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ABSTRACT 
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L 

Path integrals for interacting world sheet sigma models play a key role in string 

’ theory. For open strings, the relevant path integral is one-dimensional and has di- 

rect physical interpretation as a source term for closed string fields. This means 

that the vacuum divergences (Mijbius infinities) of the path integral must be renor- 

malized correctly. In this paper we show that reparametrization invariance Ward 

identities, apart from specifying the equations of motion of spacetime background 

gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. 
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1. Introduction 
. . _ 

In the Polyakov approach to string physics, ipen strings are associated with 

worldsheet boundaries and the effects of open string spacetime backgrounds are 

associated with boundary interactions, in the form of Wilson lines. In this con- 

nection, it is interesting to study the operator equivalent of inserting a single 

boundary, along with its Wilson line, into a closed string worldsheet. This object, 

called the boundary state and denoted by IB), summarizes the lowest-order effect 

of background open string matter on purely closed string physics (gravity, in par- 

ticular). It can be thought of as a stringy generalization of the matter spacetime 

energy-momentum tensor. 

_-..._ . 
-. 

It has been shown that the boundary state is equivalent to the vacuum ampli- 

tude of a one-dimensional field theory for D scalar fields (where D is the dimen- 

sion of spacetime) [l]. This theory has an unusual dimension-one kinetic term, 

a dimension-one interaction term given by the Wilson line built out of the back- 

ground gauge field and, finally, a set of linear source terms coupling the boundary 

fields to closed string creation operators. The source terms convert the vacuum am- 

plitude of the one-dimensional field theory into a state in the closed string Hilbert 

space and the state so constructed is the boundary state [2,3]. For a constant, 

abelian background gauge field the one-dimensional action is quadratic and the 

path integral can be explicitly evaluated. For a general background, there are non- 

trivial interactions and the path integral defines a divergent but renormalizable 

perturbation theory. 

In order to evaluate the boundary state (stringy energy-momentum tensor) 

associated with a given gauge field, it is necessary to specify a renormalization 

scheme for all the path integral divergences. These are of two kinds: iogarithmic ; 
,- _Y_ coupling constant divergences and 1inea.r vacuum divergences (referred to in other -- 

string contexts as ‘Mijbius infinities). It has recently been pointed out that both 
_- sorts of divergence can be absorbed by local Lagrangian counterterms [4] and, in 

- - principle, dealt with by standard renormalization methods. Several low-loop order 
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calculations of the background field dependence of the open string path integral 
,; now exist [S]. A crucial feature of any renormalizat-ion scheme is a set of conditions 

. to fix the finite parts of counterterms. In standard field theory applications, one is 

indifferent .to vacuum divergences since they cancel out of S-matrix elements. Here, 

however, vacuum graphs provide a background-field-dependent normalization to 

the path integral which must be correctly defined if the path integral is to be used 

as a stringy energy-momentum tensor. An unconventional feature of this problem 

is. therefore that we need renormalization conditions for vacuum divergences as well 

as coupling constant divergences. It seems to us that this problem has not been 

dealt with in a systematic way in the above-mentioned treatments of string path 

integral renormalization and it is the goal of this paper to derive, from basic string 

invariance principles, correct renormalization conditions for all the path integral 
- 

divergences. 

In standard field theory applications, renormalization conditions usually come 

from Ward identities for some underlying symmetry. In the end, that will turn out 

to be true here as well. Since local scale invariance (c.onformal invariance) picks 

out the two-dimensional sigma models compatible with string theory, it is plausible 

_-..._ . 
-. 

,- _T_ 

..- 

- - 

that we should require one-dimensional local scale invariance (reparametrization 

invariance) of t,he open string path integral. (The notion that reparametrization 

invariance is the fundamental dynamical principle of open string physics has been 

explored by Iileppe et al. [6], but the connection of their work to what we shall 

be doing here is not clear to us.) At the lowest level, this is achieved by choos- 

ing the coupling constants (background gauge fields) so that the theory sits at a 

renormalization group fixed point (zero of the beta functions). While this condi- 

tion probably serves to specify the coupling constant renormalization conditions 

(and provides critical physical information in the form of a stringy generalization 

of Maxwell’s equations), it doesn’t say anything about the vacuum infinities and 
_ 

is not quite enough for our purposes. As mentioned earlier, the path integral is 

most properly thought of as generating a state (B) in the closed string Hilbert 

space which defines the coupling of the open string background to closed string 

c 
-- 
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physics. It can be demonstrated [3] that, for consistent coupling, IB) must be 
,; reparametrization invariant in the closed string sense. That is, it must be an- 

. nihilated by the closed string Virasoro generators which correspond to boundary 

reparametrizations: 

(L,,-L-,)IB)=O, -oo~n<cc (14 

Although the details are a bit subtle, this version of reparametrization invariance 

turns out to be just what we need: besides implying that the coupling constants sit 

at a zero of the beta functions, it provides a precise specification for the vacuum 

subtractions and gives precise meaning to the path integral. The bulk of this 

paper is devoted to working out the implications of the unconventional set of Wa’rd 
- 

_-.. .- . 
-. 

..- _T_ 

-- 

identities implied by (1.1). 

With luck and cleverness, we might be able to use this framework to study 

some more funda,mental problems in string theory. In the two-dirnensional con- 

formal field theory approach one would like to classify all such field theories, to 

find theories which correspond to soliton solutions (topological sectors of string 

field theory?) and to learn how t6 sum over field theories in order to construct the 

&ring field theory path integral (or at lea.st to quantize the collective coordinates of 

string solitons). These desires are currently frustrated by our lack of a sufficiently 

comprehensive understanding of conformal field theory. All of the above questions 

can be asked in the open string context and can be answered if we can characterize 

one-dimensional reparametrization-invariant field theory completely enough. Since 

one-dimensional field theory is a fairly simple system (closely related to multivari- 

able quantum mechanics), one might hope to make serious progress along these 

lines. Conversely, one might hope to ada.pt the techniques described in this paper 

to the equally important and unsolved problem of fully defining the closed string 

path integral. 

