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ABSTRACT 
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-. 

We show how an SO(2,l) gauge theory with a fermionic symmetry may be 

used to describe the topology of the moduli space of curves. The observables of 

the theory correspond to the generators of the cohomology of moduli space. This 

is an extension of the topological quantum field theory introduced by Witten to 

investigate the cohomology of Yang-Mills instanton moduli space. We explore 

the basic structure of topological quantum field theories, examine a toy U(1) 

model, and then realize a full theory of moduli space topology. We also discuss 

why a pure gravity theory, as attempted in previous work, could not succeed. 
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1. Introduction 
. . - 

There is a widespread belief that the Lagrangian is the fundamental object for 

study in physics. The symmetries of nature are simply properties of the relevant 

Lagrangian. This philosophy is one of the remaining relics of classical physics 

where the Lagrangian is indeed fundamental. Recently, Witten has discovered 

a class of quantum field theories which have no classical analog!” These topo- 

logical quantum field theories (TQFT) are, as their name implies, characterized 

by a Hilbert space of topological invariants. As has been recently shown, they 

can be constructed by a BRST gauge fixing of a local [2’[31 symmetry. The clas- 

sical Lagrangian is zero modulo a topological invariant. Thus, we see that the 

heart of the matter is in the symmetries one chooses to study. The Lagrangian 

is secondary, being completely determined by the symmetries. Topological the- 

ories have so far been constructed for investigating the instanton moduli spaces 

of Yang-Mills theories in 4-dimensions and nonlinear sigma models with target 

- 

[llI41[51 knanifolds having an almost complex structure. 

works of Atiyah, Donaldson and I61[71[Sl Gromov. 

This was motivated by the 

--. .- . 
-. 

In this paper we follow up on previous work on two dimensional gravity!51’g1 

It is well-known that pure gravity in two dimensions is a topological theory, since 

the classical action, &s fiR, is just the Euler characteristic. The relevant 

moduli space will be the familiar one of complex structures of Riemann surfaces 

of genus g, M,. The topology of this moduli space is of current interest in 

both mathematics and physics. String theory is believed to be fundamentally 

a theory defined on the moduli space of curves. In particular it is known that 

the superstring partition function is locally a total derivative on moduli space!“’ 

Thus, the partition function will only depend on the topology of moduli space. ; 
a- _P_ Mathematicians have also been interested in the topology of moduli space, since .._ 

ic it is known to be highly nontriviaI!lll Unfortunately, there is still relatively little 
_- known about it. In this paper we will describe how elements of the cohomology 

of moduli space may be computed as observables of the theory. 
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We have found that the most fruitful approach to two dimensional gravity 
* ,c- is to treat it as a topological gauge theory of SO(2,l). This is the isometry 

. group of 2-dimensional gravity with a positive cosmological constant. We will 

show that -by an appropriate gauge fixing this theory describes the topology of 

M, for g 2 2. When g = 1 the relevant group is ISO(l,l), and for g = 0 it 

is SO(1,2). Th is approach differs dramatically from the previous work15’ [g’on 

topological gravity where the emphasis was on the symmetry of pure gravity. 

It was not possible in a purely gravitational theory to investigate the topology 

of M,. Roughly speaking, one has to study the topological gauge theory whose 

moduli space is M,. We will discuss the reasons for this in section 5. This is 

analogous to the case of topological Yang-Mills, except that one must now deal 

with a noncompact group. - 

_-..._ . 
-. 

In this paper we will explicitly construct two dimensional gravity as the topo- 

logical gauge theory of SO(2,l) for g 2 2. The gauge choice is the vanishing of the 

field strength; this implies the standard conditions that the zweibein (a compo- 

nent of the gauge field) be covariantly conserved and the curvature of the metric 

constructed from this zweibein ‘be a negative constant. Indeed, it is essential 

that the zweibein and spin connection be treated as independent fields which are 

related only by the gauge fixing condition that we have a flat connection. It is 

significant to observe that the SO(2,l) gauge theory on an arbitrary background 

Riemann surface of g 2 2 is equivalent to two dimensional gravity with the same 

topology . In the case of g = 1 the gauge group is ISO(l,l), and the vanishing 

of the field strength implies that the curvature is zero. Similarly, for the sphere 

the gauge group is SO(1,2), and the gauge fixing constrains the curvature to be 

a positive constant. 

In section 2, we will discuss the general relationship between moduli spaces ; 

a- _T_ and TQFT’s. Section 3 will be devoted to the fundamental concepts necessary 
- 

_- 
--for constructing TQFT’s emphasizing the fields and symmetries of topological 

gravity. In section 4, we will work out completely the toy example of a topological 

U(1) theory. Then we will review, in section 5, the previous work on topological 
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gravity , its shortcomings and its relation to the current work. In section 6, we 

A- -’ will discuss the degenerate case of g = 1 where the gauge group is ISO(l,l). The 

. explicit construction of the Lagrangian of the SO(2,l) gauge theory will be given 

in section -7. In section 8 we will discuss its relation to moduli space and its 

invariant observables. Finally, we will summarize the work and comment on the 

open questions remaining. 

2. Moduli Space and TQFT 

In gauge theories, moduli spaces are the spaces of solutions of the classical 

equations modulo gauge equivalence. They are finite dimensional, since they 

correspond to solutions of non-linear partial differential equations. A proper 

treatment of a quantum field theory with a local gauge symmetry requires an 

integration over the relevant moduli . In Yang-Mills theories on 4-dimensional 

Euclidean space, instantons provide an important tool for computing nonpertur- 

bative effects. The moduli spaces must then be understood in order to complete 

the final integration. 

- 

_-..._ . 
-. Knowledge about the topology of these spaces has recently been dramati- 

cally increased by the work of Donaldson!71 Witten’s topological Yang-Mills the- 

ories (TYM) h ave provided a quantum field theoretic realization of Donaldson’s 

work!“In string theory where the gauge symmetry is that of world-sheet diffeo- 

morphisms one has an analogous structure. The integration over the gauge con- 

figurations (i.e. the metric) simplifies into an integration over the moduli space of 

complex structures of Riemann surfaces, M, . Indeed, string theory measures are 

expected to be sections of line bundles on moduli space as advocated -by Belavin 

and Knizhnik!‘*’ a- _r_ 
- -- 

Knowledge about the topology of moduli space is then important for gain- 

ing a better understanding of string theory. Witten has shown that topological 

quantum field theories may provide a fruitful new tool for studying moduli space. 

