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I. Introduction 

- 

Topology has played an important role in quantum field theory. Recently, the reverse 

has occurred. Witten [l] h as shown how to use the path integral methods of field theory 

to construct certain polynomial invariants which are of interest to topologists. In four 

dimensions, these topological invariants are known as Donaldson invariants [2]. In the 

language of field theory, the topological invariants are the observables of the theory. 

At first sight, these topological quantum field theories (TQFT’s) may seem to be phys- 

ically irrelevant. Since their observables are topological invariants, they are independent of 

any metric. Consequently, there is no graviton in their spectra. Furthermore, there is no 

notion of propagation. Hence there are no physical fields. Nevertheless, they are theories 

of unbroken general covariance. In principle this means that there is no longer an integral 

over the metric, in the partition function. From this point of view they prove to be rather 

interesting toy models. They are constructed by BRST gauge fixing [3,4] a topological 

symmetry. This procedure has two stages since the Lagrangian of the primary ghosts is 

invariant under a second (albeit related) symmetry; there are ghosts for ghosts. 

In three dimensions, an alter idem of these theories is the Chern-Simons (CS) theory. 

The latter is generally covariant but is not invariant under the topological symmetry. 

Because the gauge fields (and the derivative) in the CS Lagrangian are contracted by a 

c-tensor density, the 1 factor in the c-density cancels against the fi in the measure of 
fi 

the action. The result is a metric independent action. Put differently, the action is written 

purely as the wedge product of forms. One example in which it appears in field theory is 

as the parity breaking part of the effective action for fermions in a background gauge field 

[5]. Another example of its use is its addition to the CP1 model. There, its U(1) gauge 

field dresses the CP1-bosons in such a way that the would be spin-0 fields carry fractional 

spin [6]. The manifold is restricted to be S3 so that the CS action is a Hopf invariant. 
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Apart from these applications, the CS theory may be used to construct gauge theories of 

some rather unusual gauge groups. 

The Lorentz generator in three dimensions may be written as a l-form. This is done 

by simply taking the dual of the 2-form. Combining this with the generator of transla- 

tions, the ISO(2,l) algebra is obtained. Of course, this is the algebra of the Poincare’ 

group in 2+l dimensions. A gauge theory of this group may be written down. This was 

done in. ref. [7] as a CS theory of the Einstein-Hilbert action. When the torsion free con- 

straint is imposed, one obtains the usual 15’0(2,1)/SO(2,1) theory of gravity. The N=l 

supersymmetric gauge theory of ISO(2,1]2) will b e constructed here. The motivation for 

doing this is that it is a gauge theory of a group whose generators include the D=3, N=l 

supersymmetry algebra. This suggests that, among other things, it may be possible to 

study supersymmetry breaking in the context of a gauge theory. 

A theory which is invariant under the BRST topological symmetry may also be con- 

structed in three dimensions in the following sense. In four dimensions, the topological 

theory is used to construct cohomolgy classes of instanton moduli space [1,8]. There the 

Pontryagin density is a surface term and as such it is invariant under the topological 

symmetry. When a simple dimensional reduction of the Pontryagin density is done, one 

obtains the CS term along with a surface term in three dimensions. Whereas the CS term 

is not invariant under the topological symmetry, the surface term is. The latter defines a 

topological field theory for magnetic monopoles [9]. The integral of the surface term gives 

the charge of the monopole. A gauge choice [lo] for fixing the symmetry is to impose the 

Bogomol’nyi equations [II] of D=4, static Yang-Mills-Higgs monopoles. Thus in the su- i 

persymmetrization of the topological gauge theory, one should impose the supersymmetric 

analogs of the Bogomol’nyi equations. Such a construction will be given in this work. 

It has been shown in ref. [12] that the observables of the non-supersymmetric CS 

theory are Wilson Loops. For three dimensions, there is the possibility that the cycle over 
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which one integrates, is knotted. So there is a link between knot theory and CS theory. 

Moreover, in computing the vev of the Wilson Loop operator, one encounters an object 

which has been known to mathematicians since Gauss. It is the self-linking number of a 

cycle [ 131. As a ph ase factor, the Wilson Loop has been used to transmute the CP1 bosons 

into fermions [ 141. Th us it is interesting to see what implications this quantity would have 

on a supersymmetric theory. However, we will see that there are no fermions in the 

spectrum of the super Chern-Simons (SCS) theory. This means that the Wilson Loop vev 

will be the same as in the non-supersymmetric CS theory. Nevertheless, in superspace the 

integrand of the self-linking number contains terms involving the Grassmann coordinate. 

Thus, there exists the possiblility that one can have knots in superspace which do not 

change the self-linking number. Formulae relevant to these calculations will be given in 

the appendix. 

We begin in section II with a review and then extension of D=3, N=l super Yang- 

Mills gauge theory. This is done since the rest of the paper is composed of applications 

of this theory. The extension will not be to higher supersymmetries but to a non-minimal 

theory. The first order formulation of ISO(2,1]2) theory requires such an extension. The 

ISO(2,1]2) gauge theory will be given in section III. An example of a supersymmetric 

TQFT will be given in section IV. There the D=3, N=l superspace analogs of the Donald- 

son invariants will be presented. This will allow us to compute elements of the cohomology 

classes of supersymmetric, monopole moduli space. 

Although all of the calculations will be done in superspace, most of the final expressions i 

will be reduced to components. The notations used here are generally those of ref. [15]. 