In this paper, ‘we study the above-nlentionecl issues in the context of bosonic 

string theory. The extension to superstrings will be presented elsewhere. In Sec- 

- - tion 2 we introduce the path integral representation of the boundary state in a 
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general background gauge field. In Section 3 we derive the Ward identity which 
,; follows from reparametrization invariance of the boundary state. In Section 4 we 

. implement the Ward identity on the perturbation expansion of the one-dimensional 

field theory. In Section 5 we derive explicit one-loop order results and compare 

them to previous sigma model calculations [7]. Section 6 contains discussion and 

suggestions for future work. 

2. Boundary States 

The lowest order open string loop correction to a closed string process comes 

from adding a boundary to the world-sheet. The moduli of such loop amplitudes 

are taken into account by attaching the boundary to the old worldsheet through 

a cylinder, whose length is to be integrated over. In operator language a closed 

string state, IB), is created out of the vacuum at the boundary and the cylinder 

- 

corresponds to a closed string propa,gator connecting the boundary state to a tree 

level closed string process [ 2, 81. The form of the boundary state is determined by 

the open string boundary conditions and, in particular, may reflect the presence 

of a background gauge field in spacetime. The boundary state can thus be viewed 

as an open string source for closed string fields. _-.. .- . 
-. 

Let us first consider a free string in flat, empty spacetime. The boundary 

condition is simply 

d.,Lxyc7, 7) = 0 

where 8, den&es the normal derivative at the world-sheet boundary. We take the 

boundary to be at the end of a cylinder, at fixed world-sheet time 7, and we can 

choose 7 = 0 for convenience. The mode expansion for a closed string is 

xqq 7) = q lJ - 2ipiLr + i L 1 
Jk2[ a? e 

m 

-mr-ima + G;e-mr+ina] 

m#O 

(2.1) 

c 
-- 

- - (Our conventions are detailed in the Appendix.) In terms of modes the above 
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boundary condition reads 

. . -. p/L = 0 ) ; 

cl!!,,, + GE2 = 0. 
(2.2) 

Upon quantization, the mode coefficients become operators satisfying the commu- 

tation relations 

bs417 a;] = [G!k, ii;] =?n S7n+71,0 P”” ) 

[c&, &;,I =o . 
(2.3) 

- 

As usual we take the CY~ and & with n > 0 to be annihilation operators and those 

with 72 < 0 to be creation operators. The free boundary state must be annihilated 

by the combination of left- and right-moving creation and annihilation operators 

in (2.2). It is easy to see that the desired state is [2] 

IB) 
O” 1 

free 
= exp{ - 1 &cY-m * G-77,) IO) (24 

_-..._ . 
-. where IO) is the SL(2, C) invariant vacuum of the closed string. If there is a gauge 

field in spacetime the boundary conditions are modified. In general they imply 

non-linear conditions for the closed string modes and the boundary state will no 

longer be so simple to obtain. 

In [3] it is shown how the boundary state in an arbitrary spacetime gauge 

field is formally given in terms of a path integral for a certain one-dimensional 

field theory. The result, obtained by viewing the string as an infinite collection 

of oscillators and using some elementary properties of simple harmonic oscillator 

,- _T_ quantum mechanics, is 

..- 

- - 
IB) = exp (2 ia-- * cy,,> J [Kj] tr Pexp [-SO - SA - Sl,] IO) , 

m=l 
(2.5) 



where 
,; . . - 

. 
So[c#q = -& 

#i 
s&b] = -& f ckA&(s)) p (2.6) 

The @L(s) are D scalar fields defined on S1, parametrized by s E [0,27r]. A,($) 

is the spacetime gauge potential and the trace and pa.th ordering instructions are 

called for when dealing with non-abelian backgrounds. The linear source is a sum 

of closed string creation operators, 

- 
O3 1 

Q’(S) = C m (CY!,,,, eeims + cP,~ eims) , 
m=l 

--.- . 
L 

so that the whole path integral can be regarded as a state in the closed string 

Hilbert space. A peculiar feature of the kinetic term is that it is written in terms 

of a decomposition of @(s) into its positive-, negative- and zero-frequency Fourier 

modes: 

f#P(s) = 4: + d:(S) + 4%) 7 

with 
co co 

&(s) = C d$eeims, 4:(s) = C ~~~~~~~~ 

m=l m=l 

_. .*. 

_- 

- - 

The kinetic and interaction terms are linear in derivatives which has the conse- 

quence that the perturbation expa,nsion for this path integral will turn out to be 

divergent (but power-counting renorma.lizable) rather than finite. 

The kinetic term, So, is very $culia.r indeed. For compactness of notation we 

have written it in a superficially local form, but this has required a breakup of @‘ 

into positive and negative frequency parts with respect to a particular choice of 

& 
--- 
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parameter s on the worldsheet boundary. If we write So in terms of the undecom- 

,; posed field., we obtain instead . 2x So[$l = & ds J s cc &/ MS) - 9w2 (s-s’)2 * 
0 ---co 

This is both non-local and non-reparametrization invariant, but still well enough 

defined for a perturbation expansion of the path integral to exist. In view of the 

fundamental role of reparametrization invariance in this problem, and the fact 

that the interaction Lagrangian is manifestly reparametrization invariant, it is a 

bit surprising that the kinetic term should not be invariant to this symmetry! We 
- will eventually see that this resolves itself in a natural way. - 

_-..._ . 
-. 

