
-

-

i

-1

SLAC - PUB - 4787
November 1988
E/I

Simulating a Central Drift Chamber for a Large
Solenoid Detector at the SSC, Using GEANTS*

ANDREA P. T. PALOUNEK

Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94309

* Work supported by the Department of Energy, contract DE - AC03 - 76SF00515.

-

1. Introduction

One possible difficulty with using conventional technology such as a drift

chamber tracking device at the SSC is the worry that the event rate and multi-

plicity will simply swamp the detector and make it useless for interesting physics

studies. The only way to answer such concerns rationally is to model a detec-

tor accurately and reconstruct interesting events after they have been overlaid

with background events. This is what Gail G. Hanson set out to do in 1986,

later with the help of Bogdan Niczyporuk. I joined the project in February 1988,

shortly after Niczyporuk left to work at CEBAF. This note mainly describes the

GEANT Monte Carlo program we used to model the tracking chamber, with a

few comments about the GEANT environment at SLAC. Obviously, it mainly

describes the programming efforts of other people.

-

: --

- The tracking chamber we have been modeling is part of a large solenoid

detector”’ studied during the Berkeley Workshop in 1987. The design is along

fairly conventional lines: it consists of a microvertex detector surrounded by first

a central tracking chamber and then a calorimeter. These are placed in a 2 T

magnetic field, with muon chambers, the coil flux return, and another set of

muon chambers placed radially. It is not a proposal for a detector - simply an

exploration of what a reasonable detector at the SSC might be.

GEANT was imported to SLAC by the SLD collaboration. SLD computer

experts David Aston, John Brown, and Terry Reeves reconstructed the source

from PAM files and installed it at SLAC. They did an immense amount of work

making the system work and interfacing it to SLAC unified graphics. We of the

SSC effort have taken their implementation of GEANT and have used it with very

little modification. Members of SLD have continued to develop their GEANT,

casting the program into the collaboration’s IDA-JAZELLE environment. We

have used the standard, CERN version with the data manager ZEBRA. However,

the work of Aston et al. has been invaluable to this project; without it we would

have had to put in much more work to get started. We are also very much

1

_-

2, indebted to their kind answers to our many questions while we were trying to

.L. understand GEANT.

This note describes GEANT in general, with examples from the SSC tracking

chamber study. There is also a section on running GEANT at SLAC, again with

examples from the SSC study. Finally, there is a short section on ZEBRA, the

data management system used by GEANT.

2. The GEANT Detector Simulation System

GEANTi2’ is a large general purpose system of detector description, sim-

ulation, and graphical representation tools which was developed explicitly for

High Energy Physics experiments. First written nearly 15 years ago to model

SPS experiments, it has been used by many collaborations in most of the HEP

community’s laboratories. The current version, GEANTS, was rewritten in 1983

and includes more emphasis on the description of complex geometries as well

as more sophisticated modeling of calorimetry. It includes the General Hadronic

and Electromagnetic Interaction Shower code GHEISHA[“’ which in turn includes

the electromagnetic shower package EGSL4’ . GEANTS is being used by many ex-

periments at LEP, SPS, LEAR, HERA, and SLC, and continues to be receptive

to the users from those collaborations.

GEANT3 is a collection of FORTRAN77 routines, grouped together into

several modules. It relies extensively on CERN Library routines, including the

data manager ZEBRAi5’ . The modules each perform one particular class of

functions and are:

l the GEOMetry package to describe the experimental setup;

l the CONStants package to keep the particle, material, and tracking medium

parameters;

l the PHYSics package to model particle interactions with the matter in the

detector;

2

-

2
l the KINEmatics package to generate simulated data from parameters in

the standard physics PHYS package;

l the TRAcKing package to transport the resulting particles through the

simulated detector, taking into account the various geometrical boundaries

and the materials in the detectors;

l the HITS package to record the responses of the detector to the particles;

l the DRAWing package to draw the detector, the particle trajectories, and

the hits;

l the I/O PAckage to record or retrieve events on an external device in a

machine-independent way;

l the (X)INTeractive package to allow the GEANTS user to edit many pa-

rameters and execute commands.

Many of these modules contain dummy and default user subroutines; these

are called whenever the user may have application-dependent procedures to per-

form. For programming ease, the names of these routines always begin with the
-

characters GU.

Units throughout the system are grams, centimeters, seconds, and kiloGauss.

The GEANTS user is expected to provide the data to describe the detector,

to code the relevant GU subroutines, to assemble the required modules and their

attendant routines into a logical, executable program, and to provide data cards

which control the execution of the program. Because most of the effort involved in

creating a good GEANTS program is in the geometry description of the detector,

the following section describes the GEOMetry package in some detail and uses

the DRAWing package to illustrate some of the tools available. Fortunately for

GEANTS programmers, the DRAWing package allows the user to check easily

that the detector description, in principle an easy task in coordinate geometry,

does in fact correspond to the physical attributes of the detector.

3

-

i 2.1 THE GEOMETRY PACKAGE: GEOM

The general structure of the geometry description package is a nested tree

form. By convention, an overall supervolume is defined to contain the entire de-

tector. Within this supervolume are various volumes, usually each corresponding

to a subdetector such as a central calorimeter or drift chamber. These volumes

are defined with a name, a shape, and necessary parameters such as dimensions,

material physical properties, tracking properties such as the magnetic field, and

a local coordinate system. Then they are placed in the supervolume with the

correct copy number, position, and rotation. The GEANT system allows for thir-

teen shapes, including tubes, boxes, spheres, trapezoids, and cones. Each shape
.

has its own defined coordinate axes.

Each volume can in turn be partitioned into subvolumes such as the hadronic

and electromagnetic sections of the calorimeter or drift chamber superlayers, and

these placed appropriately. Multiple copies of a (sub)volume can be placed in

the same or different volumes.

Each (sub) 1 vo ume can be segmented equally into divisions, such as calorime-

ter modules or drift chamber layers. These divisions can be created along any of

the three axes of the mother volume - whether Cartesian, cylindrical, or spherical.

A given volume and all its properties can be repeated several times in a manner

which minimises the information storage. This is particularly useful in the very

common case of several nearly identical subdetectors within one large detector.

This nesting can be repeated up to 15 times to provide the desired level of

description - down to the O-rings and bolts, if necessary. Each detector level has

its own name or set of names, depending on how it was created. There are user

and system volume numbers at every level to distinguish several nearly identical

volumes, if necessary. Each level may have its own coordinate system.

This structure has several advantages. It follows the usual conceptual method

of starting with the whole and subdividing each part until the desired level of

4

detail is reached. It allows for quick, easy reference to each detector part as, say,
- - the eighth wire of the first superlayer of the third module of-the drift chamber.

Its recursive definitions make modification of the detector description relatively

easy.

The VOLUME definition

. The unique, initial volume which encompasses the entire setup is defined with

no location; the reference frame related to this volume is the master reference

system or MARS.

-

In the simulation of central tracking for the SSC, the entire detector is called

GLOB and contains five levels of description. The central drift chamber, which

nearly fills the entire GLOB volume, is called CHAM. It consists of thirteen

tubular modules called MD01 to MD13. Here, the ‘MD’ designates a module

and the rest the module number, with module 1 closest to the center and modnle

13 outermost. The module radii and lengths in z are explicitly defined by the -

program. Each module contains one GEANT volume called a superlayer. Be- - -

cause volume names are limited to four characters by GEANT, the superlayers

are designated by the letter ‘S’ and a three digit number. The first two digits

refer to the module which contains the superlayer; the last digit refers to the su-

perlayer number within the module. Since the current application has only one

superlayer per module, the superlayers are called SO11 to S131. Each superlayer

has eight divisions or layers. GEANT requires that all divisions of a given volume

have the same name, so the layers are called LO11 to L131, in direct analogy to

the superlayers. The layers, at the fifth and final level of detector description,

are distinguished by their volume numbers only.