_- 

4 



Mathematicians investigate the topology of moduli space using the theory of 

.?- principal G-bundles and classifying spaces. Topological quantum field theories 

. can also be used to study the topology of moduli space. In this section, we 

will clarify the relation between these two approaches. Readers who are only 

interested in the field theory should proceed to section 3. In section 8, we will 

show precisely how the observables of TQFT’s probe the topology of the universal 

bundle. In the following we outline the relevant mathematical terminology needed 

to describe the structure of TQFT’s. 

A principal G-bundle is a fiber bundle with fiber given by the structure 

group G; it contains a mapping K : P -+ B and a mapping g : P x G -+ P. P 

is called the total space; B is the base space, and x is the projection. P is a 

manifold on which the group G acts freely. The coset space B := P/G can also 

be made into a manifold such that the projection x : P -+ B is smooth. If P 

is contractible , then the principal bundle is called universal, and B = P/G is 

called a classifying space for G and often denoted as BG (base space of G). 

A good deal is known about the cohomology and homotopy of classifying spaces 

which is closely related to that of’the moduli space. The moduli space is the finite 

dimensional subspace where only the classical gauge configurations are allowed. 

The classifying spaces are then useful in studying the topology of moduli space. 

In particular we can choose a principal G-bundle where P = A = {connections 

on a fixed G-bundle over some manifold M}, then BG = A/$ with 9 being 

the group of gauge transformations . Indeed, BG is the space one is usually 

concerned with in quantum field theory, since the space of gauge fields in the 

path integral is defined to be A/S. For the case of instantons the subspace of 

A/$ with self-dual field strengths is the moduli space. 

- 

_-..._ . 
-. 

The observables of TQFT’s are the generators of H* (M) ,-the cohomology ring ; 

z- _P_ of instanton moduli space. These are also elements of H*(A/$). There is a whole -- 
- 

_- 
-lore on these observables which mathematicians call characteristic classes. They 

are used to classify the topology of G-bundles; they generate the cohomology of 

the classifying space of a Lie group, G. In general, for a simply connected, finite 
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dimensional Lie group G, we have the following generators for the cohomology 
,c- rings: __ - 

. 
H* (BG) = $1~1 , . . . . yk], degree yi = di + 1, 

H*(G) cz E[zl, . . . . zk], degree z; = di, 
(2.1) 

whereR[...] is a polynomial algebra over the reals and E[...] is an exterior algebra. 

The generators, zi, yi, are forms, and by degree we mean the degree of the form. 

Recall that H*(BG) N H*(A/G). Th us, the observables of TYM will be a poly- 

nomial algebra over the generators, yi. These are referred to as the Donaldson 

polynomials. Thus, TYM theories provide quantum field theoretic techniques 

for the explicit construction of these polynomials. The details are discussed in 

ref.[l]. 

_-..._ . 
-. 

For the moduli space of curves there is an analogous structure. The classifi- 

cation is, however, much more difficult because the gauge group is noncompact. 

‘We must then be content with a weaker result. Miller proved that there is an 

injective mapping from a polynomial algebra, Q, over the rationals to the co- 

homology ring of the moduli sp.ace of the oriented diffeomorphisms of genus g 

surfaces, A,: ‘131 

Q[n1, “‘, Q-21 + H* @A, $2) (2.2) 

where /ci E H2i(BAg). 

Recall that M, is the space of metrics for genus g Riemann surfaces modulo 

diffeomorphisms. As in Yang-Mills theory, H, (BA,) and H, (M,) are intimately 

related!“’ Indeed, their rational cohomologies are isomorphic: 

fL(BA,$l) = H&&&l). _ (2.3) 

_- 
_T_ 

- ix- 

Mumford gave a construction for. the classes, Ki!141 We will refer to them as 
_- 

Mumford invariants. They are elements of the stable cohomology of M,. Stability 

is the statement that for g >> i, Ki is independent of g. In fact, for i 2 g - 1, Ki 
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is a polynomial in ~1, . . . . +-2. We will have more to say about these classes in 

,z.- section .8 where the observables of the TQFT will be discussed. 

. 
For the quantum field theory we will construct in this paper, we expect that 

our topologically invariant observables will include the Mumford classes. Since 

the Mumford classes do not necessarily generate the entire H*(M,), we also 

might find other observables. Indeed, we hope that our quantum field theo- 

retic construction of the generators of H* (M,) will increase our understanding 

of H*(M,). 

We will have more to say about the invariant observables in section 8. In the 

next section, we will outline basic issues for the assembly of TQFT’s, in particular 

those related to gravity and the groups ISO(l,l) and SO(2,l). - 

3. Symmetries, Fields and Actions in Topological Gravity 

-- .- . 
-. 

Our objective is to obtain a topological theory for the moduli space of curves. 

Therefore, a natural candidate for such a TQFT is obviously topological gravity 

(TG). Topological quantum field theories are characterized by an invariance un- 

der a local symmetry which guarantees that all the observables of the theory will 

be metric independent. In TYM, for example, the symmetry is 6A, = 0,(z) and 

the observables are the so called Donaldson polynomials. In the following we will 

discuss the symmetries and fields relevant for describing topological theories of 

gravity. 

The fields usually used to describe two dimensional gravity are the metric 

g,p, zweibein and spin-connection. The zweibein ecra, defined by gap = ezepa 

, is used to transform a world vector Va into a tangent space vector V, via ; 
a- _r_ V, = e,,V”. The action of the spin connection w, is defined in the covariant 

- -- 
derivative by D,va = d,V” + W,cabT/b. It can be expressed in terms of eora by 

_- 
using the requirement of no torsion, namely Dpe,, = 0. The symmetries of TG 

should include diffeomorphisms (60 (v)), Weyl resealing (6~ (p)), local Lorentz 
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transformations (6~ (A)), and the additional “topological symmetry” (&G(O)) 

,z.- which allows the metric to be gauged away locally. Under these transformations, 

. the fields g,p, eaa and wa transform as follows: 

GDg,p = &up + Dpv,, 

6Dez = epaD,vp, 

c?DW~ = -EabDaDcyVb, 

~Lgczp = 0, 

6Lei = babe&, 

bLWa = -&A, 

(3.1) 
~wgap = PSaP, 

&et = ipet, 

6wwa = -+,pdPp, 

6Thp = kp + opa, 

&fez = e$ 

t&d, = -Eabdat&,. 

_-..._ . 
-. 

