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17.1 MATHEMATICAL CONSIDERATIONS 

The trajectory of a particle in a Monte Carlo calculation can be described by position 
and direction vectors 

Z=zi+yj+z& (17.1) 

and 
ir=ui+vj$t&, (17.2) 

respectively, where (2, y, z) are the coordinates of the particle at point P(z, y, z) (e.g., 
see figures below), and ( u, v, w) are its direction cosines (the symbol * denotes a unit 
vector). These quantities, together with such things as particle type, energy, weight, 
time, etc., define the state funcfion of the particle. 

In general1 one is interested in determining the point of intersection P’(z’, y’, 2’) 
of the vector tU with any given surface that constitutes the geometry for the problem 

at hand. To be more specific, the distance f = IPP’l is generally needed in order to 
compare with the actual transport distance that is about to be used in the simulation. 
In the following sections, we will develop the basic mathematical expressions for the 
intersection’of the particle trajectories with plane and conic surfaces (i.e., cylinders, 
cones, and spheres). We will show how they are used in the EGS4 Code System’, which 
should be typical of the way it is done elsewhere. The remainder of this chapter will 
then be devoted to a general survey of some of the more prominent geometry packages 
currently being used in electron-photon Monte Carlo. 

17.1.1 Intersection of a vector with a plane surface. 

A plane surface can be described by the vector to a point P” on the surface 

c = Cli + Qj + csic 

and a unit vector normal to the surface 

m =nli+nj+n&, 

(17.3) - 

(17.4) 

’ Work suppotted in part by the Department of Energy, contract DE-AC03-76SFOO515. 

Chapter !7 (Pages 385-405) in “Monte Carlo Transport of Electrons and Photons, *’ TM. Jenkins, 
W. R. Nelson, and A. Rindi, Editors (Plenum Publishing Co. 1988) 
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Figure 17.1. Vector diagram of particle intersecting a plane surface. 

as shown in Fig. 17.1. 

The condition for the intersection point P to lie on the olane is obtained from the 
vector dot product 

3.e=o. (17.5) 

From the diagram we see that 

fkj&&j&&J-e, (17.6) 

which leads to the solution 
t= (5:~I?)& 

f.fi - 
(17.7) 

Equation 17.7 is indeterminant when 0. fi = 0, corresponding to the physical situation 
in which the particle travels parallel to the plane. The particle travels towards the plane 
when t > 0 and’away from it when t c 0. Expanded into its components, Eqn. li.7 
becomes 

t = (Cl - z)nl + (c2 - y)n2 + (c3 - z)ns 

unltun2twns 
(1i.S) 

17.1.2 The PLANE1 algorithm available in EGS4. 

SUBROUTINE PLANE1 (see Fig. 17.2) of the EGS4 Code System provides an example of an 
algorithm for determining the intersection of a particle tr_qjectory with a plane surface 
using the equations developed above. The components of X and U are available through 
COMMON/STACK/. NP is the stack pointer---i.e., the particle currently being followed-of 
which there can b as many as 40 in the default version of EGS4. The vectors that 
define the plane, C and N, are described by arrays PCOORD and PNORM, respectively, and 
are passed in COMMON/PLADTA/ (for a maximum of 100 planes in this example). 

Except for parameter INPT, which allows for more efficient determination of t > 0 
(“hit”) versus t c 0 (“miss”), the algorithm in PLANE1 is based precisely on the equations 
developed in the previous section. 

17.1.3 Intersection of a vector with a cylindrical surface. 

The example we will use is a right circular cylinder of radius R whose axis of rotation 
lies along the z-axis as shown in Fig. 17.3 . The intersection point P is located by 
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BRDVTINE P~YEICIPLW.INPT.IHIT.'~PU~; 
--- ----------- ,,I 

Input: IPLI Plane identification number I 

IIPT - 1 Surf~co norm1 point0 AWAY from CmTmt region n 
-1 hr-faco noad point0 TOWAND currant region * 

Output: ISIT = 0 Particle trmelm AUAT from •ux3ac~ <a rim) * 
. 1 Pa-tic10 trawla T0UARDS marface (a hit) I 

- 2 Ptiicl* traralm PAMLUL TO l nrtacm (a rim) ” 
lPLI Distance to marface Cshm IEIT=i) I 

--- w---- I. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
urc4o~.IQc4o~.nc4O~.IP; 

WLE PRECISION X; 
!fHOK/PLADTA/F'CDORDC3.100).PBOMC3.100); 

'OTN-PIDlM(l.IPLS)*UCSP) + PllOFlJl(2.IPU)*VCDP) + PSOKRC3,IPLS)*WCSP); 
'OTNP-DD0TWIKPT; 

(DDOTNP.EQ.O.O) t IHIT-2: "Parallel to S-uia (ladotadnant)" 3 
SEIF CUD0TXP.LT.O.O) [ IBIT-0; "Traveliq amy fro= mmtaco"l 
SE [ "Traveliry towudo surfacw-dotor8hodistanco (TPL)I)" 
IHIT-1; 
rPW=PYORnCl.IpLI~.BCD6RDCl.TpLI~-XCIp~~ 

+ PUORnC2.IpLN~*CPCOORo(2.Ipu~-TC~~~ 
+ PKORnC3,IPLII)*CPCDORDC3,IPU)-tClP)); 

TPLS=TPLK/UDOTN; 

3 

RETOFtN; 
END: 

Figure 17.2. Listing of SUBROUTINE PLANEl. 

vector ?, whose G-component is defined by 

? = (li’.k)ii = (2 + tw)jc , 

since 

The radial vector 

fi = 2 - * = (Z t tUji + (y + tu)j 

- - e-’ 
can then be squared (i.e., R * R) to give the quadratic equation 

(2 $ u’)P t 2(zu t yu)t t (2 + yf - II’) = 0 . 