,- _F_ 

-- 

- - 

The zero mode, $,“, requires special treatment. It can be interpreted as the 

center of mass position of the closed string which is created at the boundary. As 

shown in [3], an important role of the boundary state is to provide source terms for 

the equations of motion of massless closed string fields (for example a gauge field 

energy momentum tensor term in the generalized Einstein equation). Since those 

equations are local in spacetime, it makes sense to regard the bounda.ry state as a 

function of (b t. Indeed, IB) is always to be regarded as a state in the oscillator Fock 

space with projections onto individual Fock space states which are functions of the 

c-number zero mode coordinate (b. ‘. Accordingly, the zero mode is not integrated 

over in the path integral and this is indicated by the hat over the measure 04 in 

(2.5). It does not appear in the kinetic term or the linear source term but in general 

the spacetime gauge potential, A,(4), h 1 w ici enters in the Wilson line interaction, 

@ is a function of $. . The result of the pa,th integral is therefore a functional of the 

closed string creation operators and the zero mode. When we study the’response of 

this path integral to reparametrizations of the boundary coordinate s, this special 

treatment of the iero mode, as tie11 a.s the fact that the kinetic term refers to 

a specific parametrization, will introduce unpleasant but, as far as we can see, 

unavoidable complications. 

& 
--- 
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In the presence of a spacetime constant abelian gauge field strength, FPV, the 
,; path integral is Gaussian and easily shown to take the value [3,1] 

IB,F) = dm exp(- g ~a’L,(&-$)pvX.,,) IO). (2.7) 
m=l 

- 

(For an arbitrary gauge field, the boundary field theory is not free, and the path 

integral must be evaluated in a perturbation expansion.) That the dependence of 

this state on the oscillators is correct is verified by the fact that the state is annihi- 

lated by the appropriate quantized boundary conditions and that it reduces to the 

free boundary state when Fpv = 0. The specific F-dependence of the determinant 

factor is also known, from a variety of consistency conditions, to be correct [9]. 

An important subtlety is hidden here. The normalization constant is actually the 

product of identical factors for each of the infinite number of string oscillators and 

is, strictly speaking, infinite. The correct finite result is obtained by an astute use 

of zeta-function regulation, while a more general view of the renormalization prob- 

lem might lead one to conclude that the F-dependence of this factor is arbitrary! 

The resolution of this puzzle is that in order for the path integral to describe string 

theory, it must be renormalized so as to maintain reparametrization invariance. In 

the rest of this paper, we will show that implementation of certain reparametriza- 

tion invariance Ward identities completely and correctly defines the renormalized 

path integral even for a general background gauge field. 

- 

_-..._ . 
-. 
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3. Reparametrization Invariance 
,; 

The’ free boundary state (2.4) is annihilated; for all 72, by the combination . 
D,, = L, - L-, of closed string Virasoro generators. Since the D,, satisfy the 

Diff(Sr) lg b ( tl a e ra wi 1 no central extension), this is evidently the condition that 

]B)free be invariant to reparametrizations of the 5’1 boundary of the worldsheet. 

In fact this is a completely general condition. It is shown in [3] that the leading 

effect of inserting an open string boundary into a closed string worldsheet is to 

cause a shift, I$), in the closed string vacuum satisfying 

(Q + 0, Iti> = I@ - (34 

Since the closed string BRST charge, Q + Q, is nilpotent this equation implies the 

consistency condition 

(Q + 0, IW = 0. (3.2) 

Up011 stripping off the (trivial) ghost part of the boundary state [2,8], the consis- 

tency condition for the matter part of the boundary state is easily seen to be the 

_-..._ . 
-. 

reparametrization invariance condition 

(L, - I-,,) IB) = 0. (3.3) 

We take this as the fundamental string consistency condition on the boundary 

state. There is, of course, the question of which Virasoro generators to use in this 

equation. For the purposes of this paper, we take them to be the Virasoro gener- 

ators of free closed string theory (i.e. the open strings are assumed to propagate 

in flat, empty spacetime). The spirit of this calculation is that we are.looking for 

,- _F_ a solution of the open string matter equations in a given fixed gravitational back- 

--.. -ground (implicitly’specified by thechoice of the Ln) and do not concern ourselves 
-- with the ‘back-reaction’ of the open string matter on the metric. There are obvious 

c 
--- 

- - improvements one might make to this picture, but it is internally consistent as far 
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as it goes. IB) is in general a complicated functional of the closed string creation 
i ,; operators and the zero mode, d:, so (3.3) is a quite non-trivial condition on possi- 

. ble configurations of the spacetime gauge field. As explained in [3] the projection 

of (3.1) onto zero mass levels results in equations of motion for the dilaton and 

grariton with sources provided by open string condensates. Thus it is apparent 

that (3.1) should b e regarded as a stringy generalization of Einstein’s equations, 

with IB) as the energy-momentum tensor and that (3.2) should be regarded as 

the stringy generalization of the energy-momentum conservation law. This remark 

shows that the energy of an open string soliton, should we be able to construct 

one, can be read off from the associated boundary state thus giving us another 

reason for wanting to properly normalize IB). 
- 

Now we wish to recast (3.3) as a set of Ward identities for the correlation 

functions of the one-dimensional field theory which can in turn be used to constrain 

the renormalization procedure. Although (3.3) should be equivalent to invariance 

of the one-dimensional field theory under reparametrizations of Sr, on which the 

field theory lives, closer examination shows that the situation is not so simple. The 

infinitesimal variation of the field @I( ) s under reparametrizations s --+ s + f(s) is 

_-..._ . 
-. S#ys) = f(s) v (3.4 

(f is regarded as infinitesimal) and, although the interaction term in (2.6) is invari- 

ant under this transformation, the kinetic term is not! Specifklly, 

,- _T_ 

&zSO[$] = 4, (k 2 772 4m ’ 4-m) 

m=l 
_ n-l 1 =- 
2 c ( In n - m) $m * dn--m. 

m=l 

(3.5) 
& 

--- 
L. 