A different approach to the symmetries of the theory of gravity was presented 

by Witten for the case of three dimensions!151 He showed that the Einstein- 

Hilbert action was equal to a Chern-Simons action for the group ISO(2,l). In 

analogy, we want to analyse the ISO(l,l) theory. First, we want to compare the 

gauge transformations of ecva and We , the gauge fields of the ISO( l,l), to those 

given in (3.1). We denote the ISO(l,l) gauge fields by 

A, = e:P, + Wa ff ab Jab (3.4 

where Pa and J = $tabJab are the generators of the two translations and the 

Lorentz transformation. They obey the following algebra: 

[pa,pb] = [J, J] = 0, [J,P,] = EabPb. (3.3) 

Using the usual transformation for gauge fields, 6A, = -D,u where u = vaPa + 

AJ, one gets 
_- I _T_ 

- -- 

_- 

: 6(1,1)ez = -daVa + kabeab - EabWaVb 
(3.4 

q1,1pJa = --aan. 

- 

The A transformation is identical to the Lorentz transformation given in (3.1). 
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If one uses Dpez = 0 when A = 0, then the difference between (3.4) and (3.1) is 

,*.- only a Lorentz transformation with a parameter A- = V”w,. It is thus possible to 

. use the ISO(l,l) gauge transformations instead of the diffeomorphism and local 

Lorentz transformations when applied to ecxa, wa. The covariant derivative is as 

usual D, = d, + [A,, ] and the field strength is 

~~~ = [Do, Dp] = D[ae$Pa + d[awpl J (3.5) 

where 1 1 denote anti-symmetrization. Under the gauge transformation given in 

(3.4) F,p transforms as follows: 

b(,,,)F,p = (kabDlaepjb - Eabd[,Wp]Vb)pa (3.6) 

Note, however, that the transformations (3.4) d o not include the Weyl resealing. 

_-..._ . 
-. 

The ISO(l,l) group which is the isometry group of a flat Minkowski space- 

time can be generalized to maximally symmetric spaces with positive and neg- 

ative curvatures, the de-Sitter and anti-de-Sitter spaces, respectively. This is 

achieved by introducing a cosmological constant, X. For the de-Sitter space, 

X > 0, the isometry group is SO(2,l) and for X < 0 it is SO(1,2). The gauge field 

is still given by (3.2), but the algebra is now: 

[pa, pb] = XEab J [J, J] = 0, [J, Pa] = EabPb. (3.7) 

- 

The invariant quadratic form which is consistent with a non-degenerate Casimir 

operator is 
i 

_- 
< J, J >= I, < Pa, Pb >= x6ab. (3.8) - 

- -- L. 

_- For positive X we can rescale Pa + 3 and just take X = 1. For negative X 

one can rescale with 4x1 and set X = -1. As will be clarified later, we will be 

9 



interested only in X = 1 ; so from here on we will discuss only this case. The 

transformation laws of the gauge fields are I 

42,l)C = --dava + iiEabe,*b - Eabf&Vb, 

q2,l)wa = -d,A - eabeaavb. 

The field-strength, which is now 

Fcyp = [Da, Dp] = D[,$l Pa + ($+~pl -t- Eabhaepb)J, (3.10) 

transforms under SO(2,l) as follows: 

6(2,1)Fap = (bcabDiaepjb - Eabd[,wpjvb)pa -I- EabDc*epavbJ. 

(3-g) 

- 

(3.11) 

The “topological” ISO(l,l) or SO(2,l) transformations are now different from 

the “topological” gravitational transformations given in (3.1). The former are 

simply 

_-..._ . 
-. 

&A, = 0, ===+ be: = Oz, 6w, = 6,. (3.12) 

The difference is obviously due to the fact that in the ISO(l,l) and SO(2,l) 

approach we, apriori, treat eaa and wa! as independent gauge fields. We expect 

that the relation wa(eora) will emerge from the equations of motion. In the 

standard geometric picture of space-time the condition for having no torsion 

relates wa and eora. 

a- _T_ 
- 

The next stage in defining TG after specifying the fields and the symmetries, 

is choosing the action. We advocate the Lagrangian L: = 0 module- topological 

invariants and the elimination of auxiliary fields. However, we believe that unless 

ic there is a topological invariant expressed in terms of the giverrfields a non-trivial 
_- TQFT cannot be constructed. There must be some topological quantity left 

invariant which constrains the global properties of the ghost fields, for otherwise 
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the gauge field could be completely transformed away. For example, in TYM 

i ,c- the instanton number must be left invariant, and-in two dimensional gravity the 

. Euler number must be left invariant. We, thus, prefer to construct a topological 

invariant as our original Lagrangian. In two dimensional gravity the natural 

invariant is the Einstein-Hilbert action: 

IQ = 
s 

d2x&jR. (3.13) 

This can be re-expressed in terms of eaa and wa as follows: 

f!o = &R = det(e)eaaeiRzqp = det(e)eaaefRa; depce7d, 

= det(e)eaae~dcadd~,wrl, 

= ~det(e)det(e-‘)Ppi3~awpl = Ppd,wp, 

(3.14) 
- 

_-..._ . 
-. 

where we used R$ = cabdl,wpl for the Riemann two form assuming D,ez = 0. 

The last expression raises two issues: (i) Since we get a total derivative, it 

looks as if the action is zero for two dimensional manifolds without boundaries ; 

whereas, on the other hand, it is well known that the Einstein action is in fact 

the Euler number 87r( 1 - g) w h ere g is the genus of the manifold. This is resolved 

by noting that fiR is only locally a total derivative. In fact it is an element 

of the second cohomology group of the manifold and measures our inability to 

construct globally flat coordinates. (ii) The action (3.13) is just a topological 

abelian action (i.e. the first Chern number): 

IO = 
J 

d2xPP&wp = f 
s 

d2xPpFmp = ; 
J 

F. (3.15) 

So it may look as if TG is equivalent to the topological Maxwell theory. This 

statement is incorrect, since the action (3.15) is independent of eora-; thus, the 4 
_- I _e_ relation D,e; = 0 cannot emerge as an equation of motion. Hence, TG is not 

- -- 
equivalent to the topological Maxwell theory. Nevertheless, we now want to 

- 
analyze the topological U(1) theory, and later in section 5 we will come back to 

TG. 
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4. Topological Abelian Gauge Theory 
. . _ 

Leaving aside momentarily TG theory, we now proceed to analyze the action 

given in (3.15). The field w, is now an abelian gauge field which is not related to 