The solution of this equation can be written 

where 

t 
=-/3fp=G, 

4 

a = u2 + w2 , 

B =zutyu, 

7 =s’+y’-Ai’. 

(17.9) 

(17.10) 

(17.11) 

(17.12) 

(17.13) 

(17.14) 

3 
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Figure 17.3. Vector diagram of particle intersecting a cylindrical surface. 

A few special cases are worth discussing. First, since 

u’$uf+tus=1, (17.15) 

o = 0 implies that w = fl, so that ihe particle travels parallel to the cylinder surface 
and does not intersect it (except for the trivial case where 7 = 0 - i.e., on the surface 
itself). Note that 0 5 o 5 1 also follows from Eqn. 17.15. 

Second, when 7 < 0, the particle travels inside the cylinder, in which case the 
solution of interest is the positive one, as depicted by the solid line portion of (a) in 
Fig. 17.4. 

&---------------w(d] 

Figure 17.4. Possible trajectories intersecting a cylinder (starting and inter- 
section points indicatd by squares and crosses, respectively). 

Finally, when 7 > 0, the particle travels outside the cylinder and several situations 
present themselves. If p2 < cry, there are no real solutions, which represents a particle 
completely missing the cylinder (e.g., see (d) in Fig. 17.4). The “grazing” solution, 
corresponding to ,62 = ~7, is also not of particular interest to us. However, when 
/3’ > ~7, two real solutions exist-either both negative (~9 > 0) or both positive (p < 0), 
as depicted by (c) and (b), respectively, in Fig. 17.4. Of course, we are only interested 
in the smaller positive solution. 

One can easily find solutions for particle trajectories intersecting other conic sur- 
faces (e.g., spheres and cones), including those that have been translated and rotated 
relative to the defining coordinate system. In the following section, we will show how 
the above equations are put to use in an auxiliary subprogram that comes with the 
EGS4 Code System. 
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17.1.4 The CYLNDR algorithm available in EGS4. 

SUBROUTINE CYLNDR (see Fig. 17.5) of the EGS4 Code System provides an example of 
an algorithm for determining the intersection of a particle trajectory with a cylinderical 
surface using the equations developed above. As in the case of SUBROUTINE PLANES, 
the components of 2 and 0 are available from EGS4 by means of COMMON/STACK/. 
The cylinder radius is passed in COMF!ON/CYLDTA/ (for a maximum of 75 cylinders in 
this example). To make the algorithm more efficient, the user is expected to supply 
pre-knowledge about whether the current position of the particle is inside (INCY=l) or 
outside (INCY=O) the cylinder. 

. 

A difficulty can arise for a particle traveling very close to the cylinder surface, 
particulary at a glancing angle. For a given machine precision, the quadratic solutions, 
together with the way EGS4 uses them, can result in a particle being ‘stepped” sideways 
to the surface. Albeit a very small amount, this can cause enough error in the true 
position of a particle to confuse the user’s boundary tracking program (i.e., SUBROUTINE 
HOWFAR), generally with the result.that the program gets caught in an infinite loop. An 
attempt to resolvesuch difficulties hak been addressed by Stevenson2, and those portions 
of the algorithm involving the parameter DELCYL are a direct result of this study. Aside 
from that, the algorithm in CYLNDR is based precisely on Eqn. 17.13 and Eqn. 17.14. 

As a practical matter, the use of a DUCYL-value of i .OE-4 cm has been found 
to work satisfactorily in most situations. For very small cylinders, the user may need 
to reduce the value to l .OE-5 (or even l .OE-6). However, for very large cylinders 
(e.g., R x 10 cm or larger), a choice of l .OE-3 may be required in order to avoid the 
infinite-loop syndrome. The user can experiment with DELCYL and change its value in 
a dynamic way, as dictated by the particular problem at hand. Alternatively, one can 
select a small number for DELCYL, such as l .OE-6, and perform the entire calculation 
with higher precision. The AUTODBL option associated with FORTRAN compilers on 
IBM computers provides an easy way to accomplish this feat without having to re-code 

EGS4. 

17.2 GEOMETRY CONSIDERATIONS IN THE EGS4 CODE SYSTEM 

17.2.1 The EGS4 User Code concept. 
a- 

The EGS4 code itself consists of two user-callable subroutines, HATCH and SHOWER, 
which in turn call the other subroutines in the EGS4 code;-some of which call two user- 
written subroutines, AUSCAB and HOWFAR. The latter determine the output (scoring) and 
geometry, respectively. The user communicates with EGS4 by means of various COMYON 
variables, and is required to write a MAIN driver program which, together with AUSGAB 
and HOWFAR (and any auxiliary subprograms), consititute what is commonly referred to 
as the EGS4 User Code (e.g., see Chapter 12). 

