of the fundamental. For simplicit,y in the numerical computations, we will generally 

take the Q’s to be the same for all modes. Another option is to assume that there 

is “equal damping ” - of all modes. That is, given a value of Q for the fundamental 

mode, assume that all modes damp as e--a=, where Q is the damping rate of the 

fundamental mode: 

Ii-1 

a=2&1 * 
(64 

Obviously, if the fundamental dipole mode is sufficiently dominant, it does not 

make much difference whether we assume equal Q’s, equal damping of the higher- 

order modes, or individual Q’s for each mode. 

6.2. TUNING THE FREQUENCY OF THE FUNDAMENTAL TRANSVERSE MODE 

The transverse dipole wake for the accelerating structure considered here is 

indeed strongly dominated by its fundamental mode and has zero-crossings that 

are approximately equally spaced. Figure 1 shows the dipole wake computed using 

the program TRANSVRS 28 for a disk-loaded structure designed to operate at 

11.4 GHz. The structure has a cell length of S.75 mm, internal cell radius of 

11.2 mm, and a relatively large iris radius of 5.2 mm. This structure has no slots 

to damp the transverse modes. However, assuming that such slots damp higher- 

order transverse modes at least as much as they damp the fundamental transverse 
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mode, and that this fundamental mode dominates the others, the slotted st.ructures 
. 

will have a damped wake with nearly periodic zero-crossings throughout the extent 

of the wake. 

Therefore, it is possible to place all the bunches in a train near zero-crossings 

of the wake field, if the ratio of the frequency of the fundamental dipole mode to 

the frequency of the accelerating RF is appropriately tuned. The condition that 

this be so is just 

= drj = e , (6.2) 

where e is the bunch spacing, m and q are integers, and X,f and Xw, are the 

wavelengths of the RF and the fundamental dipole wake mode. 

6.3. SPREAD IN FREQUENCY OF EACH TRANSVERSE DIPOLE htoDE 

One might also consider an RF structure in which the frequencies of corre- 

sponding transverse dipole modes differ from cell to cell. This is the case, for 

example, in the existing SLAC linac, where the mode frequency sprea.d is a few 

percent.2g The frequency spread results in a reduction of the effective Q of each 

mode. 

In the main linacs of a linear collider, this method is a partial cure at best. 

Note that the design and construction of an accelerating structure incorporat,ing 

both damping slots coupled to radial waveguides and a cell-to-cell mode frequency 

spread would probably be rather complicated. 
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6.4. BUNCH-TO-BUNCH VARIATION OF TRANSVERSE FOCUSING 

By the use of a system of time-varying quadrupoles in addition to the main 

system of quadrupoles, we could introduce a small spread in the focusing functions 

k, of the bunches. This is essentially the BNS damping mechanism (Ref. 23) 

applied to multiple bunches. If the focusing increment at a given bunch is chosen 

appropriately, one can at least partially cancel the wake force due to the preceding 

bunches [cf. Eq. (2.5)]. It is not practical to use this method by itself to control 

the wake field effects of multiple bunches because, for the parameter regimes we 

will be considering, the required spread in the values of the k, would be large. 

The resulting chromatic phase advance differences create complications with orbit 

correction, as will be discussed later in the examples. Note also that a given bunch 

feels the wakes from all the preceding bunches, which means that the choice of 

an optimum bunch-to-bunch focusing spread is not as simple as in the two-bunch 

case. 

7. CHOICE OF hdAIN LINAC PARAMETERS 

7.1. LINAC RF FREQUENCY 

In the choice of RF frequency, there is a tradeoff between less power consump- 

tion at higher frequencies and lower transverse wake fields at lower frequencies. We 

shall consider some examples of main linacs with accelerating frequency of 11.4 and 

17.1 GHz. The optimization depends on many factors other t,han just the need t,o 
30 

control beam breakup. 
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7.2. SCALING OF FOCUSING FUNCTION 

- 

As discussed earlier, a focusing function scaling as the inverse of the square root 

of the energy is a reasonable choice physically, and is also particularly convenient 

to analyze. We shall assume this scaling in all our examples of TeV collider main 

linacs. 

