
SLAC-PUB-4766 (REV)
November 1988

1 .. (1)

PASHA-AN APPROACH TO COMPUTER-AIDED HARDWARE DEBUGGING*

ROMAIN C. AGOSTINI, HELMUT V. WALZ, DAVID B. GUSTAVSON AND Lou BARKER

Stanford Linear Accelerator Center, Stanford University, Stanfod, California 94309

ABSTRACT

An interactive computer-aided diagnostic tool for the SLAC
FASTBUS SNOOP has been developed. The distributed soft-
ware package, written in FORTH and executing concurrently
on an-IBM PC and on the SNOOP, automatically tests the
board and allows pinpointing faults by running a set of spe-
cific tests. Special attention has been given to the menu-driven
man-machine interface which guides the use through the debug-
ging session. Details of the design and results of field trials are
reported.

INTRODUCTION

---Intelligent modules residing on a backplane bus often reach a
degree of complexity that defies conventional validation, testing
and troubleshooting methods.- Highly trained technical people
have to spend a considerable amount of t ime setting up test en-
vironments and designing elaborate test procedures for dealing
with these tasks. Unfortunately, a lot of effort is wasted as many
tests are designed on a per module basis, too specific to be reused
in a slightly different environment, or so badly documented that

-it is easier ‘reinventing’ them again if need should arise. Gen-
erally speaking, manual hardware debugging and testing has to
deal with the following problems: -

a Highly specific and thus non-reusable test procedures
l Wasted time and-effort due to multiple designing of iden-

tical tests . .
T Lack of adequate documentation inherent to ‘on-the-fly’

development
l Even simple functional tests need to be run by specialists
l - Incomplete error coverage due to a non-systematic design

approach
l Long repair delays
A lot of these problems can be avoided with automated test

procedu&saat are computer-controlled, coded in software and
hence only developed once. In such an environment, some kind
of computer works its way through a predefined test scheme,
outputs test vectors, analyzes response to them and generates a
test protocol. The followine list tries to summarize the advan-
tages

+

-I;

+

+

+

+

and disadvantages of such an automated test approach:

one-time design effort - designing and coding the
test system may be tedious

systematic approach guax- - additional hardware for
antees an excellent error stimuli needed
coverage
no supervision of test run
required
experts 0dyaeeded for
actual repair
short repair t ime due to
automatic identification of
problem area .
cost-effective if sufficient
modules

* Work supported by the Department of Energy, contract DE
AC03-76SF00515.

Automated test systems thus seem to offer a multitude of
advantages. In order to investigate their real-life implications,
SLAC decided to implement such an environment for debugging
their SNOOP modules.

THE MODULE UNDER TEST: SNOOP
The SNOOP module, developed at SLAC, is a dedicated

Fastbus logic analyzer which resides in a crate and monitors the
Fastbus backplane traffic; moreover, it has functional capabili-
ties of acting as a bus slave as well as a bus master. The heart
of the module is a Motorola 68000 CPU which interacts with a
high-speed ECL section that attaches to and analyzes the bus
traflic. Additional information about the hardware structure
;d its multitude of features can be found in Refs. (11, (21 and

From the software point of view, the SNOOP module is a
stand-alone computing system with a multi-tasking operating
system supporting the FORTH language. The system software
has mainly been written in this language, with time-critical por-
tions having been implemented in assembler. The user inter-
face is a menu-driven Macintosh application (also written in
FORTH) which sports user-friendly features such as mouse sup-
port, pull-down menus, pop-up dialog boxes, etc. This interface
has been described in Ref. [4].

The SNOOP module contains over 200 chips on ‘a g-layer
PC board, so it is easy to understand that troubleshooting can
rapidly become complicated. Not only does a repair person need
to understand the underlying electrical and logical intricacies of
its design, he must also have a great deal of knowledge about the-
software interactions. Moreover, generating external stimuli on
the Fastbus as test vectors requires proficiency with the IORFI
command interface FBDOS32, (Ref. [5]). Adding all this up
shows that a considerable amount of expertise is required for
performing even the simplest of checkouts.