-- 

- - 

where we denote by S,, the variation generated by D, (corresponding to an in- 

finitesimal reparametrization by f(s) = ieins ). The failure of reparametrization 

invariance for the kinetic term stems from the fact that in writing it down we 

11 



chose a spkcific parametrization of the 5’1 in order to separate positive and nega- 
,; tive Fourier modes. The Ward identities are significantly complicated by the fact 

. that the underlying symmetry is broken reparametrization invariance. 

The derivation of the Ward identities proceeds as follows. The path integral 

with the linear source term can be viewed as a generating functional for Feyn- 

man diagrams where the Wilson line supplies interaction vertices (details of the 

construction will be given shortly) and external lines terminate in cyen and GVn 

sources. In the remainder of this discussion the spacetime gauge field is taken to 

be abelian, or at any rate to be in a.n abelkn subgroup of the full gauge group so 

that path ordering is not required in the path integral and the gauge group trace 

may be suppressed. The one-dimensional path integral 

-qQ, G, $01 = 
s 

E+ exp{ -S[$] - i F(Q-tz * $n + G-n ’ 4-n)) (3.6) 
n=l 

(where the one-dimensional action includes the kinetic and Wilson line terms, the 

linear source term has been expressed in terms of modes and the functional integra- 

tion does not include the zero mode) can be regarded as the generating functional 

of all diagrams, both connected and disconnected. The generating functional, TV, 
_-..._ . 
- of connected diagrams is defined in the usual way by 

- 

Z[q &, (flo] = f=/-w[Q,+d (3.7) 

and a generating functional, l‘, of one-particle-irreducible diagrams (or efFective 

action) can be obtained by Legendre transformation of W: 

co 
r[4cl] = W[Q, G,#O] - i C (a-m . $2 + G-m ’ dt!,,) 

m=l 

tii = + d”“,,, = -;?K 
Q’m 3&-m - 

,- _F_ ~ al7 ix- - - ayirn = %@ _. lLnz = 2------ 
&IF, 

..- s;l = 40 * 

(34 & 
--- 

- - The boundary state itself, (2.5), h as a simple expression in terms of the connected 
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generating functional: 
,; . . _ 

. IB) = exp( 5 j&-772 .6-m - W[a, 6, &I]) IO) . (3-9) 
m=l 

Note that the boundary state is not quite identical to the sum of vacuum diagrams 

of the one-dimensional field theory. As is explained in detail in [3], the two objects 

differ by a factor which, although a simple Gaussian, pla,ys an essential role in 

getting the right Ward identities. 

- 

Experience shows that the most convenient way to impose symmetry conditions 

such as (3.3) on a renormalization scheme is to convert the symmetry to a set of 

Ward identities for the one-particle-irreducible generating functional. To that end, 

we express the Virasoro generators in terms of mode operators: 

Ln=i 2 an-,rn ’ am 7 (3.10) 
m=-03 

-- ..- . - 

represent the oscillator commutation relations (2.3) by replacing cy{ for n > 0 with 

n a/&& and make the corresponding substitution for left movers. The zero modes 

satisfy CY~ = &f = pP and we represent spacetime momentum by pfi = -i a/ac$~. 

(this slightly unconventional normalization of a0 ’ is discussed in the Appendix). 

Using this representation for the Virasoro generators and (3.9) for the boundary 

state, the condition (3.3) can be rewritten for n > 0 as 

n-l 

E[ 
$2(?2 - ““)(E * E - 

m=l L 

aa-~2yam-n) - (72 - ??2)&m. 0”” ] 
Q,rn n 

+ P f3”T’v 
. dl,V f3lV -.- 

840 * dCY-n - an&Y-n acpo I 

+ F [-7nQn-m. E + (m - ?Z)&-, . 8irm]} I@ = 0. 
m=n+l 

am 

(3.11) 

- - 

(A similar expression holds for n < 0.) In this equation there are only closed string 

creation operators, and no annihilation operators, acting on IB) so the expression in 
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curly brackets must vanish by itself. By making use of the Legendre transformation 

,a-. and combining some terms, it can be cast in the simpler form 

cc ar 71-l 

cc m+n)- 
m=-co a$$ - e+n = c LL(n - nz)[& a2 w 

m=l 2 . G--,, + da-, ’ aa,-, 1 

SW 
- %$ho * da-, * 

(3.12) 

The left hand side of this eyuation is precisely &I’[$], the variation of the effective 

action under the reparametrization s + s + ieins. Comparing with (3.5), we see 

that the first term on the r.h.s. is the variation under reparametrization of the 

classical action. Using the fact that the classical action is the tree-level effective 

action, and separating the tree and loop contributions to I, we cast the Ward 

identity into the following reasonably compact form: 

n-l 
m 100~ = C $+ - mjaa- a2yamen - ina,~~~-, . 

m=l - m’ 
(3.13) 

_-..._ . 
- 

This Ward identity evidently expresses broke71 reparametrization invariance of 

the one-dimensional field theory. In fact, we have previously noted that repara- 

metrization invariance seems to be broken by the kinetic term and by the special 

treatment of the zero mode in the path integral, and, indeed, the terms on the 

r.h.s. of (3.13) correspond to these two sources. It is perhaps disturbing that 

strict reparametrization inva,riance of the boundary state does not translate into 

strict reparametrization invariance of the underlying one-dimensional field theory. 