A representation of the structure, created using the interactive package and

the command

DTREE GLOB 0 10001

is in figure 1.

-

f The geometrical definition is achieved with only a few GEANT calls. First,

-1 GLOB and CHAM are created with:

CALL GSVOLU('GLOB', ‘TUBE',l,AVOLG,3,IVOL)
CALL GSVOLU('CHAM', 'TUBE',4,AVOLCH,3,IVOL)
CALL GSPOS(~CHAM',1.~GLOB',O..O.,O..O,‘ONLY')

.-

This creates a tubular volume called GLOB which is made of material number

1, with shape parameters contained in the array AVOLG of three parameters

(minimum radius, maximum radius, and half-length along z), and receives a

volume number IVOL. It similarly creates a volume CHAM, then uses GSPOS

to position CHAM copy 1 into GLOB, with the reference frames equal, and

specifying that if a point is in CHAM it is in no other volume. .

-

Then modules and superlayers are created by a loop over:

CALL GSVOLU(NAMESM,'TUBE',4,AVOLM,3,IVOL)
CALL GSPOS(NAMESM,1,*CHAM',O.,O.,O.,O.,'ONLY')
CALL GSVOLU(NAMESS,'TUBE',5,AVOLM,3,IVOL)
CALL GSPOS(NAMESS,l,NAMESM,O..O.,O.,O.,'ONLY')

These, called thirteen times to create the thirteen modules and superlayers,

create tubular volumes of the name kept in the variable NAMESM (names -

module, or MD01 to MD13) which are made of material 4, and have shape

parameters AVOLM(3). The NAMESM are placed as ‘only’ volumes into CHAM.

There are also tubular volumes of names NAMESS, (names - superlayer, or SO11

to S131) similarly created but out of medium 5, and placed into the modules

NAMESM.

It would also be possible to position a number of modules with the same

shape but different dimensions by defining a generic shape with an alternate call

to GSVOLU:

CALL GSVOLU(NAMESM,'TUBE',4,AVOLM,O,IVOL)

(notice the fifth variable, the number of shape parameters, is set to zero) and

use the subroutine GPOSP, which takes a copy of a named, previously created

6

-

volume and places it at a specified location and rotation.

Finally, each superlayer is divided into layers:

CALL GSDVN(NAMESL,NAMESS,NLAY(IMOD,ISLAY),l)

This specifies GEANT is to create division NAMESL (names - layer, or LO11
to L131) from NAMESS, with NLAY slices or divisions along the l-axis. NLAY is

an array with dimensions the number of modules and the number of superlayers

per module, currently set to 13 and 1, respectively. At the moment, NLAY is

always 8. Notice all the layers created this way have the same name; they are

distinguished by their volume numbers only.

.- The GEANT system allows for other sorts of divisions: the subroutine GS-

DVT allows the user to specify a division STEP, rather than the number of

divisions NDIV, as well as the medium number. There are plans for GSDVX

which would allow for specification of a STEP as well as NDIV, along with the

origin of the first cell and the tracking medium. This would create gaps at either

end of the mother volume.

The data which drive the GEANT calls are kept in the user common block

DCGEOM. This contains the number of modules, number of superlayers, mini-

mum and maximum radii for modules, superlayers, and layers, the half-length of

the modules along the beam direction, the number of sense wires in each layer of

a superlayer, the cell width in a superlayer, the azimuthal angle of the arbitrarily

chosen first wire in the layers, and the electron drift velocity:

COMMON /DCGEOM/ NMOD, NsuLAY(201, NLAY(20.20). RMMIN(20).
* RMMAX(20). RSMIN(20,20), RSMAX(20.20). RLMIN(20.20.20).
* RLMAX(20,20,20), XMLEN(20). NSWIRE(20.20).
* SWIDTH(20.20). PHILAY(20.20.20). VD

To save enormously on processing time, GEANT does not know about the

details of cell structure or wire placement. It is the SSC user who must keep track

of the details of cell structure and wire position. While this saves tremendously

on computing time, it costs in loss of these data when the detector geometry

7

-

-

2 is written to tape or disk. An important improvement of the current system

-. would save the more detailed data in a ZEBRA structure and record them with

the GEANT geometrical information. The ability to input the DCGEOM data

in a more user-friendly way, perhaps using a menu, would be another useful

improvement.

Ordering and Closing the Detector Geometry

GEANT has a specific search order to find in which volume a particle is.

This ordering may be specified explicitly, by frequency of entry, or geometrically.

In the SSC tracking example, the search order is defined geometrically: that is,

GEANT keeps track of the limits of each of the contents of a volume, and which

contents are in each of the sections defined by the surrounding coordinates. This

is specified with:

.

CALL GSORD(‘GLOB’ , I)

This orders the entire detector GLOB along the l-axis, radially.

After all volumes and positions and orderings have been defined, the geomet-

rical and search data should be stored. This is done by:

CALL GGCLOS

: _- 2.2 THE PHYSICS CONSTANTS PACKAGE: CONS

After the geometrical representation of the detector is complete, the user

must still define the materials which fill the detector volume. This material may

be a pure material such as liquid argon or copper, or it may be a nonexistent

average of several materials. This is useful when modeling a drift chamber, for

example: a material can be defined with the average properties of the gas mix and

wires, eliminating the need to model every wire separately. There is also a routine

available to make mixtures or compounds from previously defined materials.

Defining the material

The subroutine GMATE will simply store necessary constants for sixteen

8

-

-

standard materials, including Hydrogen, Lead, and Air.

The subroutine GSMATE is more versatile. Not only can the user define

only those standard materials needed for the particular application, but also any

other material or mix. The routine requires the user-defined material number

and name, along with its atomic weight and number, density, radiation length,

absorption length, and other (optional) user parameters.

For the SSC central tracking case, where the detector is surrounded by air

and is a mixture of Mylar, glue, stainless steel wires, argon, and ethane, this is:

CALL GSMATE
(15,'AIR$'. 14.61, 7.3, 0.001205. 30423.24, 6750.. 0.0)

. CALL GSMATE

(18,'STRAW$', 21. 7, 10.0, 0.023, 1370., 61.6, O,O>

. These define material 15 to be air, with the given atomic weight, atomic

number, density, radiation length, absorption length, and no other parameters.

Material 18, called ‘straw’, has the shown properties and is actually a weighted

average of appropriate amounts of gas, Mylar, and wire. Material number 15 is

used for air because that is the listing in the standard material constants table

of GEANT; number 18 for the straw mixture because there are sixteen entries in

the default GEANT list and 17 has been used for Mylar in a previous version of

this program.

Defining the tracking medium environment

After the physical constants of the detector materials are defined, the tracking

environment and tracking parameters must be specified. The routine GSTMED

defines most of these; the user provides such data as the magnetic field, multiple

scattering maximum, tracking precision, and a minimum step size. Here, tracking

precision refers to how close a particle must be to a volume boundary before it

may cross it.

The user may also change default energy cutoffs with the routine GSTPAR,

9

standard particle parameters with GPART, and particle branching ratios and

-: decay modes with GSDK.