the two-dimensionalmetric. This will be a toy model useful for understanding the 

formalism of topological gauge theories though there is no interesting topology 

for this case. However, as we have seen it is closely related to gravity, since the 

two-dimensinal Lorentz group is just U(1). 0 ur initial topological invariant is 

the first Chern number cl = & s F. Considering a non-compact Euclidean space 

(as is often done for instanton applications) one has, 

J F = J d2xPPF aP = 
J WC2 
6C 

= 
f 

121=00 

- 

w,dx”, (44 

where the boundary 6C is a circle at infinity. Non-vanishing results for cl (i.e. 

QED instantons) are known to exist for scalar QED with spontaneous symmetry 

breaking!16’ There are, however, no pure 2-dimensional QED instantons. For _ 
-- ..- . our case, even though a priori there is no equation of motion for wa, as will be -. 

clarified below, the Maxwell equation will emerge as the equation of motion once 

the topological symmetry is gauge-fixed. Thus, these instanton configurations 

are not relevant to us. Moreover, we are interested only in compact Riemann 

surfaces without boundaries. For these manifolds cl # 0 only if the second 

cohomology, H2 (C) , is nontrivial; i.e. dF = 0 (Maxwell’s equation) but with 

F # dw globally. The relevant configurations are thus non-trivial vector bundle 

over C. In holomorphic coordinates these are the meromorphic vector fields. 

The cl which is also the Euler number measures our inability to construct global 
z- _T_ 

- -holomorphic vector fields and is given by the number of the poles. 

_- We now gauge fix the topological symmetry, 6w, = eoI, while maintaining 

the ordinary U(1) y s mmetry. This is done following the procedure we introduced 
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for other topological quantum field theories!“’ 

. f$) = f$$,+FP) =&‘,[i~(~ap&wp - c + is)], 
ffpa,wp - C) - iiPP&$p + 9, 

(4.2) 

where (GF + FP) stands for gauge fixing and Faddeev-Popov, and the BRST 

transformation is denoted by 6~1 = ie&r with E a constant anti-commuting 

p.arameter. Th e commuting constant C has the same sign as the Chern number. 

Under this transformation the gauge field, wa, the ghost field, qp, the anti-ghost, 

2, and the auxiliary field 5 transform as follows: 

- 
iTI“‘, = $, i,,$ = 0, 

&+ = B, 
A - 
STUB = 0. 

- 

(4.3) 

Since we have gauge-fixed only one degree of freedom, we expect an additional 

Iocal symmetry. It is straightforward to check that (4.2) is invariant under the 

ghost symmetry: $TrG, = ;aa$ which is the U(1) transformation of a gauge 

field. We fix this additional symmetry by: 
_-..._ . 
-. 

c(2) = &,, = 8Tl[-i&qp] = l&j,& - ;+&p. 
2 2 (4.4 

The BRST transformations of the ghosts i, 71” and 4 are: 

&1X = 2ij &+j = 0 i&i = 0. (4.5) 

Note that while L(r) was expressed in terms of forms, in fZc2) we had to introduce 4 
_- I _P_ a metric. Therefore, each term of the Lagrangian which does not include cap is 

i-C in fact multiplied’by @j, and the. derivatives have to be covariant with respect 
_- to the two dimensional diffeomorphisms. The BRST algebra is closed up to a 

U(1) gauge transformation; namely, @,w, = a,J, and &, = 0 on the rest of the 
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fields since they are neutral. Altogether, after eliminating the auxiliary fields, we 
G ;- are left .with the following U(1) gauge invariant Lagrangian: 

. 

L: = Lo + L(l) + Lt2) =;c”pFap + f(6%,wp - C)” - i~~ap&~p 
(4.6) 

The anti-commuting part of the Lagrangian (on a flat background ) can be rewrit- 

ten as : 

jypa ,Gp + I?ac# - gT $4 P-7) 

where we have denoted the vector (GO, $1) by 4 and the two scalars (G, i) by 2. 
- 

The operator 3 is given by, 

where the gamma matrices are: 

7’ = 01 and r”= -03, with {r”,rP} = 26’Ip (4.8) 

-- ..- _ 
-. We then see that b is just the usual 2-dimensional Dirac operator. Writing eq. 

(4.7) in holomorphic coordinates we get, 

gT $J = g+a&+ + g-a&L (4.9) 

where d, = ai + idc, $J* = $1 f ;+e, gh = 21 f ;gc. The anti-commuting 

zero modes will then be the 2g (anti)h o omorphic differentials for ??; and the two 1 

constant zero modes for the scalars, 2. Interestingly, we then have that the 

Index(a) = 2 - 2g which is just the Euler number. We will come back to this 

- -later when considering the SO(2,f) theory. 

_- 
For the calculation of the invariants of the theory, we obviously have to 

gauge-fix the abelian gauge symmetry. To maintain the closure of the BRST 
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algebra , &, = 0, o n each of the fields we have to use a covariant gauge fixing 
i ,z.- by introducing the familiar c, E, b ghosts. After eliminating the auxiliary fields, 

. the Lagrangian (4.6) takes the form: 

L = L(O) + L(l) + J!?2) + l?d,d”c + pawy2, (4.10) 

and we have to modify and add new transformations to (4.3) and (4.5) as follows: 

&lWa = 4, + a,c &‘lC = -4 

&-lc = b = &‘da. 
(4.11) 

We will now discuss the conserved currents for the action in (4.6) without 

the topological term fZ(O). The BRST Noether current which follows from the 

latter action is given by: 

Ja = Fap@ - ;iaa$ - e,pfaP$. (4.12) 

The energy-momentum tensor Tap now takes the form, 
-- ..- . -. 

Tap =;[(F&$ - ig,p(F,aF76 + 2C2)] 

- (&&pi + a,iapJ - g,pd,id7$) 

+ qvil?;p + +cfL - gcYp~,+P) 
(4.13) 

- 

where 

_- I _T_ x - -- ap =i,&[(Fac + ~~acZ)~;; - ;gnp(F,se76 + 2@)]% L. 

_- + &api + 7?lpa,i - gapq7d7i). 

Thus Tap is a BRST commutator. It is straightforward to check that D,T”p = 0. 
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To check for scale transformation we find that 

. T,” = i(FapFap - C”) (4.14) 

Therefore, the action is not invariant under local scale transformations. The four- 

dimensional topological theories are invariant under global scale transformations. 

This is not the case here, since T,” can not be written as a total derivative, 

T,” # D,R”. Thus the action is not invariant under global scaling. Nevertheless, 

there is a further U(1) ghost number symmetry which will play an important role 