In general, any geometry initiahzation needed by HOWFAR is performed in MAIN. 
.Although the user most typically “hard codes” the various geometry parameters within 
MAIN itself, there really is no restriction on how this is done. To this end, ‘card”-input 
systems similar to those used in MORSE-CGs or in FLUKA’l’ can be implemented, even 
though this is not a general feature of EGS4. An example of how to adapt the MORSE- 
CC system to EGS4 is provided by the User Code called UCSAMPCG MORTR.4N (file 
#5S on the EGS4 Distribution Tape). 
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UBRDUTIWE CYLWDR~ICYL.INCY.IHIT,TCYL); 
__------------~~~~~ ~~~ 

Input: ICYL CFlinder identificationnumber . * 

IlCY = 1 Current putich position i8 IISIDE cylinder " 
- 0 Current putich position h OUYSIDE cFliadu " 

Output: IHIT - 1 Puticle traj*ctory KITS muface I 

- 0 Prtticle trajectory lIISsEs l urfaco * 
TCYL Dktanc. (shorteat) to mtrhce (da IHIT-1) * 

D~DY/STA~/E(40),1(40),y(40).2(40).~(40).y(40).~(40).D~~(40). 
. UT(4O).IQ(4O).IR(4O).YP; 

0ml.F PREcIsIoY E; 
O~DN/CYIl)TA/CYR*D2(y5); 
tATA DELCYL/l.OE-4/; "Clam qproxb pu~mta ior l uF getmaF" 

LFIiA-U(nP)*ucnF) l ToF)*Von9; 

F (ALPHA.EQ.O.0) [ XXII-O; *Purllel to t-uim <hd*tuhmnt)" 3 

ISEt 
BETA-X(EP).u(SP) + y(n)*v(rP): 
G~=X(nP)*X(YP) + YcnFP)*YoIF) - cmmmcT-0: 

"Define mm. locd ruiablw next" 
A~oSQRT(ArP~);PCn-srrA/ACYL: CCYL+AKtU; ARCCY-BCYL*BCYL - CCYLL; 

IF (ARGCY.LT.O.0) t IHIT-0; "ImaSiay solutions" 3 
ELSE [ "Real solutions (traatingmcbina prociaion difffculti*s)" 

IF (ABS(CCYL).LT.DELCYL.ASD.ISCY.~.O.ASD.BCyL.GE.O.O)t IHIT-0; 3 
ELSEIF (ABS(CCYL).LT.DELCYL.AND.INCY.EQ.i.AYD.BCYL.LT.O.O)t 
IHIT-1; TCYL--2.O*BCYL/ACYL; 

3 
USE t 
IF (IIICY.EQ.I.AND.CCYL.CE.O.0) C 
IHIT-1; TCYL=DELCYL; 

I 
ELSEIF (INcY.EO.~.AND.CCYL.LE.~.~) C 
fHIT=l; TCYL=DF.LCYL; 

3 
ELSE [ "llormal hit-or-miss solutions" 

IF (CCYL.LT.0.C') [ "I~zi5c cyli~.-'or" -- - 
IHIT=l; TCYL=(-BCYL + SQRT(ARGCY))/ACYL: 

3 
ELSEIF (BCYL.LT.O.0) [ "Outride hd moving toward.) cYlinder" 
IHIT-1; TCYL=(-BCYL - SQFiT(ARGCY))/ACYL; 

3 
ELSE [ IHIT-0; "Outaide (but moving l n, from cYlindcr)" 3 

3 
I 

-* 

3 
3 d-. 

RETURN ; 

Figure 17.5. Listing of SUBROUTINE CYLNDR. 

17.2.2 Specifications for (and an example of) HOWFAR. 

-On entry to the geometry subprogram HOWFAR, EGS4 has determined that it would like 
to transport the top particle on its stack (identified by NP) by a straight-line distance 
USTEP. The state-function parameters of the particle are available. to the user via COM- 
MON/STACK/ as described previously. The user controls the transport by setting the 
variables USTEP,IDISC, IRNEW and,in some instances, DNEAR(NP). 
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Except for the last variable, which is in COMMON/STACK/, they are available to the 

.._.., . . user via COMMON/EFCONT/. The various ways in which they may be changed, and the 
way EGS4 will interpret these changes, is discussed in great detail in the EGS4 User 
Marmall, and we will not duplicate that effort here. Instead, we will give a simple 
HOWFAR example using the PLANE1 and CYLNDR routines discussed above, which should 
provide the reader with a reasonable idea of how geometries are generally handled in 
the EGS4 Code System. 

Consider a cylindrical target struck by an incident electron beam as shown in 
Fig. 17.6. The cylinder of rotation about the z-axis is identified by Box 1. There 
are four regions of interest-the target (region 2) and three vacuum regions upstream, 
downstream, and surrounding the target. The extent of the target along the z-direction 
is determined by two end planes, identified by Triangles 1 and 2 that point in the 
direction of the defining unit normal vectors: 

and 

PNORM(l,l)= 0.0 

PNORM(2,1)= 0.0 

PNOIU(3,1)= 1.0 , 

PNORM(1,2)= 0.0 

PNORM(2,2)= 0.0 

PNORM(3,2)= 1.0. 

(17.16) 

(17.17) 

The target length, T, is 

T = PCOORD(3: 2) - PCOORD(3,l) (cm) (17.1s) 

(all the other PCOORD-values are zero), and the radius, R is defined by 

R2 = CYRADZ(1) (cm’), (17.19) 

where all the quantities are (generally) defined in MAIN and passed to HOWFAR in 
COMMON/PLADTA/ and COM?+lON/CYLDTA/, as wehaveindicated earlier. 

y Cx into paper1 
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2 

Figure 17.6. Cylinder of rotation about the z-axis bounded by two planes. 
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With EGS4, the actual transport of electrons and photons is performed in sub- 

. routines ELECTR and .PHOTON, respectively. I.n the~default version (Le., no electric or 
magnetic fields), a simple translation is done; namely, 

jz,=jz+rir, (17.20) 

where 2, is the new vector position of the particle after being translated the distance 
C (i.e., variable US?zp in the code). However, before the transport takes place, HOUFAR 
is called by one of these subprograms in order to allow the user the opportunity to 
“interact” with the process-e.g., shorten L, stop a process entirely, etc. 