In the current application, this is:

CALL GSTMED
* (1;SPACE$',15,0,3,20.0,5.0,0.5,0.1,0.20,0.1,0,0~

CALL GSTMED
* (4;GASTUBE$',16,1,3,20.0,6.0.5,0.6,0.1,0.05,0.1~0,0~

CALL GSTMED
* ~6;STRAWM1X$',18.1,3,20.0,6.0,0.5.0.1,0.06~0.1,0,0)

This code defines three media: space, which surrounds the chamber itself;
. gastube, which is the material between modules and superlayers; and strawmix,

which is the actual material of the tracking chamber. Both space and gastube

consist of material 15, air. However: space is not a sensitive volume while gastube

is; and the tracking precision is 0.20 cm in space and 0.05 cm in the gastube.

Strawmix is made of the average straw material, but otherwise has the same

parameters as the active gastube. These parameters, in order, are: the medium
-

number; the medium name; material number; 1 if this is a sensitive volume, 0 else;

the magnetic field tracking flag which defines the method used to track a particle

within the magnetic field; the maximum magnetic field value; the maximum angle

a particle is allowed to turn in one step; the maximum displacement allowed in

one step due to multiple scattering; maximum energy loss allowed in one step;

the tracking precision; a minimum step size; and a user-defined array of other

optional parameters. It is the media numbers defined here which are used in the

volume definitions described in Section 2.1.

10

2.3 THE PHYSICS PROCESS PACKAGE: PHYS
- -

An important part of the GEANT system is the PHYS package, which simu-

lates the interaction of particles with the matter of the detector. GEANT should

be accurate for processes from 10 KeV to 10 TeV, though there are some weak-

nesses where experimental data are weak or incomplete.

.
The interactions are modeled in the standard way: first, GEANT samples

the total cross section to decide the probability of a given process; second, it

determines the final states using the differential cross sections; and finally it

computes mean energy losses, multiple scattering, delta ray production, and so

on.

Hadronic interactions are calculated using GHEISHA’IiS1 although the use of

TATINA”’ is available for backward compatibility. Electromagnetic interactions

are included in GHEISHA; there are also-other cross sections svithin GEAPJT

itself for energies up to 100 GeV. Muon interactions are modeled up to 10 TeV. -

Ionization is modeled with a Landau distribution or by an explicit generation - -

of delta rays. Similarly, a Gaussian approximation is the default for multiple

scattering, though the slower and more accurate Moliere theory is also available. _

The interested reader should refer to the GEANT manual[” , or, for even more

detail, the GHEISHA manual[” .

2.4 THE KINEMATICS PACKAGE: KINE

This package allows the GEANT user to store and retrieve information about

event vertices and particle tracks. The routine GSVERT will store a vertex

position and originating beam particle number and return a new vertex number.

GSKINE stores 4-momentum, particle number, and originating vertex number

for long-lived particles and returns a new track number. GFKINE retrieves

the above information for a given track number. There is no retrieval routine

for vertices, though the data are available from the common block GCKINE.

11

GPVERT and GPKINE will print the vertex and kinematic information for a
- - given vertex or track number, respectively.

The Interface to the ISAJET Monte Carlo

The subroutine ISAEVEN, written by Giuseppe Ballocchi in February 1986,

is the interface to the event generation Monte Carlo program ISAJET. It is not

officially a part of the GEANT system, though it obviously fills an important

function and is therefore included here. It reads an ISAJET output file, boosts

the particles to the lab frame, and fills the GEANT track and vertex banks. It

translates particle types from the ISAJET convention to the GEANT numbers.

It is also the appropriate place to apply any cuts on acceptable particles to save

on following those that miss the detector entirely or have such low momentum

that they curl away before reaching a sensitive region of the detector. The current

version applies transverse momentum and pseudorapidity cuts in this subroutine,

and requires that particles be long-lived. There is also an event counter with the

facility to skip the first NSKIP events in an ISAJET file before passing particles -

to GEANT for processing. - _

The following GEANT calls are in ISAEVEN, separated by reference frame

translation and other code:

CALL GSVERT(VERTEX.O.O,UBUF.NBUF,NVTX).
CALL GSKINE(PLAB.IGNAME,NVTX,UBUF.NBUF.NTRK)

GSVERT stores the primary vertex, whose (x,y,z) position is stored in the

array VERTEX. This vertex has originating beam track number 0, originating

target track number 0, and no user buffer floating point variables (UBUF is empty

and NBUF is zero). GSVERT returns NVTX, the assigned vertex number. Next,

for each acceptable track, ISAEVEN calls GSKINE, which stores the particle

four-momentum PLAB for particle type IGNAME from the vertex NVTX. Again

there are no user parameters. The assigned track number NTRK is returned.

There are other calls to GSVERT and GSKINE from within GEANT when-

ever there is an interaction or decay.

12

-

-
z

2.5 THE TRACKING PACKAGE: TRAK
-.

.

After a track is generated it must be propagated through the detector, all

its decays and interactions with the contents of the detector calculated, and the

secondaries tracked. GEANT does this by applying the equations of motion to

the current particle over succesive steps and computing the four-momentum at

each point. This means the particle trajectories are not perfectly smooth as in the

real world; this slight inaccuracy is offset by a huge savings in computing time.

GEANT has mechanisms for computing the step size, and constantly adjusts this

parameter. The step size for a particle depends not only on the material through

which it is travelling, but on its intrisic properties such as its lifetime, mass,

and charge. The material mostly affects the step size because its radiation and

interaction lengths influence particle energy loss and multiple scattering. Finally,

the geometrical boundaries of the detector also come into play: the step size is

limited by the path length between medium boundaries.

The GEANT user should spend some time optimising various tolerances and

cuts which limit the step size. These are called the tracking medium parame-

ters, and are stored as described in the CONS section description of the routine

GSTMED and GSTPAR. They include: the maximum angle a particle is allowed

to turn in one step due to the magnetic field; the maximum allowed displace-

ment due to multiple scattering in one step; the maximum fractional energy loss

allowed in one step; the tracking precision or boundary location accuracy for

crossing medium boundaries; the minimum step size due to either energy loss or

multiple scattering; and the energy cuts, different for each type of particle, below

which a particle will not be tracked.

13

-

f
2.6 THE DETECTOR RESPONSE PACKAGE: HITS

There are two different kinds of detector response in the language of GEANT:

hits and digitizations. A hit is detector information recorded at tracking time. It

is analogous to the actual value of quantities the detector is designed to measure,

such as particle position or energy loss and position. A digitization simulates the

measurement of the geometrical quantity by a a detector element, such as a time

and wire number or ADC signal and tower number. Presumably digitizations

include all required inefficiencies and uncertainties.

The GEANT user must define both hits and digitizations, decide how the

data are to be packed, and later call a GEANT utility to store them. In the .
current application, this means:

DATA NBITSV/l6,16,16/
DATA NAMESD/‘WIRE’.‘TIME’/

DATA NBITSD/2*16/

DATA NAMESH/~XPOS’,‘YPOS’,‘ZPOS’,‘E ‘/

DATA ORIG/500.,600.,500.,O./

DATA FACT/4*10000./

DATA NBITSH/4*32/

CALL GSDET
* ('CENT',NAMESL,l,NAMESL,NBITSV,l,2OOO,6OO,ISET,IDET~

CALL GSDETH('CENT',NAMESL,4,NAMESH,NBITSH,ORIG,FACT)
CALL GSDETD(‘CENT’,NAMESL,2,NAMESD,NBITSD)

The call to GSDET assigns the detector element (layer) NAMESL to be part

of the user-defined detector set CENT. All layers are part of CENT: the detector

set convention is an aid to storage of the detector response data. There is one

volume descriptor, NAMESL. This has been defined earlier with the volume

definition calls described in Section 2.1. NBITSV is a vector of dimension 3

which defines there are to be 16 bits per datum. This is user-defined detector

type 1. There are 2000 words allocated at first for the primary hits bank, and

14

--

-

-

c
500 words allocated for the digitization banks. ISET and IDET are returned and

give pointers to the set CENT and the particular detector element within CENT.