in the construction of the invariants of the theory. Under this symmetry the fields 

(w,,$,, X,6,$, i) carry the charges (O,l,-l,-1,2,-2). 

_- ..- . 
-. 

In constructing the observables we follow the procedure outlined for the Don- 

aldson polynomials in the TYM theory!“We first search for a BRST invariant 

operator 0 which is not a BRST commutator of another operator 0’; namely: 

&ro = 0, but 0 # &+‘. This operator must also be metric independent. 

Obviously, 6 fulfills this condition. Thus, we take for the zero homology cycle 
W(2”) = &Z h 

0 w ere the superscript of W indicates the ghost number . The as- 

sociated observable is IO =< l~Vo(~~) >. We can now create the chain of higher 

homology invariants as follows: 

0 = i{Q, W,$2n)}, w@“) = @l 

dW;2n) = i{Q,W, (2n- 1’) 

(2nd29’ 

wpz94 = &n-1$ 
, 

dVV(2n-1) =~ ;{Q,W, 

dw:2n-2) = o 
, 

wl(2”-2) = &n-l 
2 F + n(n - l)Jnb2& A 4, 

2 . 

(4.15) 

The metric independent observables then take the form lizn) = srlr VVi2n) where 
_- I _zz_ rk is a k-dimensional homology cycle. For the simplest case (n = 1) we get 

- 
---I;” =< 5 >, I1 (I) = f 4 and ii = Jx F - 27rci. Contrary to TYM - , in the 

_- abelian theory the (4, i) system does not have a potential and thus has constant 

zero modes. We, therefore, believe that all the invariants, < VVi2n) >, vanish. 
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By noting that the (E, c) system is the same as the (6, i) system apart from the 
i ;- different statistics, we see that in the partition function the zero modes of the 

. two systems will cancel. However, for < Wc > the (c, c) zero modes will lead 

to a vanishing result. Just as in the case of the Donaldson invariants, non-zero 

observables are those expectation values of operators which can absorb the zero 

modes of the anti-commuting ghost, 6. The only operator obeying this condition 

is lYI:&f& * 72;) w h ere g is the genus of the Riemann surface. This operator 

cancels the 2g zero modes of 4. Its expectation value can be computed explicitly. 

It is easily seen to be independent of the metric: 

(fi / 4 A 4) = det[/ $i”’ A qj”‘] de$Jfa2, 
i=l c 

where the 4:“’ are the zero modes of 4. We choose the basis G(O) = c,[BiWi(Z) + 
Pai( where the wi(z) are abelian differentials and the 6i are anticommuting 

(4.16) 

parameters. We normalize the differentials by choosing the canonical HI(C) 

basis, ai, bi, such that 

f 
Wj = Sij. 

_-..._ . 
-. a; 

Then, the period matrix of the Riemann surface, C is given by: 

f 
Wj = Tii. 

bi 

Using the Riemann bilinear identity for closed l-forms, pl,p2, 

/P1~P2=~~~P1fP2-fP1fP21, 

c i=l a, I bi bi ai _ 

- ,-it is simple to show that, L. 

_- det[ 
J 

$t”’ A $!“‘I = det[ a 3 s 
wi A Qj] 

c c 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

17 



where, 
i ,c- . . - 

J 
Wi A Uj = .I?l%(Tij). 

. 
c 

Hence, we have that, 

(fi J 4 A 4) = det”/2(lmTij) defF:;fa2. 

l c 

(4.21) 

(4.22) 

Det’jJ is just the determinant of the Dirac operator with all periodic boundary 

conditions. Since the theory is topological and thus does not depend on the 

complex structure, we have that, 
- 

det’f?) 
det’1/2@ 

- [det(lm ~)]-l/~. 

For g = 1, we know that the above determinants are given by: 

_-..._ . 
- 

det’$ =(~)1/2~29~‘~~)T) 1 = fi2jq(~)12, 

det’lj2a2 =72 [q(r) 12, 

(4.23) 

(4.24) 

which verifies the general relation given by eq. (4.23). Indeed, (detImT)-1/2 

is just the zero mode normalization factor. We could have normalized our Gi(‘) 

so the their determinant would be one; then the ratio of determinants in (4.23) 

would also be unity. We thus see that there are no interesting observables in this 

theory. In fact, the only observables are the identity and the Chern number. 

c 

a- _T. 
- -- L. 
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5. The Problems of a Pure Gravity Theory 
i ,z.- 

Since the topological U(1) cannot provide quantum field theoretic expressions . 
for the desired invariants on moduli space, we also want to briefly summarize the 

difficulties with topological gravity in two dimensions. 

We begin with the same topological action as in the U(1) theory. However, 

the gauge field is now identified with wol, the spin connection. We are, therefore, 

forced to add to the Lagrangian (4.6) terms which emerge from the BRST varia- 

tion of the 4 and the Christoffel symbols. For example, in the first stage of gauge 

fixing we have to add [&rti]fE, and in the second stage fii[$Tlrzp]qp where 

I’:, is the Christoffel connection. The problem is that we cannot invert the rela- 

tion wa(eara) and express the transformation &r&a in terms of 4. A natural way 

to resolve this difficulty is to express the topological transformation of wa in terms 

of &rez = ?+!I:. As was given in (Xl), &SW, = EabDb?,baa = det(eW1)ep7D7tiap. 

Gauge-fixing to a flat connection, Ppd,wp = 0, we take, 

c1 = f!&[~~“Pd,wp ] = kCpd,wp - det(e-‘)~Ppc7’D,D~~p7. (5.1) 

_-..._ . 
-. Using PPE@ = (detg)(g”rgp& - ga6gp7), we get, 

p = &@a awp - det(e)i(D,Dp$aP - D,D*$J$), 

= JijI(;iiR - g(D,Dptiap - DaDa@)], 
(5.2) 

which is exactly the same gauge fixed action for pure gravity that we derived 

in the past!“The gauge fixing of the additional ghost symmetry will also be 

the same. The BRST algebra is closed up to a diffeomorphism and Lorentz 

transformation, provided the “ghost for ghost” 4” (a,,?& = Da@) is not a 
a-- - BRST scalar, 8~~4~ = er$E4 b. This, as was explained in the introduction, is 

- 
-the source of the inability to derive nontrivial topological invariants. Different 

_- gauge-fixing procedures such as ~T,[E”.P~Pw~] or those presented in reference [9], 

cannot escape f$~~rJ~ # 0. , 

- 
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At this stage it appears that we have reconfirmed the statements made in [9] 

,c- that TG does not contain a quantum field theoretic realization of the Mumford 

. classes and that the only topological invariant operator is the identity. This 

means that TG ( in both two and four dimensions) is an empty quantum theory. 