For purpose of illustration, we will assume that the incident electron initially starts 
out in region 2, and that all particles leaving the target are to be “discarded”. Referring 
to the listing given in Fig. 17.7, the way this is accomplished is to change IDISC= 
(default) to IDISC=l ( i. c., from no-discord to discard) whenever a particle is somewhere 
other than in region 2, and to return to the calling program. EGS4 will handle the rest, 
including calling AUSGAB in order to allow the user to score quantities of interest-e.g., 
backscattered electrons, forward bremsstrahlung, lateral energy escape, etc. 

Cylinder of rotation about the z-aria bounded by two plaues. " 
,____---------------------- --------..*a 

:OHIN/CYLDTA.EPCONT.PLADTA.STACK/; "(See tat for l plarmtion)" 

:F (IRW9.YE.2) [ IDISC=l; "Dimxrd puticlas outmidc the target” 3 

XSE [ "Track putichm within tha target" 

CALL CYLNDR(l.l,IHIT,TCYL): "Check the cylinder l rfaca" 
IF (IHIT.EQ.1) C "Surface ia hit---m&km chaagem if neceesar~** 

IF (TCYL.LE.USTEP) DJSTEF-TCYL; IRNEY4;1 

3 

CALL PLANEl(2.1,IHIT.TFLN); "Check the domrtrmm plane" 
IF (IHIT.EQ.~) t 3urface is hit---make changes if XIWSS~~* 
IF (TFLN.LE.USTEF') lXJSTEP=TFLN;IRh'EU-3;I 

I 
ELSEIF (IHIT.EQ.O) C "Beading backwards" 

‘CALL PLANEl(l.-l.IHIT,TFLN); "To get 'IpLN-ralua (IHIT-1, a mat)" 
IF (TPLN.LE.USTEF) ~STEF-TPLN; IRNEU-1;l "Xake n.cessar~ changes" 
. 

RETURN i 

Figure 17.7. A simple example of how to write SUBROUTINE HOWFAR. 

In this example, all of the particle transport takes place in region 2 where it is 
HOWFAR's job to decide whether or not the current size of I =USTBP is such that X,,, 
remains within the target boundaries. Specifically, one must determine the distance 
from the particle’s current position to a point of intersection with a boundary, denoted 
by t in the previous sections involving subroutines CYLNDR and PLANEI. If .f < t, the 
translation is allowed and one can return to the calling program without further ado. 
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On the other hand, both USTEP and IRNEW (the new region in which the particle will 
,eventual)y end up), will have to be changed if L 1 t. 

Since one does not know a priori which surface is intersected “first”, all surfaces 
must be checked in order to obtain the smallest t. A htle reflection should convince 
the reader that it does not matter in which order the calls are made, but & surfaces 
must be checked. The small exception to this statement, of course, involves two parallel 
planes; namely, if the first plane is “hit”, one does not have to bother with the second 
plane. Furthermore, if it is known beforehand that the radiation prefers (statistically) 
to strike one plane rather than the other, the user can take advantage of the fact and 
force a call to the preferred plane first (e.g., the ‘downbeam” plane). 

Together with earlier discussions about PLANE1 and CYL?JDR, the listing in Fig. 17.6. 
demonstrates how the user should construct SUBROUTINE HOWFAR, at least for the ex- 
ample presented. However, the statement 

COMIN/CYLDTA,EPCONT,PLADTA,STACK/;, 

still requires some clarification. Without going into detail at this point, suffice it to say 
that a COMIN statement is a macro that is part of the EGS4 Code System, providing 
the user with a compact way of writing COMMON statements. The EGS4 Code System is 
written entirely in the Mortran3 language6which has a macro facility for accomplishing 
such tasks (additional information on Mortran3 macros is provided in the EGS4 Code 
System documentation* ). 

17.2.3 Auxiliary geometry subprograms available with EGS4. 

A variety of subprograms, designed to aid the user in creating relatively sophisticated 
User Cedes, arc ovr&hle with the EGS4 Code System* . In the previous sections, 
we have taken a close look at CYLNDR and PLANEl, including the mathematics that 
forms the basis of them. We will not go into further mathematical detail in this section 
since the basic idea and methods are the same. Instead, we will simply itemize which 
subroutines are available, and provide a terse description of their main features and use. 
Each routine is self-documented by means of commentary contained within the coding. 

PLANEl- Determines if particle trajectory sthkes a planar surface. Returns trajec- 
tory distance (TPLN) (see Section 17.1.2). --. 

CYLNDR- Determines if the particle trajectory strikes a cylindrical surface. Returns 
trajectory distance (TCYL) (see Section 17.1.4). 

CONE- Determines if the particle trajectory strikes a conical surface. Returns 
trajectory distance (TCON). 

SPHERE- Determines if the particle trajectory strikes a spherical surface. Returns 
trajectory distance (TSPH). 

CHGTR - Changes USTEP and IRNEW whenever USTEP is larger than the trajectory 
distance (TPLN, TcYL, TcON, TspH). 

FINVAL- Determines the coordinates of the particle trajectory at the point of an 
intersection with a given surface. 

- 

* e.g., see file GEOMAUX MORTRAN (#26) on the EGS4 Distribution Tape. 
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PLAN2P- Determines the intersection point for two parallel planes by calling PLANE1 
. twice (when necessary), and CHGTR if a plane is hit. 

PLAN2X - Determines the intersection point for two crossinq planes by calling PLANE1 
twice (always), and CHGTR if a plane is hit (PLAN2X is slightly less efficient 
than PLANZP). 

cYL2 - Similar to PLAN2P, but for concentric cylinders. 

CON2 - Similar to PLAN2P, but for concentric cones. 

SPH2 - kilar to PLANZP, but for concentric spheres. 