GSDET is called once for every layer.

GSDETH defines the hit parameters for set CENT, subdetector NAMESL:

there are 4 elements per hit, whose names are kept in the array NAMESH (x,

y, z, energy); there are NBITSH (4*32) bits available for packing the variable

values. ORIG and FACT define the packing of the data precisely: the ith integer

variable IVAR(1) of NBITSH(1) b’t 1 s is stored such that IVAR(1) = (VAR(1) +

ORIG(1)) * FACT(I).

.
GSDETD makes a similar definition for digitizations within the set CENT,

subdetector NAMESL: there are two elements per digitization, called wire and

time, which are packed in 16 bits each.

_ The GEANT user must also store the hits and digitizations. Hits are stored

in the routine GUSTEP, a user subroutine called at the end of every step. In this

subroutine it is possible to decide whether to store a hit, and do so if desired. It

is an easy call:

CALL GSAHIT(NSET,NDET,NTRA(NT),NBV(NT),HITS(l,NT),IHIT)

This call stores a hit for set NSET (always 1 since there is only one detector

set, CENT), subdetector NDET, track NTRA(NT), volume numbers NBV(NT)

where the current step is, the array of hit elements HITS(4,NT). The hit number

IHIT is returned.

When all the tracks in an event have been followed through the active detec-

tor, GEANT calls GUDIGI. In this routine the GEANT user should sort through

all the hits and record digitizations. In the SSC tracking version, GUDIGI finds

the wire closest to a hit, calculates the particle’s distance of closest approach to

this wire, and determines the signal drift time. It also removes multiple hits on a

wire, taking only the first digitization if later ones are within the chamber dead

time. Finally, it stores the digitizations:

CALL GSDIGI(NSET,NDET,NTRA(NT~,l,NBV~NT),KDIGI~l,NT~,IDIG)

15

This call stores a digitization for set NSET (again, only CENT), subdetector
- - NDET (same as module number, since there is only one superlayer per volume),

track number NTRA(NT), volume numbers NBV(NT). The digitization data are

kept in the array KDIGI(2,NT). The digitization number IDIG is returned.

2.7 THE DRAWING PACKAGE: DRAW

The drawing package is an important debugging tool. It draws the detector,

making it easy to check that the geometrical specification does indeed correspond

to the intended detector. It draws the detector geometry tree structure. It draws

particle trajectories, making ckecks of the magnetic field and various cuts easy.

Finally, it draws hits (but not digitizations), making it possible to tell at a glance

if hits are being recorded properly.

Unfortunately, CERN’s graphics do not interface easily to the SLAC SJS-

tern. SLD computer experts Dave Aston and Terry Reeves have spent immense

amounts of time building a graphics interface for GEANT. Without their work

most of the SSC study would have been much more difficult and much slower.

Unfortunately, there are still unsolved bugs in the graphics SLAC interface. The

most annonying bug loses occasional parts of the graphics output - things are

sometimes just not drawn. There are theories that this is due to the GEANT-

UGS interface, though the exact form has been very elusive.

The DRAW package exists in both FORTRAN subroutine and interactive

forms. The two are identical: the interactive package simply translates into the

the corresponding subroutine call. The difference in the calling mechanism is

trivial: to draw the particle trajectory for track number 17, for example, the

FORTRAN command is:

CALL GDXYZ(l7)

while interactively the command is:

DXYZ 17

16

- -
Notice that ‘CALL G’ and the parentheses are dropped in the interactive call.

This is the general rule. If there are several arguments for a call, then spaces,

not commas, should separate the arguments.

.

Because the drawing package is more efficiently used in the interactive version,

all the examples that follow will be for that form; to make FORTRAN calls out of

them, the GEANT programmer should generally add ‘CALL G’ at the beginning,

commas between the arguments, and parentheses around the argument list.

Drawing the Detector

There are several ways to draw cuts and projections through the detector.

A very useful one is DCUT, which has as arguments: the detector name; the

axis which is normal to the cut plane of the view (that is, the axis along the

line-of-sight); the distance from the origin the cut plane is placed; the u and v

coordinates of the volume origin on the screen; and the u and v scale factors. .- 1.
Note that DRAW calculates the detector origin placement with the scale factors: _

the picture placement will change if the origin stays the same but the scale factor _

\ changes. The visible part of the screen is a 20.x20. square, with the lower left

corner at (O.,O.) and the upper right corner at (20.,20.). This means the center

is at (lO.,lO.), not (O.,O.) as the unwary user might suspect.

To draw the entire detector GLOB sighting along the z-axis (the 3-axis) but

otherwise centered requires a scale factor of 0.05. The interactive command for

this is:
- DCUT GLOB 3 0 10. 10. .05 .05

Notice the axis definition is an integer while the other numerical arguments

are real numbers. In general GEANT requires the proper form for its arguments,

though it understands the ‘0’ which places the cut plane at the detector origin

properly. Both upper and lower case work. Figure 2a shows the output of this

command.

Naturally, this important call does not follow the general naming convention.

17

-

f The FORTRAN is ‘CALL GDRAWC(parms)‘.

Invoking any of the detector drawing commands sets position and scale pa-

rameters which all subsequent drawings will use until the next detector command.

These variables are not set at execute time, and must be set initially by DCUT

or another detector drawing command. The impatient user can draw only one

module (superlayer) to save time:

DCUT MD01 3 0 10. 10. .05 .06

.-

The commands:

DCUT MD12 3 0 IO. -140. 1. 1.
DCUT MD13 3 0 IO. -140. 1. 1.

.
move the detector center to (lo.,-140.) and the scale factor is set to 1.: figure 3a

shows the result. The layer lines are polygonal, not circular as defined, a vestige

.of how the graphics are set up. Internally, the layer boundaries and positions are

correct.

Any scale factor and any detector center position is possible.

Clearing the Screen

The command:

NEXT

will clear the screen

Drawing Tracks

for the next drawing.

Particle trajectories may be superimposed on a drawing of the detector or

not. Particle numbers and names may be added, although they are drawn only

where a particle decays or leaves the detector.

DXYZ 17
DPART 17

The first line will draw the trajectory of particle 17, the second will draw

the track number and name of particle 17. No particle specification or particle

18

-

-

c
number 0 will process all the particles. Muon tracks produce dashed lines in the

current version of DRAW; all others produce solid lines. Figure 2b shows all the

tracks and particle identifications for a minimum bias 40 TeV SSC event. Figure

3b shows a portion of the same event expanded to life size, created after the

coordinate system was redefined with a DCUT command. Both 2b and 3b were

created using:

DXYZ
DPART

Drawing Hits

DHITS 17
- . DHITS

-

The first line will draw the hits for particle 17; the second for all particles.

Figures 2c and 3c show the hits for all particles for the whole detector and

a portion of the detector lifesize, respectively. Notice that the crosses which

designate the hits do not always intersect the lines which represent the detector

layers. This is because the layers are incorrectly drawn as a polygon, as discussed

earlier.

: .- 2.8 THE I/O SERVICE PACKAGE: IOPA

The I/O package permits the user to read or write selected data structures

to and from external media. Since these utilities use ZEBRA packages, it is

possible to write to tape in a machine-independent format. This facilitates the

use of several machines for one GEANT project.