However, when we develop the renormalized perturbation expansion in the next 

section, we will find that the ‘broken symmetry’ Ward identity is easy to implement 

,- and contains all the right physics. _2z_ 
- - 

In fact we could have avoided having the last term on the right in (3.13) 
-- by considering the boundary state as a function on momentum space rather than 

- - spacetime itself. The Fourier transform to momentum space involves an integration 



over 4: (which removes the hat from the path integral measure in (2.5)) and adds 
,; i p. ~$0 to the linear source term in (2.6). The Ward identity is derived in the same 

. manner as before but since the zero mode is no longer singled out of the path 

integral the last term in (3.13) does not appear. This simpler form of the Ward 

identity is convenient for formal discussions. However, the zero mode still has to 

be projected out when we define the perturbation theory, so we will be using (3.13) 

in the sequel. 

4. Perturbation Theory 

_-..._ . 
-. 

In this section we work out the perturbation theory rules for our one-dimen- 

sional field theory and carry out the renormalization program, including the imple- 

mentation of the Ward identities, to one-loop order. In the process, we will rederive 

the known gauge field equations of motion and understand how the gauge-field- 

dependent normalization of the boundary state path integral is unambiguously 

determined. We use the background field expansion and proper time regulation, 

following quite closely methods recently used by Guadagnini [lo] to study general 

coordinate invariance in the two-dimensional non-linear sigma model. His approach 

turns out to be very well-adapted to our problem. As in all other string theory 

applications of nonlinear sigma models, perturbation theory is an expansion in 

spacetime derivatives: The three point-coupling in the one-dimensional field the- 

ory turns out to be proportional to K7xFPy, and we make the approximation of 

slowly-varying spacetime gauge field in order for perturbation theory to be valid. 

In the same spirit, we will neglect terms with more than one derivative of F,,, 

wherever appropriate. 

- 

To carry out the background field expansion we shift the field in the path ; 

,- _xz_ integral, @(.s) -+ #P(s) + 7+(s), t a<ing rp(s) to be the new quantum field and 1 --- 
- - 

-- 
c$!” (s) to be an arbitrary classicai .background. Then the action is expanded in 

powers of the r-fields to get a set of propagators and vertices which depend on 

- - the classical functions 4,‘(s). By the usual rules, the effective action I’[41 is the 
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sum of the one-particle-irreducible vacuum diagrams for the n-fields [ll]. All the 
,a-. information we need is contained in the inverse propagator Hpv = S”S[~]/S~~S&‘, 

. which summarizes the terms quadratic in 7r in the background field expansion of 

the action; Formally, the one-loop effective action is 

rl = :logDetH. 

This expression needs regularization to be mea.ningful and it is convenient to use 

the proper time method to define 

(4.1) 

In this expression, the trace is both over states of the one-dimensional theory and 

spacetime indices of the matrix inverse propa.gator HP,,. 

- 

It is useful to introduce position and momentum eigenstates in the Hilbert 

space of the one-dimensional theory. Call the one-dimensional position operator q 

&nd write its eigenstates as Is). Define the momentum operator p = -i& and call 

its eigenstates In?.). Summarize these definitions by the following relations: 

_-..._ . - 
Q I4 = s I4 

eiP3’ Is) = Is’ + s) 

p jnz) = nz lm) 

einq In-L) = Ini + n) . 

The operator H,, has two pieces derived from So and 5’~ respectively. Because of 

the non-local nature of the kinetic term we cannot write I-1$ explicitly in terms of 

4 and p, but it acts in a simple manner on momentum eigenstates 

HiY /m) = @!6,, Inz) 
2 

z- .= 
- .~ - 

The part derived from 5’~ is 

J$ = - ; [F,,v (4(d) P L. 

7 -cQ<n2<co. (4.2) 

+ P4v(d(d)] - 
(4.3) 

- ;(V,,F&(d) + VvF&#@)))4%) - 
The background field vertices, derived from the cubic and higher terms in the 

_- 
- - 
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expansion of the action in powers of r, are a811 proportional to at least the first 
,L-. derivative of F,, and play no role in what follows; 

. 
We now want to express the Ward identity (3.13) as a condition on PI. We 

first consider the response of I’1 to a reparametrization of the background field. 

Only HA depends on qP( s) so 

SflTl = :Tr [6fHA$e-LH]. (4.4) 

The variation 6fHA has a simple operator expression 

QH,& = ~~f(n)~$!i, - ;H,A,~(P)P. (4.5) 

which follows from reparametrization invariance of 5’~ , Sf ($1 I H,$ I&) = 0, and 

the transformation rule of a scalar, Sf 14) = f(q)& I$). 

Next we show how the first anomalous term on the right hand side of (3.13) 

can be cast in a form similar to the variation of rl in (4.4) and that the two 

combine to give a simple expression. Consider an infinitesimal reparametrization 

by fix(s) = ieins and construct ap operator using I$, instead of IIfv in the right 

hand side of (4.5). Let this operator act on a momentum eigenstate 

_-..._ . 
- (ipfnHiv - iH$,fnp} Im) = -;6,, [(m + n)lnxl - In2 + njm] Im + n) 

6By(n2 + n)m 1772 + 92) , if -72 < 7-n < 0; 
= 

0, otherwise. 

Then note that second derivatives of the connected generating functional are pre- 

cisely rnatrix elements of the propagator of the theory: 

d2W 
as,, * aa;n-, 

= (-n2l +--- 171 - n2) . 

w 

From these two observations it follows that 
a- _2z_ 

-- 
f Tr [(ipfnko - iH”fnp)iiL’“] = - ng i,n(, -~m)aoLA~2~am-n 

m=l 

(4.6) 

- - Assembling (4.4) - (4.6), we see that two terms in (3.13) combine very neatly to 
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give 
,z-. . . _ 

. 

n-l 
SJl - c +n(n - ?l~)a,-~~y ; = ; Tr [f:,e-q . 

rn=l Qh n 
(4.7) 

This is very similar to Guadaguiui’s result for the one-loop general covariance Ward 

identity [lo] in the two-dimensional sigma model. 