II. Extending Supersymmetric Chern-Simons Gauge Theory 

An introduction to minimal 2fl dimensional, N=l rigid and local superspace may 

. be found in chapter 2 of the book by Gates, Grisaru, RoEek and Siegel [15]. Some of 

their results will be reviewed in the first half of this section. The second half contains a 

non-minimal formulation of super Yang-Mills theory (SYM). While the minimal version 

should be used in the construction of the super Chern-Simons (SCS) gauge ,theory of 

supergravity, the ISO(2,1]2) p y su ers mmetric gauge theory must be formulated in the 

non-minimal version. The latter formulation will only be used in section III. 

II.1 Minimal Theory 

As in any discussion of superspace gauge theory, a gauge superfield, rA, is introduced. 

As usual, the ‘A’ index runs over both bosonic and spinor indices: A E (a, (.u). This allows 

for the definition of the super-covariant derivative VA G DA - ~I’A. Its transformation 

law is va = eiKvAeviK where K E Kiti and the tf are elements of the Lie algebra of 

the gauge group. Superfield strengths, TAB, are defined by the graded commutators 

[VA,~B} = TAB~VC -.i&B , (2.1) 

where TAB c is the torsion of the supermanifold. Constraints must be imposed. The 

conventional constraint, 3& = 0, allows for the expression of the vector potential, rA, in 

terms of the fundamental spinor potential, rcr, as 

ra = i&J%J, + &)“Pir,,rp} . 

This gives a minimal version of supersymmetric gauge theory. There is also 3aa = 

i(~b)~rW~. As a constraint, it says that there is no pure spin-$ superfield in 3ab. Fur- 

thermore, it defines the spinor superfield strength, W,. This superfield has the gaugino as 
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its lowest (0 = 0) component. Accordingly, the graded commutators and Bianchi Identity 

consistency conditions of minimal D=3, N=l supersymmetric gauge theory are: 

[LJp} = qY)apVa , 

P*,Vb~ = pYb)a7W7 , 

[v,,vb) = - i&b , (2.3) 
[V”,Wa) = 0 , 

%b = -&z~a)“P[~a,~/?} = +.b.(~C)“p[~cx,~/d . 

The super-Yang-Mills action is 

S 
1 

SYM = s 
J 

d3xd2i3 Tr(W2) 

1 (2.4 
= -- 

4 / 
d3x Tr[F2 - i2Xa(7”)aPDaX,] , 

where the second line follows from the first after the Grassmann integral is performed and 

the projections onto components: 

A, = q , &I - WI , 
P-5) 

D, s V,] = 3, - iA, , 

are used. As usual, F is the covariant exterior derivative of A, F = DA, and X is the SYM 

spinor. 

Equation (2.4) is not the action of current interest. It is the non-abelian supersym- 

metric Chern-Simons (NSCS) action which is at issue. In superspace this reads 

SNSCS = 
J 

d3xd28 Tr(I’,G”) , 

G, - W, - ~(7”)ap[rQa} = ;wa - ijk(7”)&3Lj . 
P-6) 

The coefficient of this action is proportional to the mass of the gauge field and is quantized 

for non-trivial 7rs of the gauge group [5]. 

Before proceeding with S’~scs it is instructive to first learn how the supersymmetriza- 

tion process works on the abelian theory. Remove the trace form S~scs and use G, = W,. 
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As S~scs or Sscs (the abelian version) is a mass term for the gauge field, a mass for 

X, is expected. Furthermore, supersymmetry will require a term which is first order in 

derivatives but quadratic in spinor fields. In fact, one finds . 

sscs = J d3x [c abcAaFbc - i2(7”)aPXada$ 

as the U(1) component SCS action. The lowest component of 

- 2=4 , P-7) 

the spinor super-potential, 

x” = ral, is “new”. Compare the second term in eqn. (2.7) with the spinor term in eqn. 

(2.4). ‘As SSCS and S’sy~ are distinct actions1 , the Dirac action for X, which appears 

in Ssy~ cannot appear in Sscs. Thus a new spinor field, xa, had to be “introduced”. 

Although it was part of the superspace theory which lead to eqn. (2.4), the latter field 

was not required in the component action for super-Yang-Mills theory. 

Equation (2.7) t e 11 s us something rather interesting. In the Wess-Zumino (W-Z) gauge 

we have xa! G 0. Since the W-Z gauge is algebraic, there are no topological obstructions to 

making this choice. Consequently, only the X, mass term appears as a spinor contribution. 

If Sscs is not coupled to any other actions involving the photino, we must have X, = 0, 

on-shell. Therefore there is no on-shell supersymmetric completion of the pure Chern- 

Simons theory. As to be expected, this behaviour persists in the non-abelian theory where 

only the A3 term is added to eqn. (2.7) (see eqn. (2.14) below). 

One can formally argue for this result in the following way. For any theory which 

is generally covariant, there is no energy-momentum tensor. Consequently, there is no 

Hamiltonian. In a supersymmetric theory, the Hamiltonian is proportional to the square 

of the supercharge(s). Thus with U = 0, the supercharge must square to zero and there is 

no supersymmetry. 