What is the reason for this situation ? Technically, it is due to the fact that 

while in TQFT the zero homology invariant is a scalar, here it is a vector. This 

is obvious because the BRST algebra is closed up to a diffeomorphism whose 

parameter is a vector. 

Since both the topological U(1) and the TG theories cannot provide invari- 

ants on Riemann moduli space, we must look elsewhere. We showed earlier that 

there is an equivalence between the ISO(l,l) (or SO(2,l) for g > 2) gauge trans- 

formations and the diffeomorphism and Lorentz transformations of w, and ez. It 

is, therefore, natural to ask whether the topological ISO(l,l) and SO(2,l) non- 

abelian theories can save the day. The analysis of the topological ISO(1, 1) will 

be the subject of next section. 

6. Topological ISO(l,l) and g=l Riemann Surfaces 

This section will be devoted to the topological ISO(l,l) theory. This will 

provide a description of the topology of the genus one moduli space (Ml), since 

ISO(l,l) is the isometry group of flat two-dimensional Minkowski space. We 

know from mathematicians that the only homology groups of Ml are torsion 

groups!“‘* We do not expect a quantum field theory to probe torsion (unless 

it is through global anomalies). Thus, interesting observables are not expected 

for the ISO(l,l) theory. Nevertheless, let us see what we get from the quantum 
_- I _T_ field theory approach; this will be useful for comparing with the richer theory of 

- i-c 
SO(2,l) for higher genus. -. 

_- 

* A torsion group is an abelian group in which every element has a finite order; e.g. ZN. 
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We begin with the ISO(l,l) gauge field, A, = e:P, + waJ, which was 
i ,c- discussed in section 3. Recall, that fZ(O), the first Chern number, is invariant 

. under the topological transformation of the gauge field, A,, 

A A 
b(l,l)Aor = *a ==+ h-(1,& = ti$ b(l,l)Wor = &Y- (6.1) 

The strategy for eliminating the redundent (local) degrees of freedom is the 

usual one for topological theories, namely gauge fixing the topological symmetry 

while maintaining the ISO(l,l) 1 ocal gauge symmetry. Since we are to describe 

% we gauge fix to configurations having a flat connection: Fcyp = 0. This 

implies that E @d,wp = 0, and e @.D,es = 0. This configuration of gauge fields 

can be simply used to define a covariantly conserved metric with zero curvature. 

Since we are dealing with compact surfaces, this describes a torus (g = 1). Let 

us now write the topological gauge-fixed Lagrangian, 

- 

--...- . 
-. 

=i[ (iie ‘@d,wp + c@B,D,e~) 

- i&%3 a’&/3 + ~aDcr$F i- EabXaGaepb) 

(6.2) 

A 

where b(l,l) = ~~~T(l,l) denotes the topological variation. From here on ex- 

pressions written in group multiplet will always be traced. The anti-ghost x = 

xaPa + jiJ transforms as follows: 

{ 

A 

&-(1,1)X = B ==+- 
&r(i,i)Xa = Ba, 

&(l,l)i = B* 
(6.3) 

Note that we took the quadratic form to be < J, J >= 1, < Pa,Pb >= babe --- 
- i-2 

The corresponding “Casimir” does not commute with Pa. We know that the 
_- 

quadratic Casimir of ISO(l,l) is degenerate. It is just Papa. At any rate, we 

have no choice but to use the above quadratic form. The Lagrangian will still 

21 



have an ISO(l,l) gauge symmetry, but x will transform by a nonstandard gauge 

,; transformation. The gauge transformations of the fields are given by eq. (6.9). 

. These complications will not appear in the higher genus SO(2,l) theory which 

does have a non-degenerate quadratic Casimir. 

Since the topological symmetry was only partially fixed, we expect to have 

an additional ghostly symmetry. Because the BRST algebra will close up to an 

ISO(l,l) gauge transformation we anticipate that the transformation of Q under 

this symmetry will be like that of a gauge field under ISO( l,l), namely, 

&,I) Xl?, = iD,@ ===+ 
&y1,1)& = &ii 
&y,,l,~: = i(DaqP -I- cab&ab)a 

(6-4 

By transforming the Lagrangian (6.2) by (6.4), t i is straightfrward to verify that 

it is invariant, provided we simultaneously transform B as follows: 

6 = cab&&, &‘(@” = Eab&,. (64 

_-..._ . 
-. 

This again could have been anticipated by the closure of the BRST algebra. 

So far we have not introduced a world-sheet metric, since our gauge-fixing 

action was constructed only from forms. In the second stage of gauge fixing, 

the introduction of a metric is unavoidable. We have to decide whether our 

gauge fields, w, and ez, will be identified with the world-sheet metric, or simply 

with ISO(l,l) g au e e s g fi Id ( completely unrelated to the two-dimensional metric). 

Following the first alternative will mean that the ISO(l,l) gauge symmetry can- 

not be maintained, since the additional functionals of the metric, $j and the 

Christoffel symbols,, cannot be expressed in an ISO(l,l) covariant way. From the 

a- _=_ bundle structure we would like the theory to possess (as discussed in section 2) 

--and the above considerations, we emphasize that the gauge fields of ISO(l,l) are 
_- not directly related to the world-sheet metric. As in TYM, we simply treat the 

. _ world-sheet metric as a background field. The second stage of gauge fixing thus 
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takes the form: 

L:(2)‘= $~+,, = &J&)[; ‘XD,9” + xB] 

= ixD,Da@ - iqD,!lP + X[\k, , Qa] + B2 + ~&&3] 

(6.6) 
In terms of the “component” fields the Lagrangian is: 

~(~1 =;&3aP$ + X,D,D”4a 

+ &[ifja,@ -I- iqa(Da$z - hbf$i+] 

+ fi[-icabXa$ab&= + 5,” + B,B” + iEab$axbi], 

(6.7) 

6 h 

where we used &(r,r~X = 2q, =+ cST(~,~) i = +, 8T(1,1~Xa = va. Following 

our work on TYM, we can insert in equation (6.6) a term X(D,‘P - fa) instead 

of XD KP[*‘In this case in order to conserve the U(1) global ghost number we a * 

have to take 0 = [@,q] and &(r,r)~ = i[d, A] ==+ &(r,r)rj = 0 &(r,r)va = 

&&(&ib - kjb). 

This will lead to an additional term in the Lagrangian, 

--..._ _ -. EabxdJqb - ij$b)] = ;(&.k$b - cab+q,4b)s (6.8) 

Let us now verify that the BRST algebra is closed up to an ISO(l,l) gauge 

transformation with a transformation parameter Q = $J + @Pa. Explicitly, this 