As an example that demonstrates how the writing of SUBROUTINE HOWFAR can be 
simplified with the aid of the routines listed above, consider the example given in the 
previous section (see Fig. 17.7). Using SUBROUTINE PLAN2P, && lines of code involving 
two calls to PLANE1 can be replaced by a &Q& caIl as shown in Fig. 17.8 . 

SuBROmINE HOUPAFL; 

n Cylinder of rotation abo& the s-axis bounded by two planes. " 
"--,,-u--------- --_---_ m--mpp-----M 

COMY/CILDTA.EPCONT,PLADTA,STACK/; *We tart for l rplmation)" 

IF (IR(NP).EE.Z) C IDISC=l; "Discrrdparticlcs outside the target" 3 

ELSE [ 'Track particles within the tuget” 

CALL CULNDR~l.I.IHIT,TCYL~; "check the cylinder m&ace" 
IF (IAIT.EQ.1) [ CALL CHGTR(TCYL,I); 3 "Chaqc if necessary" 

CALL PLAN2Pt2.3.1.1.1.-1); n Check the donutram plane first and” 
w thea the upstream on. if necessary" 

3 . 

RETURN ; 

Figure 17.8. Simplification of the previous SUBROUTINE HOWFAR listing. 

We have also made use of CHGTR, which admittedly is somewhat trivial in the 
present example and, in fact, may even slow things down due to “overhead” costs 
involved in calling subprograms. However, we do gain in modularity and code readability 
and, as we shall discuss shortly, one can completely eliminate this overhead with the use 
of macro equivalents in place of the conventional CALL statements. Before explaining 
this, however, we wilI give another very practical exampIe. 

Consider an electromagnetic cascade shower counter made up of alternating slabs 
of material along the z-axis (e.g., Pb-scintillator layers) and bounded in the x- and 
y-directions by two pairs of planes to form a right parallelepiped-i.e., a box of slabs. 
Since we have already pointed out that (almost) all surfaces must be checked to see if 
they are hit, it becomes apparent that SUBROUTINE HOWFAR consists primarily of three 
successive PLANZP ds: 

Two x-planes - CALL PLAN2P(IPLNX1,IRGNX1,1,IPLNX2,IRGNX2,l); 

Two y-planes - CALL PLAN2P(IPLNY1,IRGNY1,l,IPLNY2,IRGNY2,1); 

10 
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. . . . 

Many z-planes - CALL PLAN2p(IPLNtl,IRCNZl,l,IPLNZ2,IRGNZ2,-1);. 
. . ., I.. 

The reader should consult the code listing for PLAN2P for an explanation of the calling 
parameters. The important point in this example is the significant reduction of coding 
effort as a result of using PLANZP. With more complicated geometries, thts becomes even 
more apparent, as demonstrated in a recent paper by Nelson and Jenkins’. 

17.2.4 Mortrrn3 and macro forms of the geometry routines. 

The EGS4 Code System relies heavily on eztensions to the Mortran3 language in 
the form of a set of macros that reside in the file called EGSIMAC MORTRAN (#20 
on the EGS4 Distribution Tape)* . One of the new features in EGS4 is the addition 
of a set of geometry macros that perform the same task as the subroutines listed in the 
previous section, but in a more efficient way since the sole purpose of each macro is to 
place subroutine code directly in-line. In other words, the overhead of performing an 
external call is obviated. 

We will not go into any detail on geometry macros other than to give a terse 
example to show how things work. Consider in Fig. 17.8 the statement 

IF (IHIT.Eq.1) [ CALL CHGTR(TCYL,4); 1 , 

which performs the same task as the few lines of code in Fig. 17.7. The equivalent 
macro template would look like 

IF (IHIT.EQ.1) [ SCHGTR(TcYL.4); 1 , 

which would git operated on by the following replacement macro: 

REPLACE <$CHCTR(*,#);) WITH 
(IF({PI).LE.USTEP) CuSTEWPi1; IRNE+{P2);1) . 

The first II isigns TCYL to (Pl), the second t assigns 4 to <P2). The replacement code 
is then inserted directly at the location of $CHCTR, such that the resultant code looks 
like: 

IF (IHIT.Eq.l) [ 
IF (TvAL.LE.usTEp) [USTEP=TCYL; IRNEW=~;] 
3 

In other words, we get the same in-line code that we originally started with (see 
Fig. 17.7)-i.e., we get modularity, readability, and speed. 

- 

With this digression behind us, suffice it to say that the geometry macros are only 
slightly more complicated than the example above. They are used in the same way s 

* See Chapter 12 for a discussion of Mortran3 macros. 
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SuBRDuTIYE IIOYFAR; 

" Cylinder of rotation about the t-axis bounded by tvo planes. I 

CO~fI/C1LDTA,.IPCOII.P~DTA,SIACK/; *(S** tut for l pluution)" 

IP (IR(NP9.IE.2) [ IDISC-1; "Discudputiclos outside the tu@” 1 

USE C 'Trsck particles within tba tar+" 

tCYLMDR(l,l.IlIIT,TCYL); Vheck the cylinder l rface" 
IP aHIT.fD.1) [ sCHCTnmYL.4): "Cbangc if nec*ssal-y 3 

SPLAti2P(2.3.1.1,1.-I); m Check the downstram plane first and" 
* then the upstrum one il necessary" 

3 

-; 
END; 

Figure 1'7.9. SUBROUTINE HOWFAR listing using macros instead of CALL state- 
ments. 

CALL statements are used. Thus, the example that we have been following could have 
been written as shown in Fig. 17.9 . 