’ If Sscs and Ssy~ were related, the coefficient k of Sscs would be determined by 

the coefficient in front of Ssy~. This is not the case. 
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II.2 Non-Minimal Theory 

Later, in our treatment of Chern-Simons supergravity as a supersymmetric gauge the- 

ory, we will need a rather unconventional form of the non-abelian theory. The conventional 

constraint, 3ap = 0, will be shown to automatically enforce the ISO(2,1~2)/SO(2,1) gauge 

theory of supergravity. At first, we will want to construct an ISO(2,112) gauge theory. In 

such a theory, the spin-connections and dreibeins are completely independent and are in 

a first order formulation. The conventional constraint, however, will be shown to give the 

spin-connection in terms of the super-dreibein, i.e. the ISO(2,112)/SO(2,1) theory. So 

to construct the ISO(2,112) gauge theory, we must relax this constraint. 

With this new super-geometry, both Ia and lJa are independent superfields with 3ap 

now being given by 

3 cd? = +rp) - i[r,,rP} - i2(7a)(rpra # 0 . 

The Bianchi Identities then require 

V(,3py) = 0 , 

5X = +r$@v,3ap - ;(rsr.)“Q,Wp , 

VW, = - $7’)“po,?,, , 

(2.8) 

P-9) 

Va7bc = ~(7[,,)cXPV,blwp , 

eabcva3ac = 0 * 

Note that V”Wa is no longer zero. In addition to these expressions, the following will 

prove useful for component calculations: 

v,w, = igab’ (7a)c@5c + ia (7a)p7Va3a7 

1 - i- 
24 

- +p,3ap} , 6 

(2.10) 

v,vp = i(ya)@Va - $30p - c,pv2 . 
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All of this will mean that there will be more component fields than in the minimal 

theory. Let us now construct the super Yang-Mills action for these fields. As W, is still a 

. field-strength, it is gauge covariant so that aTr(W2) is gauge invariant. Upon reducing it 

to components the action 

1 
s;&f = 4 

J 
d3x Tr[ - F2 + i2X”(ya)pflDaXp 

+ iiXa(7”)apDa$/? - ~~a[xs,V,}(7a)a~ (2.11) 

+ ADaVbD[bVaI - i(D WV)” - 2FabDaVb] 3 
2 

is found. In computing this, a new super-multiplet has been introduced with component 

fields defined as 

3apI s -i2(7a)apVa , Va3p7) S 26(p”ti,) . (2.12) 

Thus two spin-i fields and two spin-l fields are needed in the non-minimal theory, i.e. 

two vector multiplets. The supersymmetry (c) transformation and Yang-Mills (K) trans- 

formation laws of the new fields are 

&Va = - i(7a)@h$p , 

&?+!J, = - $caD .V + i~rabC(q’,),p~PDaV~ - iir,V’ , 

SK& = +W,] * 

The V2 term in the fermion’s transformation law may be understood from the fact that 

the gaugino, X,, also has a term which is quadratic in A. There is no spin-t field in the 

theory because of the first Bianchi Identity in eqn. (2.9), on 3ap. 

Without the conventional constraint, the supersymmetric Chern-Simons action differs 

from eqn. (2.6) through the addition of a term proportional to (y”)“PI’,3,p. This is a 
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requirement of gauge invariance. The superfield and W-Z gauge component actions are 

. SKCS = J d3xd2b’Tr[I’,G” - 6 iL(7a)aPra3ap 1 
= J d3xTr[AAdA + ;AAAAA 

- +dV - VAAAV 

- 2x”x, - 47jffxX, - i$B[Aa,Va]] . 

(2.14) 

Observe that +lol is auxiliary. Furthermore, the ($, A) system vanishes by its equation of 

motion. The auxiliary field, B, defined by B = V”I’, I, constrains [Aa, Va] to be zero. 

The computation of the component action outside of the W-Z gauge is straightforward 
- 

but lengthy. One finds graded-commutators of quintic order in the fields. For our purposes, 

nothing enlightening is obtained. Thus it won’t be given here. 

III. Super-Poincard Gauge Theory 

Having discussed non-abelian supersymmetric Chern-Simons gauge theory, it is now 

possible to construct ISO(2,1]2) gauge theory following the non-supersymmetric work of 

Witten [7]. I n so doing, a gauge theory of the super-Poincare’ algebra will be given. This 

is a first order formulation of the Einstein-Hilbert action with the graviton, gravitino and 

spin-connection treated as independent fields, off-shell. The second order superconformal 

theory, with the spin-connection written as a functional of the graviton and gravitino was 

given in ref. [16] 

First, let us examine the super-Poincare’ algebra, ISO(2,1]2), in 2+1 dimensions. 

The generators of this super-Lie algebra are the Lorentz generator, Jab, and the super- 

translation generators Pa and Qa. Defining the dual J, = +EabeJbC, the graded-algebra 
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reads 

[Ja, Jb) = EabcJC 3 

[Jay pb} = EabcPC 3 

[pa,pb} = 0 , 

[Qa, Qp} = 2(ya)apPa 7 

[Qdb) = +&%?p , 

[&a,pb} = 0 , (3.1) 

The P’s and Q’s form the supersymmetry algebra. 
- 

Now the Casimir element of the ISO(2,l) group is [7] Co = iEabcPaJbC = P - J. It 

is straightforward to show that 

C = P-J - iiQ”Qa , (3.2) 

is a Casimir element of the ISO(2,1]2) su er-algebra given above. This element is defined p 

in terms of a non-singular, graded-symmetric, bilinear form, gAB, as C G SABX~X~ 

where XA E { Ja, Pa, 9,). H ence inner products in the super-Lie algebra are given by 

(Pa, Jb) = rjab , 

(Q”,Q~) = iiC@ , 
(3.3) - 

with the other bilinear forms vanishing. The anti-symmetric symbol, Cap, is the spinor 

metric. 