THE TEST SYSTEM: PASHA
This led to the idea of implementing an automated test sys-

tem, capable of performing module checkouts without requiring
any user input except for starting the task. Such a system would
be of considerable help, both for finding out whether a used mod-
ule is still 100% functional and for validating newly produced
units. In the course of time, more desiderata appeared: besides
running in a totally automatic mode in which test vectors are
generated by the system, a manual mode where the user can
specify test vectors of his own choice should also be supported;
the option for a printed teat protocol should be available so that
a whole test sequence can be run without anybody having to
attend (ideal for overnight testing); a loop mode in which the
same test is repeated over and over for debugging with a scope
or logic probe should be supported, etc.

All these features have been combined into the PASHA test
suite - Package for Automated Snoop Hardware Analysis. The
actual test environment (Fig. 1) consists of the SNOOP mod-
ule under test, an IORFI module for controlling the bus (both
modules reside in a Fastbus crate) and an IBM PC/XT. The PC
is used as a hardware interface to the IORFI (driver cards con-
netted to the PC bus) and as an operator interface for PASHA
(connected via a RS-232C interface to the SNOOP module).

PASHA is a distributed software package which runs con-
currently on the SNOOP under test and on the PC. As it is
executing on two different platforms, it had to be written in

Poster paper presented at the Nuclear Science Symposium, Orlando, Florida, November 9-11, 1988.

Fastbus Crate

User Interface 114s
for PASHA suite 6166Al

Fig. 1. Test setup.

. .
-

1146 6166&Z

Fig. 2. PC software structure.

two different versions of FORTH (the PC version supports
32 bit constructs implicitly, but the SNOOP version doesn’t).
Figures 2 and 3 show the software layering on the two machines.

SNOOP Applications Software

Communications
/

Multitaskina

16 bit FORTH

Operating System

The actual test core of PASHA is executing on the SNOOP.
This was a convenience choice, as the SNOOP command in-
terface (part of the SNOOP applications software in the figure)
can be directly accessed from there, and mechanisms for sending
commands to the PC (and thus also to the IORFI) are readily
available. This way, all the ‘intelligent’ processing is done in
the 68000 CPU, an the PC is only used as a Fastbus driver (via
IORFI) and an operator interface. This is fine, as these func-
tions represent different logical entities and should be kept apart
in the software structure as well.

Up to the present date, a dozen separate tests have been
designed and integrated into the test suite. In order to keep
them independent of each other, they have been implemented
as virtually stand-alone modules which build on a common base
of variables, data structures and FORTH definitions. This ap- a
preach guarantees a minimum of side effects and allows for easy
servicing and upgrading of specific modules. Clearly, an opti-
mally compact code is neither achieved nor is it aspired to do
so, as the modules can be stored on the PC’s hard disk and
loaded into the SNOOP RAM memory when needed. This way,
the growth of the test suite is not impaired by system memory
constraints.

SILO: ADDRESS LINES TEST

xignostic:

Input Da@:
siloPointer : w
Bus Trausactioir MS= W

Test Results:

AUTO STEP LOOP MAIN r

nn 6166A

Fig. 4. Menu before test execution.

As mentioned before, the user interface is implemented on
the PC. Designed to free the operator from having to memo-
rize exotic command sequences and from learning the FORTH
programming language, this interface is both interactive and
menu-driven. Upon selection of a specific test, a menu with
all pertinent information is displayed (Fig. 4); current choices
are highlighted in reverse video. The bottom part of the screen
allows specifying the test mode, with the following options avail-
able:

l AUTO: The system generates a comprehensive set of test
vectors and utilizes them without requesting any input
from the operator. These vectors are displayed in the up-
per right part of the menu, as well as a general diagnostic
message (pass or fail) on the left side and more specific
information in the lower right part.

l STEP: A single test vector, which has to be specified by
the operator, is executed. Upon invoking this choice, the
upper right part of the screen displays an input mask and
the cursor positions itself on the first field. Illegal input
characters are automatically rejected by the system. Re-
sults are displayed as in the automatic mode.

l LOOP: Like STEP, but the same-test is repeated over
and over again until stopped by the user. This allows for
investigating the hardware with an oscilloscope or a logic
probe.

l MAIN: Displays the main menu where the user can select a
specific test or initiate the execution of the whole PASHA
suite. Fig. 3. SNOOP software structure.