17.2.5 Other EGS4-related geometry packages. 

A general purpose EGS4 User Code to do Cartesian coordinate dose deposition studies 
has been designed by Rogers*. This User Code, called XYZWRN.MOR, makes use of 
$PLAN2P and associated macros to construct SUBROUTINE HOWFAR. Rectangular parallel 
beams of photons or electrons are incident on the x-y surface at an arbitrary angle 
relative to the z-direct&. lZv=iy voxel (volume element) can have difierent mzieria;s 
and/or varying densities (e.g., for use with CT data input). Voxel dimensions are 
completely variable in all three directions. 

A similar Cartesian geometry package has been designed by Stevenson9 . Although 
ifis not presented with any particular application in mind, it does demonstrate how 
one uses the’$PLANEl and $PLAN2P (also called $PLANEZ) macros to create a rectilinear 
system of volume elements, using a region numbering system similar to that used in 
FLUKA4~6 . 

_. 

General purpose geometry routines are convenient for many applications, although 
the ease in not having to write the code can cost CPU time. When the geometry is 
very regular, as is so often the situation, substantial savings (e.g., 20% to 40%) can be 
obtained using special purpose coding* . 

12 
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17.3 COMBINATORIAL GEOMETRY 

Geometry routines were devised to make defining complex geometries relatively simple 
for the user. An early, and relatively good, example of such a routine is Combinatorial 
Geometry, developed by MAGI” and eubsequently adapted for use in the MORSES 
Monte Carlo neutron and gamma-ray transport program. It has since been added to 
FLUKA’n’, ACCEPT”, and to the EGS4 Code System in the form of a specifically 
designed User Code called UCSAMPCG (file #58 on the Distribution Tape). 

The combinatorial method of specifying input zones in solid bodies is usually more 
intuitive and simpler than specifications in terms of boundary surfaces. Combinato- 
rial Geometry describes complex three-dimensional configurations by the use of unions, 
differences and intersections (OR and AND boolean algebraic equations) of simple ge- 
ometric bodies. The geometric description subdivides the problem space into zones 
which are the result of combining one or more of the following simple bodies. 

RPP - Right Parallelepiped with sides that are parallel to x, y, and z, the minimum 
and maximum values of which are specified. 

BOX - RPP arbitrarily oriented in space. Three mutually perpendicular vectors 
are specified. 

SPH - Sphere. The vertex and a scaler denoting the radius, R, are specified, 

RCC - Right Circular Cylinder. The vertex of the center of the base, the height 
vector, and a scaler denoting the radius, R, are specified. 

REC - Right Elliptical Cylinder. The coordinates of the center of the base ellipse, 
the height vector, and two vectors in the plane of the base defining the 
major and minor axes are specified. 

TRC - Truncated Right Angle Cone. The vertex of the center of the base, the 
height vector, and two scalers denoting the radii of the upper and lower 
bases are specifed. 

ELL - Ellipsoid. Two vertices denoting the foci, and a scaler, R, denoting the 
length of the major axis are specified. 

WED - Right Angle Wedge*. Three mutually perpendicular vectors are specified. 

ARB - Arbitrary Convex Polyhedron (4, 5 or 6 sides). An index to each vertex is 
assigned, and the x, y and z coordinates for each are given. Each of the 
‘six faces are then described by a four-digit number giving the indices of 
the 4 vertex points in that face. (If there are less than six faces, zeros are 
entered for the non-existent vertices.) For each face, these indices must be 
entered in either clockwise or counterclockwise order. 

All body types except the right parallelepiped may be oriented arbitrarily with 
respect to the x, y and z coordinate axes describing the space, but the RPP body type 
must have sides which are parallel to x, y and z. 

A special operator notation involving the symbols (+), (-) and (OR) is used to 
describe the intersections and unions of these simple bodies. Whenever a body appears 
in a zone description with a (+) operator, it means that the zone being described is 
wholly contained within the body, whereas if the body appears in a zone description with 
a (-) operator, it means that the zone being described is wholly outside the body. If the 

* Also denoted RAW. 

13 
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body appears with an (OR) operator, it means that the zone being described includes 
all points in the body. Sometimes, a zone may be described in terms of subzones lumped 
together by (OR) statements. Subzones are formed as intersects, and then the zone is 

formed by the union of these intersects. 

When (OR) operators are used, there are always two or more of them, and they 
refer to all body numbers which follow. That is, all body numbers between (OR)%, or 
until the end of the zone cards for that zone, are intersected together before the (OR)% 
are performed. The body types (except RPP) are shown in Fig. 17.10, and the right 
parallelepiped (RPP) is shown in Fig. 17.11. 

Table 17.1 gives the input required for these geometrical bodies as required by the 
Combinatorial Geometry package used either in MORSE or EGS. 

Table 17.1. Input Required for Various Bodies in Combinatorial Geometry. 

TYPE IALP Real data defining Particular Body Number of 

3-5 7-10 11-20 21-30 21-40 41-50 51-60 61-70 cards needed 

BOX assigned Vx Vy Vz Hlx Hly Hlz 1 of2 

by user H2x H2y H2z H3x H3y H3z 2012 

RPP or by Xmin Xmax Ymin Ymax Zmin Zmsx 1 

SPH code if Vx Vy Vz R 1 

RCC left Vx Vy Vz Hx Hy Hz 1 of2 

blank. R 2of2 

REC Vx Vy Vz Hx Hy Hz 1 of2 

Rlx Rly Rlz R2x R2y R2z 2of2 

ELL Vlx Vly Viz v2x v2y v2z 1 of2 

R 2of2 

TRC Vx Vy Vz Hx Hy Hz 1 of2 

Rl R2 2of2 

NED or vx vy vz I& Hly Hlz 1 of2 

RAW H2x H2y H2z H3x 113~’ ‘H3z 2of2 

ARB Vlx Vly Viz v2x v2y v2z 1 of5 

v3x v3y v3z vet v4y v4z 2of5 

v5x vsy vsz V6x V6y V6z 3of5 

v7x v7y V7z VEX V8y V8z 4of5 

Face descriptions 5 of5 

Note: a’= (Hlx, Hly,Hlz), etc. 