The fact that eqn. (3.2) is the Casimir of ISO(2,1]2) is interesting. The Casimir of 

ISO(3,l) is the Pauli-Lubanski vector: W, = $&b&P b J cd. Its supersymmetric general- 

ization is relatively complicated in that it is a product of quartic and quadratic forms in 

P, Q and J. Now Co and Wo are clearly of the same structure. This is not the case with 

C and its ISO(3,1]4) counterpart. 
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There is another interesting consequence of the structure of the Casimir element. Inner 

products defined by “super-metrics” which are block diagonal (as in eqn. (3.3)) imply that 

the supersymmetric action will be composed of two pieces. The first will be a simple 

supersymmetric generalization of the purely bosonic result. The second will be a pure 

supersymmetric artifact as it arises only from the translation of the spinor coordinates. 

With the results of the previous section and eqns. (3.1-3.3), the construction of the 

ECSSG action proceeds as follows. Work in a super-coordinate basis and define the super- 

covariant derivative VM = a&f - 8.M where 

rM G EMaPa i- EM~Q~ + fl~“J, , (34 

is the gauge superpotential expanded over the generators. The superfields Ema, E,a 

and Rma respectively contain the dreibein, e,“, gravitino, &,” and the spin-connection, 

uma as their lowest components. Traditional SYM generators may also be added to the 

right-hand-side of eqn. (3.4). The super-curvature (superfield strength) is then 

3MN = [ ~[MEN)~ - iE[Ma&qbfabC - i2(-)N(7C)upEMOENP]pc 

+ [+v~~N)~ - inManNbcabc] J, P-5) 

+ [~[MENJ~ - 5 7a l( )P7q MIEN)“] Q7 - 

As constraints led to the solution of the classical SYM theory in terms of certain 

prepotentials, the constraints will allow for the solution of certain supergravity superfields 

in terms of others. The superfield-strength 3MN is a super 2-form. This means that 

3-B = (-)“(N+B)E~ME~N3 MN. If we impose the constraint 3ap = 0, the relations 

E p = ii(ya)aP[E,MaMEpP - E,“d~EpNE~7E7P] , a 

1 
nbC = ijj(Yb) aPE,Ma~fIpC - ianabnac 

+ ~(7d)ap~czbd~aan/3c 

- ~(7b)“Pn,an~d~adc 3 

naa = (~~)ol~E~,~dn?rEp~~E~~ - (‘Ya)7PE7Md~EpNE~, , 
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are found. Thus the conventional constraint results in expressions for the spin-connection 

in terms of the superfield EaM. In the 150(2,1]2) super-gauge theory, n and E are 

. independent gauge superfields. This means that we must relax the conventional constraint. 

However, we will still impose the constraint on Far.. 

The superspace action for the ISO(2,1]1) gauge theory is 

s= 
J 

d3xd28 &m)pvTr [iI’~p3v~m + ilY,3,, + rp[rm, r-y)] 

- SEM” = - ~MK” $ ii(ya)pa(wMaKP - EMPL”) , 

Constructed as a gauge theory, the action is invariant under the ISO(2,1]2) 

transformations 

. (3.7) 

super-gauge 

REM’ = - t3~K~ + EMaLbfZabC - WMapbEabC + zE~~K~(‘y~)~p , 

6nMC = - aMLC - &faLbEabC . (3.8) 

The superfield parameter, K, of the gauge group is expanded over the generators as K G 

KaPa + LaJa + K”Q,. As the gauge group includes bosonic and fermionic translations 

along with Lorentz transformations, these appear with independent parameters in eqn. 

(3.8). The bosonic component parameters of ref. [7] are given by pa = Kal and ra = L”I. 

The spinor super-parameter contains the local supersymmetry parameter via ca = Ka 1. 

The W-Z gauge xcL = lYP] = 0 corresponds to choosing the 0 (0) components of KA and L 

so that the lowest components of EPA and nPa are zero. 

Three dimesnional N=l supergravity is a SCS gauge theory on the coset space 

Iso(2,1]2)/so(2,l). s o t o recover the supersymmetric Einstein-Hilbert action, the spin- 

connection must no longer be independent. It must be given in terms of the dreibein and 

gravitino, as usual. As we saw in eqn. (3.6), the conventional constraint gives us exactly 

this. A solution for the Lorentz parameter in terms of the diffeomorphism parameter may 

be found by identifying GDIFFEM~ E REM A. This identification is as given in ref. [7]. 
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Computing the component ISO(2,112) ac ion may be done in two ways. Equation t 

(3.7) may be directly projected onto components before using the inner product of eqn. 

. (3.3) or we may use the component results of section II. Using the latter method and eqn. 

(2.14), in particular, one finds 

SISO = 
s 

d3x(tmnp [2e,a(dinwpla f WncWpbcabc) 

+ +thp~n~pp - ~(7a)c@Wrnadna+pP 

4 - -vnaa(a[n4p]a) - ~rnadncdpb~abc - dmaenb+pCEabc (3-g) 
3 

+ 2(,7a)ap4matinaPpP + &(7a)a7dmahv-f+pa 

- ij!jpmp&ppp - $ (7a)o17$h7WnaPpa] } - 

(3.10) 

In addition to this, the following constraints must be imposed: 

(enadJnb d- unawnb)Eabc - 2(7~)@,b~“p”~ = 0 , 

(7a)*7(lCln”$na - WnaPna) = 0 

Wn 
a nb 

4 Eabc = 0 . 

These arise from the auxiliary B field’s equation of motion (see eqn. (2.14)). A second 

set of constraints is given by the $J equation: X, = 0. This only serves to define the O(8) 

components of the superfield. As X, = W,I, the field-strenght 3,,l, vanishes. This gives 

V,EmCI = dmevC + ieyaWmbeabc - iemawyb&bc + i2(7c),p~,a~,~ , 

v,nmcl = amWnC + iW,aWmbeabc , (3.11) 

VvEm71 = &ev7 + ~(7a)p7[w~“$m’ - wmaeyP] . 