2

L
11

SILO: ADDRESS LINES TEST

Input Data:
SiloPointer : I2FP
BusTransaction: MS=P 0 A/D=# A5A5ASA5

Diagnostic: PASS !
RECORDED Test Results:

Match check ok at selected silo address. -_ Recording shows: MS= # 0 A/D= t A5A5A5A5
No exroneous recordings found in silo.

AUTO m LOOP MAIN

-RR - PIcx.3 --
Fig. 5. Menu after test execution.

-.-

Figure 5’shows the same menu after a user-specif ic test vec-
tor has been executed and the results analyzed. In this case,
the user specif ied that the SNOOP module should select loca-
tion #2FF in the silo memory as the next recording location,
and specif ied an address cycle to address #A5A5A5A5 on the
Fastbus via the IORFI. The PASHA system subsequent ly erases
the whole silo, loads the silo pointer with the value #2FF, arms
the silo for recording any upcoming Fastbus traffic and requests
an address cycle to address #A5A5A5A5 from the IORFI. After
this has happened, it checks whether the transaction has been
correctly recorded at the desired location, makes sure that the
transaction doesn’t show up at any other silo location (which
would indicate shorted address lines, the purpose of this test)

and displays the results of its checking. W ithout the PASHA
system, this rather straightforward procedure would require the
explicit knowledge of some 20 commands and of a programming
language in order to loop through the silo memory for checking
out its contents, None.of this is required when using PASHA.
Moreover, in automatic mode, the user doesn’t even have to
corns up with a test vector, as a complete set is automatically
generated.

In more complicated menus, the operator has an addit ional
choice of different submodes which are directly related to the na-
ture of the subcircuit under test. Figure 6 shows a menu .where
the same basic SNOOP function (generat ing a Fastbus wait sig-
nal upon recognit ion of a trap) has to be verified in different
modes (a single address can be the trap, or two addresses, or
an address qcle fol lowed by a data cycle). These submodes are
shown in the upper left wrner and are selected with the PC’s
function keys. Choices are again highl ighted in reverse video.
For the rest, the test works as outl ined above.

MASK REGISTERS TEST
\

Diagnostic: CORRECT

Zk&

AUTO 1-1 LOOP MAIN

- Fig. 6. Menu screen for mask registers test.

In order to validate a new SNOOP module which has just
been assembled, a user plugs it into the Fastbus crate with the
IORFI module, calls up the PASHA test suite and instructs it to

step through all test modules in automatic mode. Upon detec-
tion of an error, an acoustic signal is generated and the test pro-
cedure is halted; a keystroke from the operator resumes check-
ing. Al though this operat ing mode requires an operator, the
test suite can also be run in a completely unat tended mode. In
order to do this, the user only has to request a printed test pro-
tocol, and every test will be executed with appropriate printer
output and no halts after errors. Thus, a module can easily be
checked overnight. Another advantage of this is that no highly
skilled technician is needed just for f inding out whether a mod-
ule is operat ional (but notice that this is not necessari ly true for
actually repair ing a broken module).

The reader may have not iced that this way of testing re-
quires a fully operat ional processor part of the module in order
to run the operat ing system, the FORTH runtime system and -
the PASHA suite. But hardware failures may also occur in this
part and prevent the whole system from running. For this pur-
pose, three tests have been written in 68000 assembly language
and programmed into EPROMs. These EPROMs are p lugged
into the sockets which will later host the system software, and
the CPU starts execut ing the test program when booted.

The first EPROM test is a simple count ing loop for testing
the CPU, the address lines to the memory and the generat ion
of control signals. The second EPROM test reads keys from the
IBM PC, echoes them back to the PC’s CRT and displays their
hex value on the SNOOP front panel LEDs. This way, the com-
municat ions chip and the RS-232C interface to the PC is checked
out. A third EPROM test deals with a VLSI t imer/counter chip
and interrupts. If these three tests are successful ly passed, the
system software can be run.