7.3. RELATION BETWEEN BUNCH CHARGE AND BUNCH SPACING 

Keeping the bunch-to-bunch energy variation as small as possible imposes a 

relation between the number of particles per bunch, N, and the bunch spacing LY 

(Ref. 1): 

e 770 M cTf-er , 
2 (7.1) 

where Tf is the filling time and r is the ratio of the filling time to the attenuation 

time of the RF structure. The single-bunch loading is 

4Nelco 
770 = 7 7 

z 
(7.2) 

where no is the loss parameter of the accelerating mode and I, is the acceleration 

gradient. Thus, for given parameters of the accelera.ting structure, we have a 

relation between the bunch spacing E and the number N of particles per bunch. 
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. 
8. EXAMPLES OF MAIN LINACS AT 17.1 GHZ 

For illustration, let us first consider a main linac accelerating frequency of 

17.1 GHz. 

Table 1. Parameters for main linacs at 17.1 GHz. 

- 

I Number of bunches I 10 I I , 4 
1 Number of particles per bunch 1 1.67 x 10” 1 

I Bunch spacing ! 1 24&f ~42.0 cm I 

I Initial energy of linac ( 18 GeV I 
Final energy of linac 

Linac length 

500 GeV 

3000 m 
I I 

I Initial beta function 3.2 m 
(ko = 0.3125 m-r) I 

The parameter set used is shown in Table 1. Each linac acc.elerates 10 bunches 

per RF fill, to an energy of 0.5 TeV. The bunch spacing and bunch charge should 

be chosen to make the energy of each bunch as nearly the same as possible, in 

accordance with Eq. (7.1). Taking Tf = 60 nsec, r = 0.6, no = 430 V/PC/m, and 

fz = 186 MeV/ m in this equation gives 

e FZ (0.25 m)& . 

The single bunch loading, from Eq. (7.2), is 

770 x (1.5 x Io-2)& . 

W ) 

(8.2) 

In the present examples, we shall take e to be 24 RF cycles (about 42 cm) and 

N = 1.67 x lOlo; this gives 70 = 2.5%. 
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We shall examine all four of the cures for beam breakup discussed earlier. In all 

our examples we assume that the first cure, damped acceleration cavities, is used 

to reduce the Q’s of the transverse modes to values well below 100. Except for 

very low Q’S, it is still necessary to also apply at least one of the other cures. We 

shall try to give a representative selection of examples, with realistic parameters 

for main linacs at 17.1 GHz in this section and at 11.4 GHz in the next section. 

In considering the first two cures, we have a two-dimensional parameter space 

to explore, namely: 

1. The Q value of the modes of the transverse dipole wake (taken to be the 

same for all the modes). 

2. The frequency of the fundamental transverse dipole mode (in our computa- 

tions, the frequencies of the other modes will be assumed unchanged). 

The RF wavelength at 17.1 GHz is 1.75 cm, and the wavelength of the fundamen- 

tal mode of the unmodified transverse dipole wake (Figure 1) is 1.36 cm. If the 

frequency of the fundamental mode is shifted slightly, so that its wavelength is 

1.31 cm, then Eq. (6.2) is satisfied with q = 64, and we have 

x rf 4 -=-. 
XWL 3 W) 

Wrhen this relation is satisfied, the frequency of the fundamental transverse mode 

is 477.85 m-l, which we shall denote by KY. In Figure 2, we show “tuning curves” 

of the maximum transverse amplitude xPnaz in the bunch train as a function of the 

frequency of the fundamental transverse dipole mode, for values of Q = 20 to 50. 

The value of x,,~ is the maximum of the amplitudes reached by all bunches as 

they travel down the linac, normalized by dividing out the adiabatic damping factor 
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(y~/r)‘/~. The central frequency Kf, at which X,f/Xw, = 4/3, is 477.85 m-l. The 
. 

range about the central frequency shown in the figure is &l%. If we take xmaz < 2 

as a figure of merit, then for Q = 50 we would have to tune to within about 0.26% 

of the central frequency Kf. 