These results were computed in the W-Z 

expressions in eqn. (3.11) are identically 

eMa = EMU/ , $‘Ma 

Vm E vmaPa + 4maJa 

gauge. Consequently, the right-hand sides of the 

zero. The component fields are defined by 

G EM~I , WM~ E 0~~1 , 

(3.12) 
+ pmaQa . 
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Although the procedure of varying the minimal action with respect to the spin- 

connection gives the correct expression for w, one must in fact impose the latter relation as 

. a constraint. This is the “torsion-free” constraint, Di,e,)a = 0. With this constraint, the 

partition function is defined as a integral over the vielbein, only. The same process holds in 

superfield theories. Here the constraints on the torsions and curvatures (or field-strenghts 

in this case), restrict the number of “fundamental” fields in the theory. Consequently, the 

measure of the partition function is defined only over a subset of the original superfields. 

For the IS0 gauge theories, w, e and T+!J are all independent fields. So they must each 

be integrated over. Had we imposed the conventional constraint, only e and $J would be 

fundamental 3 fields. Hence the constraint was removed. However, in doing so extra fields 

were introduced. These fields were not auxiliary and thus they showed up in the compo- 

nent action. Their role is to maintain the supersymmetry transformation laws when w is 

not a functional of e and +. 

IV. Supersymmetric D=3 Topological Quantum Field Theory 

Topological quantum field theories (TQFT) h ave been constructed in four [l], three 

[lo] and two [l] dimensions. The genesis of these theories is an almost all encompasing 

symmetry of the form SA, = A a. For a manifold with boundary, this symmetry is imposed 

everywhere except at the boundary. In this section, an extension of such a symmetry to 

a supersymmetric version in 2+1 dimensions, will be given. Note that this symmetry 

does not include (super) Yang-Mills transformations. An important use of these theories 

3 In the langauge of superspace, there would have been one such superfield, Haa, 
through which the remaining superfields are defined. The latter superfield is the prepo- 

tential of the D=3, N=l superfield supergravity theory [15,17]. 
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is in the construction of the cohomology of moduli spaces of various (super) Yang-Mills 

configurations. 

In this section, we will only work with minimal super Yang-Mills theory. Then the . 

fundamental superfield is Per. So we would like to gauge fix the symmetry 

6r, =ga . (4.1) 

The first curiosity is whether or not there exist Lagrangians which are invariant under 

the above topological transformations. There are currently two philosophies, the first is 

that ,Co = 0 and the second is that Co is a surface term. Notice that neither theory 

exists classically. They may only exist quantum mechanically. Topological surface terms 

are easily constructed as expresssions which involve a Bianchi Identity (BI). For example, 

the D=4 YM BI, c abcd&Fcd = 0, leads to the P on ryagin density, Tr( F*F). Similarly, t 

in D=3 we have the BI cabc DaFbc = 0; which leads to Tr(F A Dq5) as a surface term. In 

two dimensions, there is the pullback of a symplectic form, J, on some target manifold 

[1,18]. Its form is that of the WZW Lagrangian for the non-linear sigma model of the 

string. Unfortunately, because one has to impose dJ = 0, it is not quite the latter as in 

the string’s spectrum dB = G # 0, where G is the S-form of D=lO, N=l supergravity. 

Returning to the three dimensional supersymmetric theory, we find that there is a 

surface term for the vector superfield. It is 

Lo = -Tr[W”V,@] , (4.2) 

where Q is a scalar superfield. The BI is VoLWa = 0 as is given in section II. Projecting 

this to components is easy: 

so = s d3x Tr[F A DqS] . (4.3) 

There are no supersymmetric completion terms. It is simple to see that this Lagrangian 

is invariant under 6A, = A, and S+ = A, because of the BI. 
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Gauge fixing the symmetry in eqn. (4.1) is done in a BRST invariant fashion. Al- 

though a BRST superspace could be introduced here, it would only complicate the is- 

sue. However, for the Sp(2) invariant BRST and anti-BRST gauge fixing however, such . 

a construction would prove to be very useful. A gauge slice must be chosen. Among 

the wide class of slices, there is one which is of topological interest: “F = D~#J. This is 

the Bogomol’nyi equation [II]. This slice was used in ref. [lo] to construct monople in- 

variants. It is the dimensional reduction of the four-dimensional instanton solution. In 

gauge fixing the dual field-strength, we will literally be creating Lagrangians from nothing. 

What’s more, the energy-momentum tensors will be the BRST (Q) transforms of some- 

thing: Tab = [Q, &,I. Th is means that the Hamiltonians will also be a BRST transform: 

X = [QJoo]. Th ese are all properties of TQFT’s. 