Opening and Closing a Logical Unit

Each unit must be opened before GEANT can read from or write to it. All

units should be closed before the end of the program. This is easily done with

calls to GOPEN and GCLOSE. In the current example, this is:

CALL GOPEN (LUN, ‘I', LEN, IERR)

19

-

CALL GLOSE (LUN , IERR)

-

These open and close unit LUN for Input (also available are Output and

Exchange), with a maximum record length of LEN (set to 80). An error flag

IERR is returned in each case.

Reading and Writing Data Structures

GEANT data are classed loosely into two types. Initialization data are gen-

era1 throughout the run and include the particle parameters, the materials data,

the media data, the volume parameters, rotation matrices (not discussed here),

the detector set which includes hit and digitization parameters, and drawing

parameters. A reference to the structure INIT means all the above structures.

Event-wise data include the vertex and kinematic data; the trajectory space

points; the hits; and the digitizations.

The GEANT user should record or read the initialisation data at the begin-

ning of each run, then the desired event-wise data once per event. This is easily

done with a call to GSAVE or GGET. These have as an argument list the desired

data structures and an opportunity to flag the routine that only the initialisation

routines from the list should be processed.

In the current SSC case, this is:

CALL GSAVE(GO,LSAVE,-NSAVEJDENTJER)

CALL GGET(GO,LGET,-NGET,IDENT,IER)

Both calls have the same arguments: the unit number to read/write, a list

of data structures to process, the number of structures in the list, a returned

record identifier, and a returned error. If the number of structures to process is

negative as in the above example, then GEANT picks out only the initialisation

data structures. If it is positive, it processes only the event-wise structures.

Reading From Multiple Volumes

A common application is the writing of GEANT data onto several tapes and

then reading from them in order to run an analysis. ZEBRA, unfortunately,

20

-

t -. does not allow for multiple volumes on a file number. The usual FORTRAN

volume number incrementing does not work because ZEBRA’s tape handling

facility rewinds the tape and resets the volume number when it comes to the end

of data. There seems to be no way of getting around this; the multivolume user

must name each tape a new unit and reset the unit number within the GEANT

program. One solution is to run the following code whenever ZEBRA comes to
an end-of-data mark:

NSEQH = NSEQH +I
IF(NSEQH .LE. MAXSQH) THEN

WRITE(LOUT.‘(" About t0 close unit". I~Y)LUNHGS
CALL FZENDI(LUNHGS,'T')
LUNHGS = LUNHGS + 1
WRITE(LOUT,'(" About to open file number",I4)')NSEQH
WRITE(LOUT,'(" Will now start reading from unit",I4)')

* LUNHGS
ISTAT = 0
CALL FMOUNT(LUNHGS,IONE,ISTAT)
IF(ISTAT .NE. 1ONE)IEND = 1
WRITE(LOUT,'(" Completed FMOUNT with ISTAT",I4,

* I a , IEND" ,131') ISTAT, IEND
CALL FZFILE(LUNHGS,LEN;I')

ELSE
IEND = 1
WRITE(LOUT,‘(" End of data on unit",I3)')LUNHGS

ENDIF
RETURN

This bit of code increments a sequence number and checks that it is within

a range set earlier. It then closes the current input file with FZENDI and incre-

mentstheunitnumber. Itasksforthe mountingofthenexttapewith FMOUNT,

which sends a message to the computer operator to hang the tape assigned to

21

-

-

f unit number LUNHGS. Then it opens the file LUNHGS with a call to FZFILE,

-- and continues.

Because defining several tapes to be mounted sequentially to one tape drive

can be tricky at SLAC, here are the commands which will work. They belong in

the job’s EXEC file, or wherever FILEDEFs are usually placed.

'SETUP TAPE 181 SU4644 SL NORING '
'SETUP TAPE 181 SU4643 SL NORING '
'SETUP TAPE 181 SU4643 SL NORING '
'SETUP TAPE 182 SU4446 SL RING '
'SETUP END'
dcb-' (RECFM VBS LRECL 19996 BLKSIZE 20000'
'FILEDEF FT60FOOl TAP1 SL 2 VOLID SU4644' dcb
'LABELDEF FT60FOOl VOLID SU4644'
'FILEDEF FT6lFOOl TAP1 SL 3 VOLID SU4543' dcb
'LABELDEF FT6lFOOl VOLID SU4643'
'FILEDEF FT62FOOl TAP1 SL 4 VOLID SU4643' dcb
'LABELDEF FT62FOOl VOLID SU4643'
'FILEDEF 80 TAP2 SL 1 VOLID SU4446' dcb

These commands ask for two tape drives, called 181 and 182. Each tape or

file on a tape is assigned separately with the SETUP command. The FILEDEFs

define unit 60 to be on the unit TAP1 (which is the same unit as TAPE lSl),

a standard label tape, file 2, volume ID as given. FMOUNT requires a LA-

BELDEF, which is simply a check on the attached tape identifier. Unit 61 is

defined to be the next tape, and unit 62 corresponds to the next file on the same

tape. Unit 80 is an output tape, and is designated to be mounted on the unit

TAP2, or TAPE 182.

It is not possible to write to more than one tape in one job.

22

-

i 2.9 THE INTERACTIVE PACKAGE: XINT

The interactive version of GEANT is an important tool for designers of de-

tectors and debuggers of programs. The user may call any of the basic functions

of GEANT, in effect designing a detector interactively. This means it is possible

to design or modify the detector geometry, change the media parameters, and

manipulate the running conditions on an event-by-event basis. As described in

detail in Section 2.7, it is possible to draw the detector, the particle trajectories,

and the hits. It is also possible to debug programs more quickly and easily using

interactive GEANT.
.-

. The package is based on the ZCEDEX17’ command processor, though a min-

imal knowledge of ZCEDEX is required. In general the interactive commands

parrot the regular FORTRAN calls exactly, with minor name changes and ex-

tremely rare argument changes. The GEANT user who understands the FOR-

TRAN version should have no problems using the interactive form.

- 2.10 THE JOB FLOW

Generally a GEANT program has an initialization section followed by a loop

over an event-wise stepping through the detector. The initialization section de-

fines and initializes space allocation for HBOOK and ZEBRA, initializes the

GEANT physics data and drawing package, loads in the particle data, and de-

fines the detector geometry.

The event-wise loop generates or inputs the event kinematics (in the SSC

example, from ISAJET), stores the event vertex, and then starts looping over

tracks. The track-wise loop includes all secondaries, which are added to the track

list as they are created. GEANT follows the track step by step, checking to see

if the particle has entered a new volume or interacted. If the particle has entered

or left an active volume, GEANT calls GUSTEP, thus giving momentary control

to the user. If the particle has interacted, it stores new tracks and vertices.

23

I

-

-.

--

After all the primary and secondary tracks are processed, GEANT calls

GUDIGI, again giving control to the user for digitization purposes. The next

call is to GUOUT, where the user may decide whether to store an event and may

increment counters. This is the last call in the event-wise loop.

After the desired events have been processed (or the job is close to its time

limit), GEANT 1 c oses its files and outputs histograms.

A flow chart of the SSC tracking program is in figure 4.

3. Running GEANT at SLAC

. It is not difficult to run GEANT at SLAC, though some care must be taken to

build the correct machine environment. This chapter describes how to construct

the vitrual machine environment for either interactive or batch GEANT and gives

names and locations of working examples.

3.1 SETTING UP THE VIRTUAL MACHINE

-

-. ._

The GEANT program with interactive graphics requires nearly 4M virtual

memory to run; this does not include memory needed by ZEBRA to manipulate

and store the resulting data. In practice, an 8M machine is necessary to run a

useful GEANT program. Even with such a large machine environment, it is not

possible to run GEANT with a debugger.