Of course, the lower the Q, the less sharply defined is the frequency of the mode; 

the full width at half-maximum of the resonance around the central frequency 

KY is I’ E rif/Q (and th e central frequency is shifted slightly from that of the 

undamped mode). Therefore, it is also of interest to compare the ratio R of the 
- 

tuning tolerance for a given Q to the full width I of the resonance at that Q: 

R ~ AIC,o . 
r w 

Table 2. Tuning parameters for the fundamental transverse 
dipole mode for 17.1 GHz main linacs. 

Q 1 AK: (m-r) 1 l? = I;y/Q (m-l) 1 AK~/K~ 1 R - AKy/I’ 
1 I 

201 - 23.9 - - 
I I 

30 - 15.9 - 

35 3.26 13.7 0.68% 24% 
40 2.10 11.9 0.44% 18% 
45 1.53 10.6 0.32% 14% 

I 50 I 1.26 I 9.56 ( 0.26% 1 
I I I I I 

13% 1 
I 

In Table 2, we show the full-width tuning tolerance AK: for the criterion 

xmaz 5 2, the full-width I of the resonance peak, the tuning tolerance expressed as 

a percentage of the undamped central frequency, and the ratio R. The parameters 
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used and the values of Q tabulated are those used in Figure 2. For all these values 

of Q, the tolerance on tuning is at least 10% of the bandwidth of the resonance; 

this should be straightforward to do. For sufficiently strong damping (Q = 20 

and 30), the blowup is less than a factor of 2, even without tuning the value of 

the fundamental transverse mode to put the bunches near wake zero-crossings. 

However, for the larger Q’S, some tuning of the frequency of this mode would be 

necessary to keep the blowup small. 

In Figure 3, we show the effects of introducing the third cure. In this example, 

there is a total spread of 2% in the frequency of each transverse mode, distributed 

uniformly over 200 values. Except for this frequency spread, the parameters used 

are the same as in Figure 2. For Q’s of 40 or less, no tuning of the fundamental 

transverse mode frequency is required to keep the blowup less than a factor of two. 

For the higher values of Q shown, some tuning would be required. Recall that Q’s 

of 40 or so are obtainable without slotting the irises. Thus, for these parameters, an 

acceptable solution is possible without slotting the irises, provided that we either 

tune the fundamental transverse mode frequency or introduce at least a 2% spread 

in the transverse mode frequencies. 

Finally, in Figure 4, we illustrate the effect of the fourth cure, namely, a varia- 

tion in the strength of the focusing funct,ion at each bunch to partially cancel the 

wake effects. From Eq. (2.5), we see that there will be exact cancellation of the 

part of the wake that is due to the immediately preceding bunch when 

Ak,dj = 
Ne2W~(l) 

2Eko * (8.5) 

Here, Ak,dj is the difference between the focusing functions of adjacent bunches. 

Multiplying this by 9 gives the total spread AL *lot over all 10 bunches. For Q = 40 
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and for a frequency of the fundamental transverse mode 0.6% above Kf, we obtain 

Akto, = 10.8%. We show the results with this value in Figure 4(b). However, the 

phase advance difference due to a focusing spread can introduce complications. In 

our example, the total phase advance in the ma.in linacs is about 907r. Thus, for a 

focusing spread of l%, the spread in phase advance is already significant compared 

to 27f. In such a case, the amplitude of betatron oscillations must be smaller than 

the transverse bunch dimensions or there must be position control of individual 

bunches at the end of the linac, to keep the bunches from missing each other at 

the interaction point. Figure 4(a) shows the case of a total spread of 1% linearly 

distributed over the bunches. We see that for the smaller value of Aktot shown in 

Figure 4(a), there is no appreciable increase in the tuning tolerance compared to 

Figure 2. Thus, in order to obtain a significant effect on the tuning tolerance, it 

would be necessary to introduce a spread so large that there would be significant 

“chromatic” phase advance differences among the bunches. 