Introduce the BRST operator, 8, by 6 = ic$, where E is a real, constant, anti- 

commuting parameter. If we choose the gauge slice 

W” f V”@ , (4.4 

we see that this would imply the component projections: 

WY1 = L , v7w,l = itcabC(7c)a7Fas , V2Wa = i(7a)aaDaAp , 

@I -4 3 VcY@ f Pa , v2q s A , 

VyV,@I = i(F)a,Da$ + CaTA , 
P-5) 

whichgive*F = D4. Equation (4.4) hasthecorrect dimensionas [(VOL,@,Wa)] = (i,l,$). 

Other component expressions resulting from it may be read off from eqn. (4.5). The spin-0 

component field, A, is auxiliary. Equation (4.4) is then the supersymmetric analog of the 

Bogomol’nyi equation. So we write4 , in space-time superspace, 

p) 
(GF+FP) = ip[IY(Wa + V,@ + ~coB,)i 

4 Traces are implied in all Lagrangians to follow. 

16 



= B”(Wa + V,@ + ;eoBo) 

+ iCu[i(7a)aPVa*p + V2*a] 

. - Ca [V,* + i[q,,@}] . (4.6) 

Here C” is the anti-ghost superfield, @, is the ghost superfield and 8, is the auxiliary ghost 

superfield. The first two superfields are commuting spinors while 8, is an anti-commuting 

spinor. The BRST transformation laws are 

~pra = @a , 8pQ = XP , 

8pra = - ii(7a)“PV,KPfl , 

iip& = $pxP = 0 , 

ipCff = 8” , 

ipB” =0 . (4.7) 

The operator $p is nilpotent on all superfields including IYa. The label ‘P’ indicates 

“primary” as will soon become obvious. 

Now go to the gauge co = 0. Then there is the secondary ghost symmetry 

A 6s*‘a! = v,x , 

isBcy = -i[C,,X} , (4.8) 

iis* = - i[@,X} , 

where X is the superfield parameter of the secondary symmetry (S-symmetry). Once 

again there is a reversal of statistics so X is commuting. This ghost-for-ghosts structure is 

another feature of TQFT’s. It is just the statement that not all of the original symmetry 

(4.1) was gauge fixed in eqn. (4.7). Th e d imensions of the superfields introduced thus far 

are [(r,,ra,~,W,,~l,,~a,\k,Ca,B”)] = ($,l,l,$,i,l,l,%,t). Thenaturalchoicefor 

the gauge fixing of this second symmetry is to demand that $pI’ is orthogonal to the super 
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Yang-Mills transformations. Thus the condition 

V2V”*, + i[C?,*} = 0 , ( 4.9) 

is imposed. The left-hand-side is of dimension 2. When reduced to components, this gauge 

fixing condition yields 

D"+a + i[A $> - i2[X",&} = 0 , (4.10) 

as its lowest component. Here the component fields are defined as $A - QA ], 4 E @ ], 

$ G QJ] and A, E W,. Following the four-dimensional work of ref. [4], we write 

p) 
(GF+FP) = &[kA(V2VaIIr, + i[@,!P} + s[V2N,X}) - 4Ca&] , (4.11) 

A A 

where & z ~5p + 6s and s is a real constant. The complete set of BRST transformations 

read: 
&Tar = xP’(y , &a = Q , 

&ra = - ii(r.)“PV,Q, = aa , 

&Q* = v,x , &xl2 = .-i[@,X} , 
(4.12) 

&CQ = 8” , &B” = -i[P,X} , 

&A = 2N , &N = i$X, A} , 

&x = 0 . 

These have the property that the commutator [&(E~),~T(Q)] acting on any of the super- 

fields (with the exception of X) is a gauge transformation with gauge parameter 2crc2X. 

In this sense, & is not a traditional BRST operator which is nilpotent. The operators bp 

and 6s do not commute. 

Putting these last two sets of equations together with eqn. (4.6), gives the total gauge 
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fixing plus Faddeev-Poppov ghost Lagrangian as lo = ,Ccp) + fZcs): 

. LT = ;(w2 + WaV,@ - @v2@) 

+ ~~a[i(7a),pvtzQp + V2Q,] - C”V,* + 2NVaKPa + AVaVaX 

- i2N[W”,*,} + iA[Wa,V,X} - iA[Qa, qa} - iiA[V’!l!“, \~l~} 

+ iN[@, Q} + ikA[q,q} + i[@,X}[A,m) + i(+/a)“PA[VaQ’,,P,) 

. + i4X[C”, C,} - iCa[QQ,@} 

+ s[X[N,V2N} + ii[X, V2A}[X, A} + ii[V’X, A}[X, A} 

- ii[KlP,V,N}[X,A} + i~[V7V,,N}[X,A} + ii[V7X,V7A}[X,A}] . 
(4.13) 

Notice that the second generation component anti-ghosts appear as the highest components 

of the N and A superfields. On the other hand, the second generation component ghost is 

the lowest (0 = 0) component of the X superfield. The dimensions and ghost numbers of 

all the superfields are listed in Table 1; 

Given the lagrangian (4.8), it is appropriate to ask what the observables are. As 

mentioned in section III, observables will be required to be gauge invariant and generally 

covariant (independent of the metric). As usual, they-are defined as the path integral of 

the associated operator, 0. Such an operator must satisfy [Q, 0) = 0 but 0 # [Q, A} for 

some operator A [I]. 