The command

q storage

shows how much virtual memory the current machine has.

dirmaint storage 8m

invokes the Directory Maintenance Program to change the virtual machine size to

8M, and is performed only once. The machine size will not change until another

dirmaint storage command is executed. Users need to have special dispensation

to have access to an 8M machine.

24

-

-

f The GEANT user must link to a few disks in order to have access to various

-: TXTLIBs and other files. It is also very useful to have about 10 cylinders of

space disk available to store GEANT output during program development. The

following EXEC file asks for a 10 cylinder space disk, puts it into the user’s A-

disk slot (leaving the user’s 191 disk in the B-disk spot), and attaches other disks

required for GEANT.

/* SET UP ENVIRONMENT FOR RUNNING GEANT */
Trace Off

'SET CMSTYPE HT'
"CP .LINK * 330 330"
IF RC /= 0 THEN DO

"SPACE ADDTEMP 330 IO"
COUNTER = 1
DO UNTIL RC=O I COUNTER=10

"CP SLEEP 3 SEC"
"CP LINK * 330 330"
COUNTER = COUNTER + 1

END
END
"SWAP A B”

“ACCESS 330 A”

'SET CMSTYPE RT'
"GIME PUBEH 501 C (QUIET" /* the main GEANT disk */
"GIME PUBEB IA4 D" /* has GEANT311 and other code */
"GIME PUBEB 198 HI1 /* has user-supported code, examples */
"GIME UGS77 Q" /* the Unified Graphics disk*/
"NEWS NEW CC"

Exit RC

A slightly different version of this EXEC can be found in GEANT EXEC on
APP 191.

25

-

c 3.2 OTHER NECESSARY FILES

The user must also have a copy of the GEANT control cards available for

the program. These control the running of the job, with specifications for the

number of events to run, physics processes to include, debug and other switches,

and data structures to save or read. An example of these cards is in GEXAM8

GEANTDAT on the APP 191 and is listed below. Other examples on PUBEH

501 and the PUBEB 198 disk are all called GEXAMn GEANTDAT, with n an

integer from 1 to 8.

LIST
TRIG 6 (process 5 events)

. DEBU 1 6 1 (debug from 1st to 6th event, by ones)

SWIT I=1 2=0 3=0 4=0 6=0 (user debug flags)

ANN1 1 (annihilation flag)

BREM 1 (bremsstrahlung flag)

COMP 1 (Compton scattering flag)

DRAY 1 (delta ray flag -.
HADR 1 (hadronic process flag)

LOSS 1 (energy loss flag)

MULS 1 : .- (multiple scattering flag)

MUNU 1 (muon nuclear interaction flag)

PAIR 1 (pair production flag)

PHOT 1 (photoelectric effect flag)

SAVE 'INIT' 'DIGI' ‘KINE' 'JXYZ' 'HITS' (save these ds)

PRINT ‘MATE' 'VOLU' 'TMED' (print these data structures)

END

A complete summary of the GEANT data cards is in the manual at BASE040-

2. Meanings of the physics flags are at PHYSOOl-3.

There are several examples of user code on the GEANT and APP disks; these

are called GEXAMn FORTRAN. The system requires that the integer n in the

26

-.
z FORTRAN and GEANTDAT file names match. The current version of the SSC

-: tracking GEANT program can be found in GEXAM8 FORTRAN on APP 191;

a more stable but less current version is in GEXAMS FORTRAN on the same

disk.

The GEANT source code is in GEANT311 FORTRAN and GEANG311

FORTRAN on PUBEB 198.

The SSC version also requires an ISAJET output file of events which are to

be processed by GEANT. Naturally, each user will want to have the appropriate

events to put through the detector simulation; however, for preliminary playing a

file of quark jet events called ISAJET DATA is available on BON 191. It should

be placed on the space disk at A.

- 3.3 RUNNING G E A N T INTERACTIVELY

-

Once the virtual machine is set up and all needed files are in place, it is easy

to run a GEANT simulation interactively: simply command

geantint gexamn

This invokes the EXEC file GEANTINT, which sets up the required file defini-

tions, load libraries, and so on. It then invokes GOGEANT EXEC, which finishes

setting up the running environment. It then loads, links, and executes GEANT

with the user programs in GEXAMn FORTRAN and program control cards in

GEXAMn GEANTDAT. If GEXAMn has not been compiled, GEANTINT will

do it if the command is:

geantint /ft gexamn

Here, the /ft parameter causes GEANTINT to compile GEXAMn before linking.

After GEANT is linked and loaded (which may take several minutes) and the

geometry defined, the command

trig

27

-

‘c, will process the first event. This may take quite some time; the SSC version

-: has trackwise data printed to the screen so the user may follow the program’s

progress. After the event is processed, GEANT will output the message:

Type EXIT or <RETURN> thrice to get out

and the user may command TRIG again to do the next event, or enter other

interactive commands as described in Sections 2.7 and 2.9 or in the GEANT

manual. It is important to clear the screen once before beginning to draw to it;

otherwise the first drawing may not be scaled properly. This is done with:

next

The command
. exit

will finish an interactive session.

- The execute files described here open and close a console file for the user.

This console file has a name username CONnnnn, with a form of the date for

nnnn, and is sent to the user’s reader. It can be treated as any other reader file.

-

z .-

The current version of GEANT outputs all graphics to the file GOGEANT

SEQ4010. There is no way to print only part of the graphics output generated

during a given session; although Dave Aston has a solution, it has not yet been

installed into the SSC version. The command

tekprint gogeant seq4010 (pref imcgbl

prints the graphics file in preformatted mode on the printer on the first floor of

the computer building, IMCGBl. It is important to use the preformatted form

of the tekprint command for these complicated drawings.

28

-
f 3.4 RUNNING GEANT IN BATCH

To run GEANT in batch simply submit the EXEC file GEANTBAT. This sets

up the BATCH environment, then executes GOGEANT. Examples of GEANT-

BAT are on APP 191 and the GEANT disk PUBEB 501. It is important, how-

ever, to remember that the batch machine requires the files it executes to be on

the submitting user’s A-disk or on another disk explicitly attached by the job.

To submit a batch job with an already compiled user program in GEXAMn

TXTLIB, enter:

batch submit (tim 8 tapes) geantbat gexamn

. This submits an 8-minute job with tape setups. The other defaults such as an

8M machine required for running are already stipulated inside the GEANTBAT

and GOGEANT EXECs on APP 191.

GEANTBAT also has an /ft parameter:

batch submit (tim 4,notapes print 80k) geantbat /ft gexamn

will compile GEXAMn FORTRAN before linking. -

The available versions of GEANTBAT make use of the BATCH logging facil-

ity: the EXEC prompts the user for comments about this particular job and keeps

the results in a file called GEANT BATCHLOG on the user’s 191 disk. It also as-

signs sequential names GEANTnnn, where nnn is a job number incremented only

with GEANT jobs submitted this way. This is very useful for keeping GEANT

jobs separate from other tasks and for keeping track of programming progress.

29

I

4. The ZEBRA Data Management System

GEANT now uses the data manager ZEBRA. It was originally written us-

ing the data manager ZBOOK and the use of ZEBRA is largely oriented along

ZBOOK rules; the implementation of ZEBRA in GEANT is not optimal. Never-

theless, although in theory the GEANT user need know nothing about memory

management, in practice some knowledge of ZEBRA is very useful. This section

is a short introduction to the basic ideas of ZEBRA.