Finally, we must deal with the second auornalous term in (3.13), expressing 

the breaking of reparametrizatiou inmriancc due to zero modes. According to our 

original definition of the path integral, we should not integrate over the zero modes 

of 7r and, since our espression (4.1) for the one-loop effective action has ignored 

that subtlety, the preceding calwlatious must be modified to take it iut,o account,. 

Define PO as the projection of any state onto the zero mode. Then the proper 

one-loop effective action is obtained by replacing HPy in (4.1) by its projection 

orthogonal to zero modes 

I$ = (l-Pl&.(l-PO). w> 

The Wa.rd identity involves the variation of the projected operator under a repar- 

_-..._ . 
- 

ametrization. Since the projcctiou 1’0 does not dcpeud ou the background field 

(SfPo = 0) we get 

= (l-~‘o)(i~~f~~~~ - i&qf]J)(l-&J) (4.9) 

(The last step uses the ideut,ity pPo = Pop = 0.) The first two terms fit iuto the 

argumeuts leadiug to (4.7) but the rernainiug two give au additional contribution 

,- _T. Tr[~;~&,~(l-Ai)& (4.10) -- 

_- 

- - 
to SfIj. Once again take f(s) = ieins to facilitate comparison with (3.13). The 

trace cau be taken over momentum eigeustates and the 1’0 projection elimiuates 
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all but one term to give the following extra contribution to (4.7) : 
,; . . - 

. 
- 72 tr (01 a,(l-P&& 112) . 

We claim that this object is related to the generating functional of connected 

Green’s functions by the following simple identity: 

. 8’W z ac$o * da-, = tr (01 H~(l-po)& In). (4.11) 

To the order we a.re working (ba.lancing one-loop anomalies in reparametrization 

invariance a.gainst explicit tree-level breaking) we only have to assert that this re- 

lation is true for tree graphs. The quantity dW/da-, is just 4;: and is given by the 

sum of all connected trees with one distinguished external leg corresponding to $c,“, 

all other external legs terminating on cx sources and internal lines corresponding to 

propagating non-zero modes. The vertices correspond to expansion of the interac- 

tion Lagrangian in non-zero modes and, through their dependence on the spacetime 

background fields, are functions of the zero mode coordinate. Differentiation with 

respect to $0 acts in turn on all the vertices. A particular term in the graphical 

sum for @W/a& . do-, 1 las a differentiated vertex connected to the distinguished 

4;’ external leg by a dia.gram having the topology of a propagator. Summing over 

all diagrams will just convert such diagrams to the full background field propaga- 

tor in the given @’ background. The same summation converts the differentiated 

interaction vertex to the matrix element of the background field quadratic action 

between one zero mode and one non-zero mode. This cumbersome argument is 

easier to see graphically than to state. The result is the claimed identity (4.11) as 

a consequence of which the last term in the Ward identity (3.13) serves to cancel 

the extra piece (4.10) of SfI’r which we found by treating the zero modes carefully. 

The net one-loop Ward identity, 

- 

& 

--- 

_-..._ . 
- 

a- _T. 

- *a 

1 pr [f’PH ‘1 =o, (4.12) 

_- 

- - 
is very simple indeed and identical to what we would have written down had we 

ignored the various broken reparametrization invariance subtleties we encountered! 
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In what follows, we will drop the superscript I’ from Ii,,, but the correct treatment 
,z-. of the zero mode must be kept in mind. 

5. Explicit Results 

- 

We now proceed to an explicit evaluation of the Ward identity. We will find 

that to satisfy (4.12) f or arbitrary reparametrization f and background field 4, the 

spacetime gauge field must satisfy certain equations of motion and the counterterms 

needed to eliminate vacuum divergences must have specific finite parts. Taken 

together, these conditions will completely specify the value of the boundary state. 

The evaluation of the trace in (4.12) is complicated by the fact that the operator 

ITpv depends both on p and q. We use a procedure employed by Guadagnini [lo] 

which proves convenient here also. In a basis of position eigenstates the trace is 
- 

~Tr~j’,ymcH ] = f f $J(s) tr (s] e-‘H(pjq) Is) . 

We use the translation properties of the position eigenstates to write 

tr (sl e -~H(P,rl) I.s) = tr (01 e--iPse-~Qw)e~Ps I()) 

= tr (01 e -~Hh7+s) 10) 

(5-l) 

(5.2) 
_-..._ . 
- Here Q is an operator but s is a number. Furthermore Q annihilates IO) so it is a 

good idea to Taylor expand H,,,(p, q+ s) in powers of cl. That gives a series which 

can be arranged by powers of derivatives of Fpv 

&Y(l), cl + 4 = $/(P> s) + f(y(p, s, q) + . . . 

The two leading terms are 

z- _2?_ 
- .~ *a 

..- 

- - 

H;(P, 4 = f$,(p) - $E,, (d(4) P 9 

H;F(~,w) = - ~V,,,,,,(8))gir(s)(ijp+ pq) (5.3) z 

- ; (V&A ($1~)) + V&x (4(i))) d’x~~ + 4 . 