14 
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SPH 

WED 

TRC 

RC(= 

2 a . . . . . . . . . Vl * b 
R 

ELL 

ARB 

Figure 17.10. Body types and required input dimensions (Combinatorial Ge- 
ometry). 
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X 

xmsr - 

Y 

Figure 17.11. Right parallelepiped (RPP) with required dimensions (Combi- 
natorial Geometry). 

17.3.1 Constructing bodies using Combinatorial Geometry. 

A problem geometry is constructed by 

1. Defining the location and orientation of each body required 

for specifying the input zone. 

2. Specifying the input zones as combinations of these bodies. 

3. Specifying the volumes of the input zones (if necessary). 

4. Specifying the material in each input zone. 

As an example, take the intersection of a sphere and a cylinder as shown in 
Fig. 17.12. The location and orientation of each body (SPH and RCC) would be spec- 
ified with cards similar to those of Table 17.1. The various zones, described by ?he 
input cards, are shown under the different combinations. If the zones can be consid- 
ered bs common (e.g., the same material), as in Fig. 17.12(c), the description would be 
OR +lOR +2. That is, the zone is composed of either the sphere (Body 1) or the cylin- 
der (Body 2). If there are to be two zones as shown in Fig. 17.12(b), or Fig. 17.12(d), 

-the zone descriptions would be; (b) Zone 1: $1; Zone 2: +2 -1; and (d) Zone 1: $1 
-2; Zone 2:. $2. Where three zones are defined *as in Fig. 17.12(e), the zones would 
be described by; Zone 1: $1 -2; Zone 2: +2 -1; Zone 3: $2 +l. Note that in all 
these examples, each zone is described only once. That is,..a particle can be in only one 
zone. In Fig. 17.12(c), the geometry defines only one zone. But in the others, there are 
multiple zones, and each zone is defined in only one place. It is important that every 
spatial point in the geometry be located in one, and only one, zone since otherwise the 
program will fail (with appropriate error messages). 

When constructing a geometry, one should also try to avoid defining bodies which 
share a common boundary surface since the program might have difficulties determining 
in which zone a particle is located. A small overlap is preferable. At the same time, 
the user must make certain that the overlap is contained in only one of the zones. For 
example, if Fig. 17.13 were composed of two cylinders which butted against each other, 
they shouldn’t share a common surface hs in figurel7.!3(a), but should overlap as in 
Fig. 17.13(b). Th e size of the overlap isn’t important since it subsequently disappears 
in the zone description given below Fig. 17.13(b). 

16 
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Figure 17.12. Zone descriptions for a sphere (SPH) and a cylinder (RCC) 
input. 
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Et OOY 
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(” 
OOY . . . . . 

I..... 
1 

. . . . . 
---I 

1 BOOY 0 I..... 1 . . . --- -- . . . 3 . . . ..I ..I . . 
I..... I 

. INPUT 

ZONE -I 

1 -1 l l *2 
_’ 

2 -29 02 -l- ‘4 -1. 

3 -3 -2 -1 

= Indxstrr rhadrd zone 

Figure 17.13. Zone description for two cylinders (RCC) which share a common 
boundary. 

The universe for Combinatorial Geometry is defined (limited) by the outermost 
body which must enclose all other bodies within it. In order to turn tracking off (i.e., 
to have a discard region), this last body is defined as a null region. Fig. 17.13(c) 
illustrates this last point with the addition of Body 3 surrounding the two cylinders. In 
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the zone description, Zone 3 would be a null zone, and all particles entering it would 
immediately be discarded. 

17.3.2 An example of a complex MORSE-CC geometry. 

As an example of a reasonably complex geometry constructed with Combinatorial Ge- 
ometry, a typical medical accelerator room (with roof removed for better viewing) is 
shown in Fig. 17.14 . This geometry was used for transmission as well as room scattering 
studies for both neutrons and gamma rays. The input code that created the geometry 
is shown in Fig. 17.15. 

MedIcal Accelerator Room 

Figure 17.14. A typical hospital medical accelerator room. 

A more recent trend in geometry packages has been to define relatively simple 
shapes using, for example, Combinatorial Geometry (with additional shapes, such as 
trapeziods, tubes, segments of cylinders and cones, etc), and then to replicate these 
shapes anywhere in space (i.e., with any orientation and any size) to form complex 
geometries where repetitive shapes art found, as-is the csst in many of the high-energy 
particle accelerator detectors. However, one should realize that there is a trade-off 
between ease of use of a geometry package and computer ‘time. The geometries that 
allow the user to construct intricate geometries most easily may not have the best 
tracking algorithms. 

17.4 ‘GEOMETRY PACKAGES IN ETRAN. ITS AND FLUKA 

17.4.1 ETRAN 

The ETRAN code12*, as it is distributed by the Radiation Shielding Information Center 
@SIC) at the Oak Ridge National Laboratory, is capable of treating: 

1. A set of homogeneous, semi-infinite slabs (1-D). 

2. A set of homogeneous, concentric, right circular cylinders of finite length (3-D). 

* Also see Chapters 7 and S. 
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ONJEHT - A nEDICAL ACCUEnATORMon IIIPUY GEOIETRY 

RPP 1 -396.6 618.6 -976.0 411.8 -244.0 290.0 
IIPP 2 -366.0 366.0 -946.6 381.3 -132.0 234.0 
ma 3 -162.6 -730.1 -131.99 -122.0 -736.1 -131.99 

-122.0 -738.1 233.99 -162.6 -738.1 233.99 
-162.6 -666.S -131.99 0.0 410.0 -131.99 

0.0 410.0 233.99 -162.6 -666.0 233.99 
1234. 4166. 8667. 1326. 6612. 3784. 