One major defect of FORTRAN is its lack of data structuring facilities. Its

only ‘structures’ are arrays and common blocks, both of which must be defined by

compile time. Since FORTRAN stores only locations of the beginning of arrays

and commons, neither of these may be manipulated as an entity. The FORTRAN

user spends much programming time manipulating data storage, or (more likely)

wastes much storage space keeping empty or partially empty structures.

ZEBRA is an attempt to offer true dynamical data management. Written at

CERN, it is a collection of FORTRAN77 routines which provides a sophisticated

system of data management. The routines are grouped into three packages, called

MZ, FZ, and DZ or DIA. The memory manipulation package MZ contains all the

initialization, allocation, and bank manipulation routines. The file management

package FZ contains all the I/O routines. The diagnostics package DZ contains

methods of displaying and verifying data structures. In general a routine within

a package will have a name that begins with the appropriate two letters.

The ZEBRA pointers and links are available within COMMON blocks, mak-

ing the data available to the user. It is also possible to arrange the data storage

in such a way as to keep relational information intact.

30

-

-

5% 4.1 DATA STRUCTURES

The ZEBRA Bank

The basic unit of storage within ZEBRA is the bank. This is a contiguous

area of storage which includes I/O descriptor words, reference and structural

links as pointers to data within the bank, addresses of the supporting and next

banks, bank status words, and data. A program may have one bank or many.

The Data structure

.

A data structure is a collection of banks which are associated with one another

in some way. This association is determined by how they are linked together.

Because banks are created dynamically at execution time, and because each bank

contains its own structural links, there may be an arbitrary number of banks in

a given application. This means there is no need to define a maximum dimension

as for arrays or common blocks. The number of banks is limited only by the

amount of storage allocated for ZEBRA itself.
-.

The simplest data structure is the linear structure. In this arrangement, each

bank has a link called the ‘next link’ which points to the next bank in the system.

A next link of zero means there are no more banks in the linear structure. Figure

5 shows a representation of a simple linear structure.

To access a linear structure, it is sufficient to point to its first bank. Then

all the other banks in the structure are available.

A more complicated structure is needed in many applications; for that reason

there are also ‘down links’ and ‘up links.’ A down link points to a bank which

somehow depends on the originating bank. For example, a vertex bank may have

down links to all the track banks for particles which originate at that vertex. Or

a detector volume bank may have a down link to the first of all the hits in that

detector volume. A bank may have a large number of down links. A down link

may point to the first bank of a linear structure.

31

-

An up link is the reverse of a down link: each bank has one up link which

points to the bank on which it or its linear structure depends. If the up link is

zero, then a bank is at the top of its tree.

There are also origin links, which point to the structural link that supports

the bank. That is, it points to the down link of the previous bank.

Figure 6 shows a representation of the hits data structure JHITS in GEANT,

which has all four kinds of links.

Reference Links

.- The use of the four structural links described above defines the form of the
.

-

data structure: an intelligent structure design keeps the data ordered in an in-

tuitive format which is easy to understand and remember. If a user wishes to

*stablish links between banks that do not define the structure itself, reference

links are available. These links keep references that the user wishes to record,

but do not affect the data structure itself in any way. ZEBRA’s actions on ref-

erence links are limited to reassigning them if banks are moved within memory.

4.2 PHYSICAL STORAGE

ZEBRA’s banks are kept in one or more contiguous areas of storage whose

number and sizes are defined by the user at initialization time. These are called

dynamic stores; each one resides in a separate common block. ZEBRA can handle

up to 16 dynamic stores, though there are computer time overheads associated

with the number of times ZEBRA must do something in a store other than the

‘current’ one. GEANT has only one very large store, which in the SSC application

is:

PARAMETER (MZEBR$ = 1000000 >
COMMON/GCBANK/q(MZEBR$)
DIMENSION Iq(l),Q(i),Lq(8000)

EQUIVALENCE (Q(l) ,19(l) ,LQ(9)), (Q(l) ,LMAIN)

32

-

-

?!. and is initialized with a call to MZSTOR. Here one million words (!) are allocated

-. to the dynamic store kept in the common block GCBANK. The effect of the

EQUIVALENCE statement is to offset the arrays Q and LQ by eight locations.

This is because there are eight structural links and other identifiers in a bank

between the next link position and the beginning of the bank’s data. Then links

are referred to as LQ(L+n) while data are IQ(L+n) or Q(L+n), where L is the

offset due to the bank’s location within the store. Figure 7 shows the format of

a ZEBRA bank.

Divisions

Each dynamic store has three divisions by default, although a different num-

-.

.
ber may be created using MZDIV. The first division is used by the system; the

other two are available to the user. Divisions associate banks which are some-

how logically connected, and make I/O and bank dropping of these associated

banks easier and faster. ZEBRA is also more efficient at handling links within a

division. The dynamic store in GEANT has two divisions IXCONS and IXDIV,

corresponding to initialisation (constant) data and event-wise data.

Link Areas

A user who wishes easy access to bank links should define a common block

called a link area. ZEBRA will then maintain the links. GEANT has a link area

which contains all the links to the several data structures:

COMMON/GCLINK/JDIGI, JDRAW, JHEAD, JHITS. JKINE, JMATE,
+ JPART. JROTM, JRUNG. JSET. JSTAK, JGSTAT, JTMED. JTRACK.
+ JVERTX. JVOLUM. JXYZ

Working Space

Short-term working space is available within ZEBRA at the first part of a

dynamic store. This is created by a call to MZWORK, and in GEANT exists in

9000 words near the beginning of GCBANK.

33

-
f 4.3 MAINTENANCE OF THE DYNAMIC STORE

When a program using ZEBRA begins, the dynamic store contains only a few

system banks. As other banks are created, available space decreases. After banks

are no longer needed they may be dropped with a call to MZDROP. After a bank

is dropped the data stay intact until a bank reorganization takes place. When

there is insufficient empty storage to create a new bank, ZEBRA will perform a

garbage collection. In this procedure, which is undertaken automatically when

there is insufficient memory to perform a requested operation, ZEBRA moves

active banks to one contiguous area near the beginning of the dynamic store.

This removes and overwrites old data from dropped banks. ZEBRA naturally

resets all the links to point to the banks’ new locations.

If a request for memory cannot be satisfied even after garbage collection

ZEBRA experiences a fatal error and the job exits to QNEXT. In the current

implementation of GEANT, this causes the job to die. Since any event simulation

occasionally produces an exceptionally large event, an important improvement

would be to have ZEBRA simply terminate the current event and continue.

Another way of freeing memory space for immediate use is by wiping out

entire divisions. This is done by a call to MZWIPE. It is particularly useful in

GEANT: when all the event-wise data are no longer needed, a single call will

erase them and make large amounts of space available for processing the next

event.

-.

: .-

4.4 I/O

Writing to and reading from external media is quite easy within the ZEBRA

system. The user need only call the appropriate input/output routine; ZEBRA

maintains the data structures and their links. All of ZEBRA’s file manipulation

routines are in the FZ package. The FZ package writes data either in ‘native’

or ‘export’ mode. ‘Native’ mode data are written in the representation of the

machine at which the program is currently running, while ‘export’ mode data are

34

-

-
f

--I
written such that they can be read by most of the computers used by the HEP

community. There is also an RZ subpackage which is a database management

system with sequential and direct access to data. It is a simple system but quite

adequate for the needs of HEP experiments.

GEANT uses the I/O routines FZIN and FZOUT, although calls to these

are in the GEANT routines GGET and GSAVE and are not normally visible to

the GEANT user. However, as discussed in Section 2.8, reading from multiple

volumes in the ZEBRA system is difficult and some tricks are necessary.