If the test protocol reveals some bugs, the operator can in-
voke the specific test module from the main menu and run it
again, if need be. In order to zero in on the bug, specific test
vectors may be entered in the STEP mode and the responses
to them analyzed; in the LOOP mode, some hardware probing
can be done. The repair person taking over at this time needs
to have a more thorough understanding of the SNOOP’s inner
structure, as he will be using the schematics as well; some knowl-
edge of the SNOOP commands and FBDOS32 is helpful as well.
The main point is that up to this point, no specific knowledge-
whatsoever has been required. 3-

WORK EXPERIENCE W ITH PASHA

The present PASHA suite contains 12 tests which deal with
the following SNOOP subcircuits:

0 Wait generat ion circuits
a Trap registers
l Mask registers for trap operat ions
a Silo write enable logic
l Silo counter and pointer handl ing

l Silo address lines
l Recording start on trap
l Recording stop on trap
l Parity checking circuits

l Fastbus protocol violation tags
l Control and status registers
l Geographical addressing circuits
The test suite has been utilized for complete debugging two

SNOOP modules and is now used for doing some checking on two
addit ional modules. As expected, the first debugging sessions.
pointed out some weak points in the software which have been
corrected in an iterative process. The present version has been
fairly stable, with some enhancements having been added for
convenience.

s

Running th;tests in automatic mode proved to be extremely
easy, and a subsequent analysis of the teat protocol pinpointed
the areas to concentrate on. Sometimes it was even possible to
determ?ne the exact cause of errors just by carefully evaluating
the protocol. In most cases, however, direct hardware probing
was necessary, and at this point both the STEP and the LOOP
modes proofed handy. Often, a logic probe was enough for de-
termining the cause of the failure. On a few occasions, it was
n&essaxy to use an oscil loscope and/or write some specific com-
mand sequences for getting both the Fastbus and the SNOOP
into the required state. As mentioned before, the actual tepair-
ing does need a person capable of reading a circuit diagram and
familiar with digital electronics.

On the whole, the PASHA test suite proved to be very help-
ful and effective. The nicest feature is that the tests are very
comprehensive, which provides good assurance to believe that
a module is fully functional after it has been validated by the
suite. The excellent error coverage is best documented by the
fact that bugs in supposedly working modules were found; they
hadn’t been detected by manual testing as they only showed up
in cases not often encountered during normal operation.- And,
last but not least, speedy repairing of broken modules has been
greatly facilitated by the suite.

FUTURE ENHANCEMENTS

In addition to the development of new test modules, a few
software changes could be made to improve the user-friendliness
of the suite. One of them would be the implementation of on-
line help menus associated with each test module. Here, the
operator couli see a brief description of how the test is actually

-working, what circuits of the SNOOP are tested, and what ex-
act command sequence is executed in the LOOP mode, as this
knowledge is required for doing any intelligent probing.

Furthermore, instead of sending a full test protocol to the
printer, which tends to be rather lengthy, errors could be logged
selectively in order to speed up the process. Writing to a disk
fde is also potentially useful.

SUMMARY

Emerging needs for computer-controlled hardware testing
have been discussed, and the implementation of such a test suite
at SLAG has been described. Positive results for both increased
error coverage and decreased trouble-shooting time show that
automated hardware debugging is the correct approach to the
problem of increasing system complexity.

111

PI

[31

141

[51

REFERENCES

H. V. Walz, D. B. Gustavson and R. Downing, Progress a
on the SLAC SNOOP Diagnostic Module for FASTBUS,
IEEE Transactions on Nuclear Science, NS-30 1, pp.220-
222 (1983).
H. V. Walz and D. B. Gustavson, Status of the SLAC
SNOOP Diagnostic Module for FASTBUS, IEEE Transac-
tions on Nuclear Science, NS-30 4, pp. 2276-2278 (1983).
D. B. Gustavson and H. V. Walz, SLAC FASTBUS
Snoop Module - Test Results and Support Software, IEEE
Transactions on Nuclear Science, NS-33, 1, pp. 811-813
(1986).
D. M. Gelphman, D. B. Gustavson and H. V. Walz, An
Interactive Interface for FasQms Diagnostics, IEEE Trans-
actions on Nuclear Science, NS-35, 1, pp. 303-305 (1988).
C. Logg, FASTBUS Diagnostic Operating Interface (FB-
DOS), Stanford Linear Accelerator Center, August 1982.

-