8.1. COMPARISON WITH DAISY CHAIN MODEL 

In the 17.1 GHz examples just given, the number of e-foldings of the wake 

between bunches is about 

rip 100 

-m-F 
(8.6) 

which gives about three e-foldings, for Q = 35. This is a case in which it would be 

reasonable to apply the daisy chain model, which only takes account of the wake 

between adjacent bunches. In Figure 5, the results of the daisy chain model are 

compared with the results of the program LINACBBU. We have included twenty 

bunches in the train to illustrate the fact that there is no blowup for bunches 

sufficiently far back in the train. The wavenumber of the first wake mode is taken 
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to be 475 m-l, Q = 35, and other parameters are as given in Table 1. For bunch 2, 

the agreement is of course exact. For bunches 3 through 9, there is some observable 

discrepancy, due to the effects of wakes at more than one bunch spacing. However, 

the overall agreement is very good. Note that in this example laL,ff( E 2.5, where 

0 is defined in Eq. (4.3) and L,ff is the effective length. 

9. EXAMPLES OF MAIN LINACS AT 11.4 GHZ 

Taking Z’f = 80 nsec, r = 0.4, rcg = 190 V/PC/m, and E, = 186 hleV/m in 

Eq. (7.2) gives t#he single-bunch loading 

rl0 r=~ (6.7 x 10-3)$ , 

and, from (7.1), the relation between bunch charge and bunch spacing 

e e (0.12 m)$ij . 

(94 

(9.2) 

For a given charge Ne per bunch, the single-bunch loading and bunch spacing are 

roughly half of what they were for the 17.1 GHz example. Since the bunch spacing 

is closer (and also the wake frequencies are lower), the wake extends over more 

bunches than in the 17.1 GHz case, for a given value of Q. Thus, the daisy chain 

model would not be applicable except for extremely low Q’s. However, the effect 

of odd versus even q, where q is the number of half-wavelengths of the dominant 

wake mode between bunches, is more significant and can be used to advantage. 

It is also of interest to examine the trade-off between the number of bunches 

and the charge per bunch. Suppose we fix the total charge nNe accelerated per 

RF pulse, i.e., the total charge in the bunch train. For larger N and smaller n, 
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we would obtain more luminosity per pulse. However, it may be necessary to go 
. 

to smaller N and larger n, to help alleviate the problem of pair production at the 
31 

interaction point. 

Table 3. Parameters for main linacs at 11.4 GHz. 

Number of bunches 20 

Number of particles per bunch 0.8s x 1o1O 

Bunch spacing e I 4bf 73 10.5 cm I 
I Initial energy of linac I 18 GeV I 
r- Final energy of linac 1 500 GeV 1 

Linac length I 3000 m I r Initial beta 
I 

We first consider an example with parameters as shown in Table 3. The linac 

length, energy, and focusing function are the same as for our 17.1 GHz examples. 

The bunch spacing is chosen to be four RF wavelengths, and the corresponding 

bunch charge from Eq. (9.2) is O.S8 x 10 lo The single-bunch loading from Eq. (9.1) . 

is about 0.6%. With the lower charge per bunch and weaker wake fields, it is pos- 

sible to have more bunches; for this example, we have chosen 20 bunches. In 

order to take advantage of odd q, we have tuned the frequency of the fundamental 

transverse mode so that there are 5.5 wavelengths of this mode between bunches 

( i.e., q = 11). The resulting tuning curves, for Q = 20 to 60 are depicted in Fig- 

ure 6. As in the 17.1 GHz examples, a spread of &l% about the central frequency 

is shown. We see that the tuning tolerances are comparable to, although somewhat 

less tight than, those in the 17.1 GHz example of Figure 2. 
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9.1. COMPARISON OF EVEN VERSUS ODD q 

For comparison with Figure 6, we show in Figure 7 the tuning curves for exactly 

the same parameters, except that we have tuned the fundamental transverse mode 

- frequency to make q even. In particular, q = 10 in Figure 7(a), and q = 12 in 

Figure 7(b). A s expected, the tuning tolerances for both these cases are tighter 

than in the q = 11 case shown in Figure 6. 