Note that HF is a function of p and s and it is only the perturbation HvF that 
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depends on the position operator. We write out the exponential in (5.2) using an 
,c-. interaction picture trick: 

. 
1 

e-~(HF+IIvF) = e-dfF _ E 
s 

da e-(l-cr)~HF~VFe-adF 

0 

+ e2 J .I ladn Id/j e-(l-~)~IIF~VFe-~(l-~)~IIF~~VFe-~~~HF +. . . 
0 0 

(5.4) 

Each of these terms is to be sandwiched between two zero position states and all q’s 

are then commuted to the left or right until they annihilate on IO). The resulting 

expression involves only p operators and is easily evaluated by inserting a complete 

set of momentum states, c,Zo lm) (ml, with the zero momentum state left out 

because of the zero mode projection. The leading term in (5.4) gives 

tr (01 e -cl-IF(w) 0 - 1 > _ 2 tr[e-T’(l-F) + e-Fc(l+F)] 
771=1 

_-..._ . 
- 

1 1 ‘X tr 
,$(1-F) - 1 + &c(l+F) - 1 1 

= ttr(&) -D+O(c) 

and the corresponding contribution to the reparametrization anomaly is 

(5.5) 

This linear divergence was to be expected since we are dealing with bosonic string 

theory. To eliminate it we simply include a counterterm interaction in our one- 

dimensional Lagrangian which describes a coupling to a background of .open string 

tachyons. The general form of such a term is 
*- _F_ 

- -2 
Mi = f (5-G) _- 

e 

--- 

- - It is super-renormalizable but not reparametrization invariant. In fact its variation 
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under a reparametrization is 

,z-. 

. 

. . - 

SfST[$] = - f $w %w) 

so that the linear divergence in (5.5) is eliminated by choosing 

%%)) = ttr (5.7) 

- 

This counterterm also serves to eliminate the linear divergences of the theory and 

we might imagine that we could add to it a finite but background field dependent 

part. But the Ward identity restricts any such finite part to be at most a constant 

independent of Fpv which leads to only a trivial overall constant ambiguity in 

the normalization of the path integral. 1 We remark that the superstring has no 

tachyons and the corresponding boundary theory has a supersymmetry in one 

dimension which rids it of linear divergences of this kind. 

_-..._ . 
- 

The contribution of the second term in the expansion (5.4) is obtained in the 

same fashion. After a few lines of algebra we find that 

1 

tr (01 (-c)Jdue -(~-cY)cH~HVF~-(UCH~ 10) 

0 

so that the finite O(VF) p ‘iece of the reparametrization anomaly is 

. i I _T_ 
- .~ *- 1 - F&(s)) L. 

iLYVpFVh(d(~))$% 
> 

= 
> tivV,,l;:~(#4~ + Ok> 

_- 

- - 

The boundary state is reparametrization invariant only if this vanishes for all f(s) 

and arbitrary background qP (s), which requires the spacetime gauge field to satisfy 
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* ,c-. 
. 

the equation of motion 

. . - 
> 

w 
V,Fvx s-0. (5.10) 

Our conveiltions (see Appendix) are such that FPy contains a factor of 27rcJ. The 

equation of motion for the gauge field therefore contains terms to all orders in 

cu’ although it is only valid to leading order in derivatives of FPv. At distances 

large compared to the string length scale it reduces to Maxwell’s equation as it 

should. It is identical to the equation of motion previously derived in [7] by im- 

posing confor1na.l invariance on the two dimensional sigma model with a Wilson 

line interaction at a world-sheet boundary. This agreement provides a non-trivial 

check that reparametrization invariance is the dynamical principle which picks out 

acceptable boundary states in general. 
- 

We can now calculate the one-loop effective action itself, from which we can 

derive the value of the full boundary state path integral. Substituting the first 

term in (5.4) into (4.1) g ives the leading contribution: 

_-..._ . 
- 

Yh- r,=-; - J f gtr (01 e -TffF(w) IO) + O(VF) 

=-~&% [e;,(l-Y)-l +e;T(l:F)-ll 
6 

1 =-- 
2 f [ 

$r $(g$ + log(l + F) + c, + cpj]. 

(5.11) 

The linearly divergent piece is canceled by the tachyon counterterm (5.7), which 

we found before. At this order the functional form of the normalization of the 

boundary state comes from the tr log (l+F) t erm. In a constant gauge field tl1a.t c 
a- _z_ normalization is dm. Th is result has been around for some time and is --- 

- --t* 
usually arrived at using [-function-techniques which dictate a specific subtraction 

-- 

- - 
procedure without any transparent physical motivation. We wish to emphasize that 

in the present approach there is no room for any ambiguity in the F dependence 
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of the boundary state normalization. The reparametrization Ward identity does 
,&-- not allow a finite addition to the counterterm to -depend on the spacetime gauge 

. field. The constant of integration C, is logarithmically divergent, but it is simply 

some number independent of Fpv. This divergence simply reflects our freedom to 

choose the value of the open string loop coupling constant. 

The O(VFj contribution to the one-loop effective action comes from the second 

term in the expansion (5.4) and is logarithmically divergent. One finds 

pw) = . 
1 ‘log’ 

+ finite terms 
(5.12) 

- 
The functional form of the remaining finite expression is rather complicated and we 

do not write it down here. Evidently the one-loop beta function of the boundary 

field theory vanishes when the equation of motion (5.10) is satisfied. In fact, it is 

probably true to any loop order that the theory is required to sit at a renormal- 

ization group fixed point in order for the reparametrization anomaly to vanish. 