can be realized directly from the transformations: 

@G(,,~~A, = Da@ ===+8~11,1)e~ = Da+” - cabeab& B;(~Jya = aA 

@(,~)*a = [@a,*] ==+-~;,,J)~: = ~ab(&hab - d’b&), &,,q = 0, 

&(I,I)% = EabXa4b, g&,qxa = cab$xb. 
z- _T_ (6-g) 

--One may suspect that the third line in (6.9) d oes not describe. a gauge transfor- 
_- mation of x; but, in fact, it does as can be verified from the gauge invariance of 

the first expression in (6.2). 
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The invariants of the theory will be discussed in section 8. We now proceed 

to explore the more interesting case of the higher genus Riemann surfaces. 

7. Higher genus Riemann surfaces and 
the topological SO(2,l) theory 

Riemann surfaces of g 2 2 can be described by a constant negative curvature 

metric (hyperbolic metric). As will soon become obvious, this corresponds to a 

positive (X = +l) cosmological constant. The corresponding symmetry group is 

that of SO(2,l). F o 11 owing our discussion in section 3, we proceed to construct 

the topological SO(2,l) gauge theory. We follow the same procedure that we 

used in the last section. 

First, we fix Fo,p to zero so as to project onto configurations with a flat 

connection. For SO(2,l) this implies the conditions, c“@a+~p + det(e) = 0 and 

&D,e; = 0. Since &d,wp = -det(e)R, we, in fact, gauge fix the curvature 

to a negative constant (R = -1). The resulting Lagrangian is 

_-..._ . -. l(l) = &(2,1][@X~~@] =&(2,1)[if(@d,wp + det e) + d@xaDaej], 

=i@[(s(aawp + irabeaaepb) + B,D,eF) 
(7.1) 

- i(?(capdaGp + cabcap$,,epb) 

-i- xa(Datii i- ~ab&epb)], 

A 
where &(2,1) = i4-(2,1) denotes the SO(2,l) topological variation, and the ghost 

fields );/,xa, i and B, are defined in the same way as in section 6. Under the 

ghost symmetry, S transforms again like the gauge field under SO(2,i) (as in eq 
_- 3.11), namely, 

- i-c L. 

- A 
&(2,1)&z = Da@ * 

&(2,1)& = aa6 + Eabeaabb9 

&(2,1)!& = D,qS” -I- Eab&orb, 
(7.2) 
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and the auxiliary field B transforms as, 

,z.- . . _ 

. &F~,IJB = -i[Q,x] + b(2,1) ii =‘.- cab&,& 
&q2,1~B~ = cab&b - j&$b). (7.3) 

Similarly, the second stage of gauge fixing is: 

~(~1 = L&+~~ = &%T~2,1~[3D,~a + xB1, 

= iAD,DV - iqD,W - @Pa ,Sa] + B2 - ix[Q]. 

(7.4 

In terms of the “component” fields the Lagrangian is: 

L(2) =i&[xa,affJ + XaD,D”~“], 

+ &[i;i(a,@ + eabPp eaa$pb) -I- V(D&Z - eabeL$a)], 

+ &[-icab(&?/Jab?,iQ + $,b:qg) -k i2 + Bd” 

- iEab(2#aXb? + ixaxb)], 

(7.5) 

-- ..- . 
-. 

A A 

where we used &(2,11X = 2~, ‘6T(2,1~X = c, 6Tc2,r)Xa = qa- The additional 

term in the Lagrangian which was introduced in the last section for ISO(l,l), 

now takes the form 

= ifi’ab($qafb d- 2Gvadb) i- gi(d2AaAa - i2qjar$a - (EabdaAb)2], 

(7.6) 

using that &(2,r)q = [@,A]. 

We can combine these expressions to write the total Lagrangian, l = l(O) + 

f(l) + p) + p), and collect the kinetic terms: 

_- I _T. 
_ -r* lkin =fi[(@&yp)2 + (+d$$] 

_- + i~[--(C @aa$/? + Xaaa+z) + (Il”aaGa + rlaaatiZ)l V-7) 
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The gauge interaction terms can be written as LCgauge = &(J&,Aa) where 

,c- 

. J&, _[ip, ([A”, Ap] + 2d[“Apl)] 

- i([rl,V] + @[x,&I) + $[Q,aa~] + [a% Xl + [[C @)I, Xl) 

={ cabePa[2d’ae~] + ecb(w”epc - e:wp) 

- ieab(rla$f •k EaPXa$pb i- [a”($aAb) -k (W”da - e&&]))J 

{+cab[wP(w”ei - eacwp)ec, - ePaccdeFepd + 2(wPi3iae;l - ePad[“wpj] 

+ Eab[-(+$,” - $“rla) + @(%+pa - Xa9zp) 

+ P(fJAa) - iY(id,) + ebdezcjcXa - A(W”4a - ez$)]}% 

P-8) 

and the other interactions are, - 

L id =&[-iEab(Xa$hb$C + ~i$~$f) - iCab(2$aXbg + $XaXb)], 

r]acb + 2Gva4b) + $[J2xaxa - i2badu - (Eab+aAb)2], 

(7-g) 

_-..._ . 
-. 

The derivation of the Noether current JtRST and the energy-momentum 

tensor is similar to the derivation for the topological abelian theory (4.12-4.14) 

and therefore the same conclusions hold here also. The BRST algebra is closed 

up to an SO(2,l) gauge transformation with a parameter @ = c$J + qSaPa. This 

can be realized directly from the transformations: 

@c2,l+x =D,@ - G(2,l)e: = D,q5” - eabeab$, 

G(2,l)W~ = aa + Eabe$$b, 

~&,1pL =[vkY] J I 
~;(2,,)~: = cab (&kab - #b&x), I 
G(2,1)@ = cab+a+cvb, 

&(2J)X ‘[@,X1 =+ s^;,,,,,2 = cabXa$b, 

a- _T_ @(2,4$=? = eab&b. 

- .- L. 

In general the BRST algebra on any operator is closed as follows, 
_- 

[h(2,1)EI > &(2,1)E*P = -k~2P% 01. 

(7.10) 

(7.11) 
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Any explicit calculation will require a further gauge fixing of the SO(2,l) gauge 
A- ,; symmetry.-. This is achieved by the standard Fadeev-Popov procedure. In the 

. next section we will elaborate on the topological observables of the theory. 

8. Topological Invariants of Moduli Space 

We will now discuss the quantum field theoretic approach to the topological 

invariants of moduli space. Before proceeding into an explicit construction of 

the observables, let us discuss why, in fact, our theory provides a description 

of the topology of the moduli space of curves. In this context, moduli space is 

equivalent to the space of Riemann metrics modulo diffeomorphisms. We have 

chosen a gauge group whose action on the metric is just that of diffeomorphisms. 

For g 2 2 the group is SO(2,l); for g = 1 it is ISO(l,l), and for g = 0 it is 

SO(1,2). Since ISO(l,l) d oes not have a nondegenerate quadratic Casimir and 

consequently Mr has no interesting topology, save for a torsion group of order 12 

117’we will from now on only consider g 2 2. 

_-..._ . 
- 

The structure of our theory .is that of a principal SO(2,l) bundle consisting 

of a projection 7r : E + B. The fiber is the gauge group SO(2,l). From our 

gauge fixing condition we see that: 

E = {flat SO(2,l) connections over Fs} 

where Fg is an oriented surface of genus g. We will now also show that E is 

equivalent to the space of metrics on Fg. Thus, B = E/S0(2,1) would be 

homeomorphic to the moduli space. Recall that the gauge fixing condition (i.e. 

vanishing field strength) on the generators of SO(2,l) was such that: 