An operator which satisfies these BRST properties is X. But this is not YM-gauge 

invariant. However, the polynomials TT(X~~) (n = 1,. . . , rank of the group) are gauge 

invariant [l]. Furthermore, these polynomials are metric independent. The cohomology is 

constructed by first defining the invariant (for a rank 1 group, for example) 

i-.&J = +(x2) . (4.14) 
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Next use the fact that [Q,I’A} = \k A with [Q,Kl?A} = VAX, to find the sequence 

0 = [Q,~o) , 

dno = [&J-h} , Rl = Tr(XAxq , 

dR1 = [&$2} , 07, = T+P + XA3) , 

do2 = 19931, , 03 E Tr(xPA 3) , 
(4.15) 

d&s = [Q,n4) , n4 f T43A 3) , 

dR4 = 0 . 

The St, (q = 0,. . . , 4) are super q-forms on the space-time supermanifold. All the expres- 

sions are in terms of superfields with d being the exterior super-derivative [15]. The super 

l-form, @A, which appears in eqn. (4.15) as q, should not be confused with the super 

O-form, [Q, a} = q, which does not appear in eqn. (4.15). Whereas a 4-form does not 

exist in three dimensions, a super 4-form (such a sZ4) does exists in the “five-dimensional” 

superspace we are working in. For example, n&cd = -~(7[bl)Llb~lcdle(7e)rsT7(w~Vrw~), 

is one element in 04. So the structure of the supersymmetric sequence differs from that 

of the non-supersymmetric sequence in that the S-form there is closed. Eqn. (4.15) is 

identical, in form, to the four dimensional result [l]. In fact, the ghost number of n, is 

4 - q. 

The D=3, N=l superspace analogs of the Donaldson invariants [2] are constructed [l] 

form the integrals over the (super)cycles on the (super)manifold: I(C) = SC R,, where C 

is a super q-cycle. As shown in ref. [I], they are BRST invariant since [Q, n,} = dR,-1. 

Hence up to a BRST commutator, these integrals depend only on the homology class of C. i 

The supersymmetric Donaldson invariants are the correlations functions of these integrals. 

More importantly, the correlation functions are independent of the topological structure on 

the super-manifold, since ([Q, 0)) = 0 f or any 0. Thus they are topological invariants. An 

explicit computation of these objects will be left for the future. Note that supersymmetry 
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is manifest because the q-forms were all computed in superspace. 

Earlier in this section, it was mentioned that the Hamiltonians of TQFT’s are the 

. BRST transforms of some operator: X = [Q, Xoo}. Th is means that the vacuum energy 

is zero: (X) = 0. Consequently, as long as the Lagrangian is the BRST transform of 

something, supersymmetry is unbroken. Furthermore, the supersymmetry algebra closes 

onto the BRST commutator of something: [Qa,Qp} = 2(7a)ap[Q,Xoa}, where the Qar’s 

are the supercharges. 

It may be useful to study the theory given by eqn. (4.13) in the context of the space of 

solutions to the Bogomol’nyi equation. Much work has been done on the monopole moduli 

space. An action for the geodesic motion in this space has been given in ref. [20]. The - 

metric (kinetic part) is the integral of the square of the “electric” field. The potential is 

the integral of the kinetic terms of the gauge and Higgs fields. This would be given by 

U = 5 d3xd2d Tr(W2 
J 

- w2q , (4.16) 

in the context of eqn. (4.13). It has been shown [21] that the monopole solutions may be 

constructed from algebraic curves (so called spectral curves) defined by a certain polyno- 

mial equation whose degree is given by the monopole’s charge. Finding the number of Q’a, 

Xl?‘, N and Ca zero-modes may provide a convenient way of obtaining these results. 

V. Conclusion 

Non-minimal D=3, N=l super Yang-mills gauge theory was developed and used to 

construct the super-Poincare’ gauge theory. The additional supermultiplet allows for a 

theory in which the spin-connection, dreibein and gravitino are functionally independent. 

The equations of motion for the auxiliary fields which appear in these super-multiplets 
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place constraints on the new set of fields. 

The topological super Yang-Mills field theory of three dimensions was constructed in a 

BRST invariant manner. Its topological invariants are polynomials in the secondary ghost . 

superfield. The associated moduli space is that of monopole configurations modulo super 

Yang-Mills transformations. The generally covariant observable of the U(1) Chern-Simons 

theory is the Wilson Loop. Supersymmetrization does not alter its value. This is due to 

the fact that in the supersymmetric theory, the fermions are either pure gauge degrees of 

freedom or are auxiliary. In a generally covariant theory, there can be no supercharge. 

The results obtained here open interesting avenues for further research. These include 

the possibility of using the gauge theory of the supersymmetry algebra to study super- 

symmetry breaking. Also, if the gauge group of the topological super Yang-Mills field 

theory is chosen to be ISO(2,112), th e moduli space of gauge superfields modulo local su- 

persymmetry transformations may be investigated. It is straightforward to extend section 

III to a gauge theory of the superconformal algebra. A topological sigma model in three 

dimensions may be constructed in terms of the pull-back of a closed S-form of some target 

(super)manifold. This may be of some use in (super)membrane theory. 
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Appendix: Observables, Phase Factors and Super-Curves 

In topological quantum field theories, the observables must be gauge invariant and 

. generally covariant. For Chern-Simons gauge theory, a class of observables is given by the 

Wilson Loops [12]. 0 ne would like to compute the expectation value of these loops. 

The expectation value of the Wilson Loop gives the Polyakov Phase Factor [14]. This 

phase plays an important role is the theory of fractional spin fields in 2+1 dimensions. In 

particular, the bosons of the CP1 sigma model were shown to transmute into fermions as 

a result of this phase. There the group is U(1) and the manifold is S3. 