An34 -121.99 -138.1 -131.99 64.9 -730.1 -131.99 
M.9 -738.1 233.99 -123.99 -736.1 233.99 

366.99 -228.1) -131.99 366.99 -427 .O -131.99 
366.99 427.0 233.99 366.99 -226.0 233.99 

1234. 4166. 8667. 7326. 6612. 3184. 
WED6 -366.99 404.0 -131.99 0.0 -69.0 0.0 

289.7 0.0 0.0 0.0 0.0 366.96 
ARN 6 -106.8 403.99 -131.99 -76.3 403.99 -131.99 

-76.3 403.99 233.99 -106.8 403.99 233.99 
-183.0 -320.3 -131.99 -76.3 -320.3 -131.99 
-76.3 -320.3 233.99 -183.0 -320.3 233.99 

1234. 4168. 8667. 7326. 6612. 3704. 
UED Y -366.99 403.99 -131.99 0.0 266.7 0.0 

269.16 0.0 0.0 0.0 0.0 366.98 
ED s 366.99 361.23 -131.99 0.0 -226.8 0.0 

-226.7 0.0 0.0 0.0 0.0 366.96 
ARN 9 618.49 -976.99 -131.99 618.49 -274.6 -131.99 

618.49 -274.6 233.99 610.49 -976.99 233.99 
366.01 -976.99 -131.99 366.01 -427.0 -131.99 
366.01 427.0 233.99 366.01 -976.99 233.99 

1234. 4156. 8667. 7326. 6512. 3764. 
RPP 10 30.6 366.99 -976.99 -945.61 -131.99 233.99 
RPP 11 -400.0 620.0 -980.0 416.0 -260.0 300.0 
END 
CON 1OOOOR +l -2 -9 -1OOR 4SOR +6OR +703 *soFt +4 

OR +3 
VAC OR +2 -3 -4 -6 -6 -'I- -EOR +SOR +lO 
NUL +11 -1 
END . 

111 

Figure 17.15. Combinatorial Geometry input used by MORSE to produce Fig. 
17.14. 

Many cylinders (or slabs) may be specified i-n a single run, but they are treated 
independently. That is to say, events that occur-within an inner cylinder are useful in 
obtaining outer cylinder results, but outer cylinder interactions have no efiect’on the 
results obtained for the inner cylinders. The same is true for the slab geometry-i.e., 
an individual Monte Carlo run may involve 10 or 20 thicknesses of the same material, 
with the thin slab interactions used directly in obtaining the results for the thicker slabs 
(but not the other way around). 

A version of 1-D ETRAN at the National Bureau of Standards13 also has been 
developed in order to handle multilayer slabs of different materials. The version that is 
currently distributed by RSIC, however, is severely limited in its application to a large 
number of real physical problems, primarily because it lacks a general, versatile, and 
easy to use geometry package. Overcoming this limitation was the original motivation 
for the development of the TIGER series, which we shall briefly discuss next. 
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17.4.2 ITS: The Integrated TIGER Series 

TIGER”, CYLTRAW, and ACCEPT” are the base codes that constitute what is 
called the Integrated TIGER Series (ITS)+. They art all based on ETRAN, and differ 
from one another primarily in their dimensionality and geometric modeling. 

The geometry of the TIGER codes is the simplest of the ITS members. It is strictly 
a one-dimensional ,codt that is essentially the same as the multilayer NBS version of 
ETRAN: 

1. A particle trajectory is described in terms of the z-coordinate of position 

and the z-direction cosine. 

2. Layers art stacked along the positive z-axis beginning at 0. 

The CYLTRAN codes employ a fully three-di&ensional description of particle tra- 
jectories with the material geometry consisting of a right circular cylinder of finite 
length, the axis of which coincides with the z-&s. CYLTRAN is particularly useful for 
radiation fields that exhibit cylindrical symmetry, such as electron or photon beams. 

The ACCEPT codes provide a method for electron-photon transport through three- 
dimensional multimaterial geometries described by the Combinatorial Geometry scheme 
developed by MAGI” (see earlier section). 

17.4.3 The FLUKA hadronic cascade code. 

FLUKA41S is a modular program for computing hadronic and electromagnetic cascades 
in matter. Designed primarily for use by the high-energy particle physics community, 
FLUKA may be,of interest to a more general audience because: 

. 
1. It has been coupled with the EGS4 code in such a manner that electron-photon 

transport can be done completely within the FLUKA environment, thereby ob- 
viating the need to create User Codes (note: the hadron interaction option can 
be turned off). 

2. Several geometry packages are available for general use, and user-defined pack- 
ages can be implemented in a relatively simple way. 

3. Some’of the FLUKA geometry packages starid on their own, and provide methods 
and algorithms that might be of use in other electron-photon codes. -. 

FLUKA provides its own cylindrical, Cartesian, and spherical-conical geometry pack- 
age. In addition, FLUKA provides access to a modified version of the Combinatorial 
Geometry package that has been .described earlier. All the geometries provide multi- 
region, multi-medium environments. 

FLUKA87 is written in FORTRAN 77, and the user input consists of option cards 
which art sometimes followed by data cards specific to the option card given. The 
documentation for FLUKA is rather extensive, representing many man-years of effort 
by the scientists at CERN-Leipzig-Helsinki who developed the system. In particular, 
those sections of the User’s Guide’+ concerned with geometries art well-written, and 
the card input system is nicely conceived. 

* Also see Chapter 10. 
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