9.2. EXAMPLES WITH SAME TOTAL CHARGE BUT DIFFERENT SPACING 

Next we examine two cases that are identical to that in Figure 6 except that 

the same total charge is distributed differently among bunches, while still satis- 

fying Eq. (9.2). In the first case [Figure S(a)], we choose e = SX,f w 0.21 m. 

The charge per bunch, in accord with (9.2), is 1.75 x lOlo. To keep the total 

charge in the train the same, we choose the number of bunches n = 10. We tune 

the frequency of the fundamental transverse dipole mode so that we have 10.5 

wavelengths of this mode per bunch spacing. In the second case [Figure 8(b)], we 

choose e = 3&f % 0.0789 m, resulting in N = 0.65 x lOlo and n = 27. The 

frequency of the fundamental transverse mode is tuned to have 3.5 wavelengths 

per bunch spacing. Note that in both of these cases, we ha.ve kept q odd, as it 

is in the example of Figure 6. We see that for the given values of Q, the tuning 

tolerances for the three cases shown in Figures 6, S(a), and 8(b) are not drastically 

different, although those in Figure 8(a) are s0mewha.t tighter than for the other 

two. Figure 8(a) has the smaller number of bunches, with more charge per bunch 

and larger bunch spacing. In all three cases, there is less than one e-folding of the 

wake between bunches, and we are in a regime where the effect of greater charge 

per bunch dominates the exponential decrease of the wake, to produce somewhat 
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larger blowup in Figure S(a). 

9.3. COMPARISON WITH WAKE-ZERO-CROSSINGS MODEL 

The quantitative agreement between the wake-zero-crossings model and the 

LINACBBU program is good, provided the bunches are near enough t,o the zero- 

crossings. Consider the case N = 1.75 x lOlo, n = 10, e = SX,f z 0.21 m, with a 

single-mode wake damped to Q = 60 and with frequency tuned to 299.1059 m-l, 

which is 0.15% above the point where X,f/Xw, = 10/S. From Eq. (5.7), we expect 

the wake-zero-crossing model to give reasonably good agreement for 

SK1 
l-l Ii-l” 

< O.lS% . (9.3) 

This is borne out by Figure 9, which compares the results from the program 

LINACBBU with the prediction of the wake-zero-crossing model. The solid curve 

shows the transverse oscillation of the bunch as a function of effective length, ac- 

cording to LINACBBU. The dotted curve shows the envelope of bunch oscillation, 

according to the wake-zero-crossing model. The motion of the second, sixth, and 

tenth bunch in the train are shown. The simple linearized model overestimates the 

wake slightly, leading to the small observable discrepancy with the LINACBBU 

result. 
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10. CONCLUSIONS AND ACKNOWLEDGMENTS 

We have demonstrated that it is possible to control the potentially severe multi- 

bunch beam breakup in the main linacs of a TeV linear collider. The solution that 

seems most generally applicable for the regime of interest is a combination of two 

cures: (1) using damped acceleration cavities that reduce the Q’s of transverse 

dipole modes, and (2) t uning the frequency of the fundamental transverse dipole 

mode so that bunches may be placed near wake zero-crossings. Simple analytic 

models for the limit of a very strongly damped wake and for the limit of bunches in 

the linear region about the zero-crossings were presented and were shown to agree 

well with the results obtained from the Green function integrals, in their respec- 

tive regimes of validity. The other two cures examined, namely (3) a cell-to-cell 

variation of transverse mode frequencies, and (4) a bunch-to-bunch spread in in 

the focusing function, could also be useful in combination with one or both of the 

first two cures. 