4.5 DEBUGGING

- .
In the current incarnation of ZEBRA within GEANT, the program alone

requires an 8 Mbyte machine and is simply too large to run with a debugger.

kowever, there is a diagnostic package DZ which includes methods for displaying

or checking part or all of a dynamic store.

-.

The user communication array IQUEST also includes information for debug-

ging. Kept in the common block QUEST, this array contains many pointers and

error flags which describe the problem. A detailed explanation of these is in the

User Reference Guide Book DIA.

Acknowledgements

I am indebted to Gail Hanson for many exciting and fruitful discussions as

well as a careful reading of the text. Thanks are also due Dave Aston for help in

understanding GEANT and to Traudl Hansl-Kozanecki for help in understanding

ZEBRA.

35

-

-

C

FIGURE CAPTIONS

1. The geometry tree structure of the SSC central tracking detector.

2. a: The entire SSC tracking detector. The innermost single and outermost

double lines are for the volumes GLOB and CHAM. The thirteen modules

of eight layers each are clearly visible.

b: A 40 TeV minimum bias event in the SSC central tracker. Particle names

and numbers are also drawn.

c: Hits from a minimum bias event in the SSC central tracker.

.

3. a: The top portion of the SSC central tracker, life size.

b: A minimum bias event in the SSC central tracker, life size.

c: Hits from a minimum bias event in the top portion of the SSC central

.% tracker, life size.

4. A flow diagram of the SSC tracking GEANT program.

5. A representation of a simple linear structure, from Reference 5.

-. 6. A representation of the Hit data structure JHITS in GEANT.

7. The format of a ZEBRA bank, from Reference 5.

36

-

--
f REFERENCES

1. G.G.Hanson, et al., Proceedings of the Workshop on Experiments, Detec-

tors, and Experimental Areas for the Supercollider, (1987) p. 340

2. R. Brun, F. Bruyant, and P. Zanarini, GEANTS Users Guide, CERN

DD/EE/84-1 (F b e ruary 1985, rev. September 1987)

3. H. Fesefeldt, The Simulation of Hadronic Showers, PITHA 85/02

4. R.L.Ford and W.R.Nelson, SLAC Report 210 (1978)

5. R. Brun and J. Zoll, ZEBRA User Guide, CERN Computer Library Long

Write-Up QlOO, PITHA 85/02, (January 1987)

J. Zoll, ZEBRA Reference Manual, Book DIA (January 1986)

J. Zoll, ZEBRA Reference Manual, Book FZ (July 1987)
‘i

J. Zoll, ZEBRA Reference Manual, Book MZ (January 1986)

6. T. Baroncelli, INFN - Roma

7. ZCEDEX User Guide, CERN DD/EE/80-6

37

-

-
f,

--
_-

I

ox Qb
MD01 .-

- g

-AT, v

YW2 YDu.3 UC04

SO21 so31 so41

s:I

LD21 LD.31 LDdl
I I .

-. 1011
Ll ,

YDO7 YDW MD09 MO10

lJiJi-,: so71 $a011 9D91 SlOl

MO13

1 SlJl

Figure 1: The SSC central tracking detector geometry tree structure.

-

-

c

Figure 2a: The entire SSC tracking detector. The innermost single and
outermost double lines are for the volume GLOB. The thirteen modules
of eight layers each are clearly visible.

-

-

f ,

-1

Figure 2b: A 40 TeV minimum bias event in the SSC central tracker.
Particle names and track numbers are also drawn.

-

--
t -.

Figure 2c: Hits from a minimum bias event in the SSC central tracker.

t

- .

Figure 3a: The top pottion of the SSC central tracker, life size.

I

-

.

.-

-.

Figure 3b: A minimum bias in the SSC central tracker, life size.

-
f

-.

.

_ x

x

x

x

x

x

x

x

x

x

x

x

x

x

Y

x

x

x Y

x

Y x

Y

x x

x

x

x

x

x
x

Figure 3c: Hits from a minimum bias event in the top portion of the SSC
central tracker, life size.

I

-

f

1
-

N
-GU III

-GR

f

IIT initial&e GEANT and USW program and data cards
--GZEBRA initialise ZEBRA
--HLIMT lnitlalise HEJCOK
--GINIT initialise GE4NT3
--GZINIT initialise GEhNT3
LLGDINIT initialise GEWl' drawing Package
--GPART load in particle data book
--GDXAL detectnr g-try

--GSNATE
--GSB(ED
--GSVOW
--GSPOS
--GSDVN
--GSDW
--GSDETH
--GSDEIQ
--GSOUIJ
--GGCLOS

--GLooK/GPftI~ print detector definitions
--GPHYSI physics for showering
-4JHINIT user hlst definitions

--HBcoKl
--HBIGEI

--GSAVE/GGET

I loop over events
-G'IRIGI initialisatiMl for event p-eSSi&l
-cI G process one event trigger-

-G%INE generate or Input event kinematics (fm ISAJET)
--1SAEY-m
--G-T store primary vertex
--GSKINE

-(xITREZV loop over tracks, including secondaries

'--T?mK

--GFINDS fill /GCS.WS/ aCCOrdZIg to /ccIRAI(/
--GIJFIW when entering and leaving volume I-+X VOL when inside volume: extrapolate track to exit point of current volume

--QmxT
-%'I'.... track particle, by type (G'NWW, GRIEUT, GTHADR, CRNOH, GTINO)
--GFsmT fill bank for volume statistics

initiallse physics processes
--GNEDIA

--GSVEIT store vert
--(GSSTACK)
--GSKINB
--GSVERT (20)
--GSKINE (20)

I --UHTX determine volume
--GICYL

--GUDIGI

I

--GFHITS
--GSAHIT
--GSDJGI

-GlJcuT

I
--G.SAVE/GGET
--GPRINT according to switches

-UGIAST
I --GUST

--HISTL-Q

Figure 4: A flow diagram of the SSC tracking GEANT program.

-

-
f

-:

Figure 5: A representation of a simple linear structure, from Reference 5.

I JHITS

(down)

I SET

: . I (down)

Figure 6: A representation of the hit data structure JHITS in GEANT.

-

-
r,

_- -
-: LQ(L-NL-NIO-1)

LQ(L-NL-NIO)
. . .

LQ(L- NL- 1)

WC - W
. . .

LQ(L-NS- I)

LQ(L - NS)
. . .

Lx)&- 1)

.- Lx)(L) ----->
.

I-Q&+ 1)

LQc+ 2)

IQ&-s)

IQG-4)

- IQ& - 3)

IQ& - 2)

IQG- 1)
z .-

IQ(L) --,ti->

IQ&+ 1)
. . .

IQ(L + ND)

IOCb NL+ NIO+ 12

I/O opt. 1
. . .

I/O opt. NIO

IinkNL
. . .

IhkNS+l

IinkNS
. . .

Ii&l

next-link

up-w

origin&&

IDN

IDH

NL

NS

ND

8ta!u word

*word1
. . .

data word ND

Exm I/O demipta words (0s NIOs 16)

Reference links

s- (dmwl) links

AddIeasoftheJKrzbankinrlinurstnrctun

Addmofthcsupporhgbank

Acldmofthcslpportinglinlr

NlXlXliCbrplridCll~

Hollerith bmk iden& (4 cbmctcrs) .

Total number of links

Numbcx of struchdlinks

Number of data &mb

stab bits: 1-18 uer, 1932 systan

Datawords

Figure 7: Format of a ZEBRA bank, from Reference 5.