Studied in either context, the vev of the Wilson Loop is then an important construct 

in the Chern-Simons gauge theory. However, an ill-defined integral appears and it must be 

carefully regularized. Poyakov did this by regularizing the delta function which appears 

as the integrand of the phase. For generally covariant theories, one would like to regular- 

ize in a manner which maintains general covariance. Unfortunately, the supersymmetric 

Chern-Simons action is not generally covariant outside of the W-Z gauge. This is directly 

because of the manner in which the fermions enter the lagrangian (2.7). So whether or not 

the superspace version of the phase factor needs to be regularized is irrelevant from the 

point of view of general covariance. In either case, one looses manifest general covariance. 

Nevetheless, the superspace theory is interesting in its own right since it allows for knots 

in superspace. Let us look at the superspace integrand for the self-linking number. First, 

a quick (albeit incomplete) review of the self-linking integrand is in order. 

For purposes of the linkage with fraction spin, let us introduce a coefficient, &, in 

front of the U(1) super Chern-Simons action (2.6). It was shown in ref. [14] that the vev i 

of the Wilson LOOP,~ (W), is 

(W> = (ew [i fc dxaAa]) = exp [-i f dxa f dyb (Aa(X)Ab(Y))] . 
C C 

(A4 

2 By the Wilson Loop, we will mean the operator, not its vev. 
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It is then simple to show that, for the Chern-Simons theory, this is 

. 
(W) = exp [ii@(C)] , 

Q(C) = & f dxa f dybc b cx - d” 

C c a c lx - yl3 - 

(A4 

The phase factor @ is known in the mathematics literature as the self-linking number (SL) 

obtained when the Gauss linking number, @(Ci, Ci), is calculated for identified paths, i.e. 

@(C) 7 a?(C,C). It is known that SL is an integer [13]. For the physicist, this is not so 

obvious as the integrand of a(C) is ill-defined near x = y. 

Witten [l2] used a mechanism, called framing, for regularizing a(C) which is essen- 

tially point-splitting. A new curve, let us call it C’, is defined by displacing C in the 

direction of a normal along C. Consequently, one has two closed curves which are every- 

where infinitesimally separated from each other. The original curve, C, becomes a thin 

ribbon. SL is then calculated in the limit where the curves approach each other. In fact, 

a detailed discussion of this framing or ribboning of the U(1) Wilson Loop was previously 

given, in the physics literature, in ref. [19a] (see ref. [19b] also). 

Let us now turn to the supersymmetric theory. We will work with the minimal 

formulation of sub-section 11.1. For our purposes, a super-curve, C, will be a mapping from 

a connected, open interval of R to a super-manifold. It will be parameterized as zA(r) = 

(~“(+P(T)). Th e supersymmetric Wilson Loop then has as its exponent: ifc dzAIA. 

Note that this is generally super-covariant. The U(1) super Chern-Simons action is 

k 
sscs = - 87~ J 

d3xd26’ I’,DpDaI’p . 

By analogy with eqn. (A.2), we can then write the Wilson Loop’s vev as 

(W) = exp r-i h dzA i dd (rA(Z)rg @)>I * (A-4) 

(A.3) i 
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Given eqns. (A.3) and (2.2), it is straightforward to compute the super-propagators: 

(r,(x,e)rp(x’,e’)) = - $+fS2(e - ef)s3(x - x’) , 

(r&C, e)r,(X’, 6’)) = i$eabc(7b)ap~b2(6 - d’)s”(X - X’) , 

(ra(X,e)rb(X’,e’)) = p CabC;D262(d - 6’)b3(x - x’) . 

Let us look at the vector-vector super-propagator. Then we have integrals of the form 

dybEabc kc ; y ,;e;;7;);e9 . 

Y 2 
(A-6) 

Since the integrals in eqn. (A.2) are over the same curves, there is a potential singularity at 

a crossing of the curve. Now, in eqn. (A.6) such a problem does not only occur at crossings 

((x,&) = (Y&J), b u may also occur when (x, 6,) # (y, 0,). There are also all the other t 

points on the cycle where xa - ya = iOp(7a)ap8 p. These may be away from crossings. 

So it would appear that the supersymmetric case is worse than the non-supersymmetric 

theory. 

However, there are no fermions in the spectrum of the pure super Chern-Simons theory. 

Consequently, (W) is identical to that of the pure bosonic theory. This means that the 

8’s contribute nothing to the integral. To see this, recall that supersymmetric invariance 

translates into supertranslation invariance, in the language of superspace. Accordingly, 

simultaneous shifts in the coordinates of the form xa --+ xa’ = xa - ic~(7a)ap8P and 

0: -+ 6:’ = 6: + EFJ, leave the vev, (W), invariant. Choose E, oc 8, and cy o( 8,; then it 

may be shown that the coefficients may be fixed so that eqn. (A.4) reduces to eqn. (A.2). 

So supersymmetry does not improve the integrand. 
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Superfield 

ra 
ra 
a 

WC2 
Qcx 
*a 

\];I 

c" 

8” 
X 
A 
N 

Dimension 
1. 2 
1 
1 
3 
2 
1. 2 
1 
1 
3 
z 
3 2 
0 
1 
1 

TABLE I 

Ghost Number Grassmann Parity 

0 odd 

0 even 

0 even 

0 odd 

1 even 

1 odd 

1 odd 

-1 even 

0 odd 

2 even 

-2 even 

-1 even 

Dimensions, Ghost Numbers and Grassmann Parities of the superfields in the topological 

super Yang-Mills theory of section IV. 
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