We would like to thank R. Palmer for many interesting conversations, especially 

on the control of wake fields with damped cavities, and K. Bane, R. Helm, G. Loew 

and P. Wilson for discussions on wake fields and beam breakup. We also thank 

K. Bane for his help in obtaining computations of the wake fields in the linac. 
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i FIGURE CAPTIONS 

1) The dipole wake for a disk-loaded structure designed to operate at 11.4 GHz. 

Ninety modes have been included. The wavenumber of the fundamental 

mode is about 308 m-l and the zero-crossings are nearly equally spaced at 

half the corresponding wavelength. 

2) Maximum transverse amplitude x,,, of all bunches, norma,lized by divid- 

ing out the adiabatic damping factor (7s/r)‘j4, as a function of the fre- 

quency of the fundamental transverse dipole mode, for values of Q = 20 to 

50, at 17.1 GHz accelerating frequency. The central frequency KY, where 

&fIXW, = 413, is 477.S5 m-l. The spread shown about 1;: is f 1.0%. 

3) Maximum transverse amplitude r,,, (normalized) of all bunches as a func- 

tion of the frequency of the fundamental transverse dipole mode, for val- 

ues of Q = 40 to 70, at 17.1 GHz accelerating frequency, with a spread in 

each transverse mode frequency of 2%. The central frequency I<:, where 

&fPW, = 413, is 477.S5 m-l. The spread shown about -I(! is f 1.0%. 

4) Maximum transverse amplitude xmaz (normalized) of all bunches as a func- 

tion of the frequency of the fundamental transverse dipole mode, for values 

of Q = 20 to 50, with nonzero, linearly distributed spread in the focusing 

functions over the bunches. In (a), Ak/ko = 196, and in (b), AL/k0 = lO.S%. 

5) Comparison of the results of the daisy chain model (plotted as O’S) with 

the results of the program LINACBBU (plotted as X’s). In each case, the 

value of the envelope function la,(s)1 at th e end of the linac, for each bunch 

number n, is plotted. The transverse offset xn(s) = a,(s)eiks. 
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6) Maximum transverse amplitude z,,, (normalized) of all bunches as a func- 

tion of the frequency of the fundamental transverse dipole mode, for values 

of Q = 20 to 60, at 11.4 GHz accelerating frequency. The central frequency, 

where &f/X, = 5.5/4, is 328.52 m-l. The spread shown about KY is 

f 1.0%. 

7) Maximum transverse amplitude x,,, (normalized) of all bunches as a func- 

tion of the frequency of the fundamental transverse dipole mode, for values 

of Q = 20 to 60, at 11.4 GHz accelerating frequency. In (a), the central 

frequency, where X,f/Xwl = 5/4, is 298.66 m-r. In (b), the central fre- 

quency, where X,f/Xwl = 6/4, is 358.39 m-r. The spread about the central 

frequency is f 1.0% in both cases. 

8) Maximum transverse amplitude x,,, (normalized) of all bunches as a func- 

tion of the frequency of the fundamental transverse dipole mode, for values 

of Q = 20 to 60, at 11.4 GHz accelerating frequency. In (a), e = 0.21 m, 

N = 1.75 x lOlo, n = 10, and the central frequency, where X,f/Xiy, = 10.5/S, 

is 313.59 m-l. In (b), e = 0.0789 m, N = 0.65 x lOlo, n = 27, and the cen- 

tral frequency K,O, where X,f/Xw, = 3.513, is 278.75 m-l. The spread shown 

about KY is f 1.0% in both cases. 

9) Comparison between wake-zero-crossing model and program LINACBBU, for 

an example at 11.4 GHz accelerating frequency, with ! = 0.21 m, N = 1.75 x 

lOlo, n = 10. The wake includes a single mode with Q = 60 and frequency 

299.1059 m-l, which is 0.15% above the point where X,f/Xw, = 10/S. Re- 

sults are given for the second, sixth, and tenth bunch in the train. The solid 

line shows the bunch offset obtained from LINACBBU (normalized by di- 

viding out the adiabatic damping factor) as a function of effective distance 
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along the linac. The dotted line shows the envelope of the bunch offset, from 

the wake-zero-crossing model. 
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