_-..._ . 
- 6. Discussion 

We have begun to explore the connection between string theory in a background 

of massless open string fields and a class of one-dimensional field theories. The field 

theory supplies a boundary state, in the closed string Hilbert space, created via 

open string physics at a world-sheet boundary. Reparametrization invariance is 

the -key principle which allows one not only to determine acceptable open string 

backgrounds but also provides an unambiguous renormalization prescription for the 

couplings of the one-dimensional theory, which is vital when the boundary state ; 
*- _F_ is to be used to calculate the effect of open string matter on closed string fields. --- 

-- This field theory framework may l&d to some insights about deeper issues in string 
-- 

theory. The two-dimensional conformal field theory program is in part aimed at 
-- finding interesting classical configurations of closed strings. If we can learn how to 
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sum over such field t,hcorics, or at least to quantize some collective coordinates of 

string solitons, we would be a step closer to a quantum description of string field 

t,hcory. Corresponding questions can be raised in open string theory and we believe 

that the way to get a.t the answers is through classifyin g repara.metrization invariant 

boullclary st~a~tes. Since the field theories involved a.re only one-dinlensional, one 

dares to hope that they can be characterized in some detail. In particular, it would 

be interesting to find, or prove the existence of, open string instantons or solitons 

(and calculate tl ieir energy-momentum). 

Another reason to study boundary states is that they generalize the energy 

momentum tensor of matter in sljacetinie. In a string theory generalization of 

relativity open strings play the role of matter while the closed string sector cor- 

responds to gravity itself. The boundary state is the open string source of closed 

string fields which enters in the BRST anomaly cancellation equations. Since these 

equations are the string theory generalization of Einstein’s equation, knowledge 

about boundary states might shed some light on questions of energy positivity and 

occurrence of singula.rities in stringy relativity. 

- 

Reparametrization invariance of the boundary state manifests itself in the one- 

dimensional theory as a set of Ward identities. They are not as simple as one _-..._ . 
-- 

would have liked. Complications arise from the fact that the kinetic term explic- 

itly refers to a specific pa,rametrization of the one-dimensional manifold, and from 

the special treatment of the zero modes, whose identification a.gain refers to a spe- 

cific para~metrization. Despite these nuisances, we found that the L\;ard identity 

at the oue loop level can be stated in a very simple manner and leads to a simple 

equation of motion for the spa,cetime ga,uge field which 1la.s the same solutions as 

the variational equation of the non-linear Born-Meld Lagrangian [7]. A straight,- 

forc\,arcl extension of the present work would be to apply our Ward identities to -- 
_ , _e. higher loop calculations in the one-dimensional theory. It would also be desirable ~- 

i-e-- to drop the restridtion to an abeli& subgroup of the full .gsuge group. Steps have 
- 

been taken in that direction in [3,Fj] but the problem is technically cumbersome 
- - because of path ordering. 
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,z.- 
Needless to say, the issue of defining the renormalization of vacuum divergences 

arises for the closed string path integral as well. Although it is not obvious how to 

proceed, we expect that a generalization of the Ward identity a.pproach we have 

developed will be a,pplicable in that context as well. 

Our considerations are presumably connected with issues in statistical me- 

chanics. The one-dimensional path integral is just the partition function of a 

one-dimensiona. statistical system and our equations of motion for the background 

gauge fields are just the condition that the system be at a critical point. One- 

dimensional systems with long-range interactions do indeed have critical points 

(the Ising model wit,11 r-’ interactions is the classic exa.mple) and our nonlocal 

kinetic term is of that type. It is possible that existing results on one-dimensional 

critical theories can be translated into useful information on open string theories. 

The work of Cardy [la] on conformal invariance a.nd surfxe critical behavior is 

very interesting in t#his rega.rd. 

- 

Although we have only been concerned with bosonic string theory in this paper, 

most of the ideas a,nd techniques presented carry over to the more interesting case 

of superstrings. We will report on supersymmetric boundary states at a later date. 

-- ..- . 
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helpful discussions. 

Here we state our conventions and normalizations. \lic: use a Euclidean world- 

sheet metric and natural units tZ = c = 1 throughout. A free closed string is 

parametrized by 0 E [O,Z~] and its spacetime coordinates arc periodic solutions of 

the Iwo dimensional wave equakion 

i-P.- LykL(T, o) = gi _ Jj~~lj~~T + :l-C L [a~Le--mr-i~~~~ + &flLe-lJlr+i?J7a] . 
(A4 

?Jl. 

- - The length scale I is related to the string tension and the Regge slope parameter 



by 

,; . . - 

. 
(A4 

The equal time commutation relations of Xp(~,a) and its conjugate momentum 

Pr(7, a) = T&XiL(7, 17) are 

[xyq a), Pr”(7, a’)] = s’L” &(a - a’). (A.3) 

Inserting the mode expansion one finds that [qp,$‘] = iSp” and the commutation 

relations (2.3) for the mode operators. 

Our conventions differ from those of Chapter 2 in [13] in that we use a Euclidean 

rather than Minkowski signature on the world-sheet, and we parametrize closed 

strings from 0 to 27r rather than 0 to 7r, We find it convenient to take the string 

length to be I = 2 which corresponds to a’ = 2 rather than 1 = 1 and cy’ = 3 as in 

- 

To figure out the normalization of cyt and 6: write Xi” as a sum of right and 

left moving parts 

_-..._ . xy7, CT) = x;(T + i(T) + xp - io). (A.4) -. 

The time derivatives of Xi and Xg are 

k;(T + in) = -iI g atme-m+-imu, 
m=--oo (A.5) 

Comparing with (-4.1) one gets 

- ICC 
;fl = &; = A.1 

2P 
P (Jw 

_- 

& 

--- 

- - which, on setting 1 = 2, gives the momentum normalization used in Section 3. 
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The boundary path integral action, before a’ is taken to equal 2, and with 

,*.- conventional normalization of the Wilson line is 

. 

S[~J]= -& 
. f 

ds~+.~+i~dsA,($)~. (A.7) 

In (2.6) we have resealed the gauge potential A, to include a factor of 27rcx’. This 

makes the field strength Fpy dimensionless and streamlines the notation. 
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