D[,eFl =a[,ej$ + wiae;l = 0, 
(8.1) G 

*- _T_ d[,wpl = - det(e), 
- *a-- L. 

We can define a covariantly conserved metric by g,p = ctcpa.* From the first 
_- 

* It should be noted that this is to be distiguished from the world-sheet metric in the 
quantum field theory. 
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relation above we can determine wa as a function of e: . Then, substituting the 
i ,c- expressionfor wa(eg) into the second relation above will give us, as shown earlier, 

fiR=-&j =+ R=-1. (8.2) 

This is the condition that we have constant negative curvature. But we know that 

all Riemann surfaces of g 2 2 can be described by constant negative curvature 

metrics (i.e. hyperbolic metrics ). For g = 0, the gauge group is SO(1,2) and 

we have positive curvature. This then completes the verification that our theory 

provides for a description of the moduli space. 

- 

Let us now compute the dimension of this space using the index of the 

fermionic operator in our Lagrangian. This is simply: {number of Q, zero 

modes} - {number of (x, Q) zero modes}. Since \k, is a vector and (x,r)) are 

scalars, we have that the dimension of moduli space is: 

Dim(SO(2,l)) x (2g - 2) = 6g - 6. This is, of course, a well-known re- 

sult. There is one unfortunate fact that we must note. Because we always have 

(x,~,J) zero modes, the XP, zero modes do not form a good coordinate basis for 

moduli space. In TYM Witten was able to construct an explicit mapping of 

the Donaldson polynomials into differential forms on the instanton moduli space 

after an integration of the nonzero mode fields. This was possible because his 

analogous KP zero modes (instanton deformations) could be used to parametrize 

moduli space, since he considered the generic case in which there are no (x,~) 

zero modes. In general, the x zero modes are the obstructions to choosing a 9 

which coordinatizes moduli space. 

_-..._ . 
- 

For the moduli of Riemann surfaces we know that the quadratic differentials 

are good coordinates. Since we must be content with our KIXca and. x, we will 

*- _=_ glean whatever information we can even though the explicit mapping onto the 

-- differential forms on moduli space- will not be so easy. 

- 
Let us now proceed with the construction of our observables, or topologically 

invariant correlation functions. This will be very much along the lines of ref. 
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[I]. Witten showed that the observables will be a ring of differential forms on 
i ;- the background manifold. These will be a sequence of forms of increasing degree 

. beginning with the zero forms constructed from the invariant polynomials of the 

BRST scalars: 

wt4”) =TT(@2)n, 0 

J w(4n-1) =53-(2n 1 
s 

Qla@2n-1dXa), 

7 7 s W(4n-2) =73(2n 
2 

J 
FapB2”-Ids” A dxp 

c c 

+ 2n(2n - 1) 
J 

(p 2n-2Q,XlQdxa A dxp), 

c 

(8.3) 

_-..._ . 
-. 

where we have dWN = {QB~s~, WN+~}, {Q, WO} = 0, and WO # {&,A}. This 

is then the structure of the generators for the topological invariant polynomials. 

Mathematicians refer to these as characteristic classes. We see that they are of 

the form S’lk wk where rk E Hk(C) and wk E H”(C). In the quantum field 

theory we must choose a combination of these classes such that the fermionic 

zero modes are absorbed. This involves choosing a product of classes with ghost 

number 6g - 6. The ghost number of a differential form on the Riemann surface 

will correspond to the degree of the differential form on moduli space. The 

observables can be considered as mappings from forms on a Riemann surface to 

forms on the corresponding moduli space. The Mumford invariants, as mentioned 

previously, are elements of the even cohomology groups of M,. They will then be 

identified with the even ghost number observables . For example, ICI E H2(Mg) 

will be identified with Wi2). It is known that lcfg-’ # 0; this corresponds to: 

*- _T_ 

- M M  

39-3 

K:“-” + (Tr n 
J 

mq. - 
L. i=l c 

(8.4 

- 

_- 
The expression above can be computed in the weak coupling limit where it is 

identical to the computation in the abelian theory (done in section 4). This is 
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an exact result because the theory is independent of the coupling constant. It 
i --‘ verifiesthat &fge3 # 0. The Euler character of moduli space was computed by 

. Harer and Zagier!“’ They found it to be: 

x(-h) = - qg _ 1) 
SP - 29) (g > 1) (8.5) 

where c denotes the Riemann zeta function. This should now also be computable 

using quantum field theory. Since the quantum field theory is two dimensional 

and a weak coupling expansion can be used, the computation should not be too 

difficult. It appears to be related to a zero point energy. We leave this for future 

work. 

- In summary our observables describe the following mappings between coho- 

mology elements on the Riemann surface and those on moduli space: 

_-..._ . 
-. 

Wo(2n) :H’(C) + H2”(Mg), 

W,(2n-‘) :H’(C) + H2”-‘(M,), 

W,(2”-2) :H2(C) --+ H2”-2(Mg), 

9. Conclusion 

(8.6) 

In this paper we have constructed a quantum field theoretic description of the 

topology of moduli space. The guiding principle has been the study of moduli 

space topology by using topological gauge theories. These are gauge invariant 

theories whose Lagrangians are assembled by gauge fixing onto certain classical 

configurations. They probe the topology of the manifold of classical configura- 

tions modulo gauge equivalence (i.e. moduli space). 

For the study ,of the moduli space of curves we chose the gauge group to 
*- _=_ be the symmetry group of the metric of a Riemann surface of a given genus. 

- 
- This is SO(2,l) for g 2 2, ISO(lii) for g = 1, and SO(i,2) for g = 0. Then by 

_- 
gauge-fixing the connection to be flat, we obtained a field theoretic description 

of M,. 
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The previous attempts at obtaining a topological theory for M, were based 
,L- on develop.ing a topological theory of pure gravity. [‘I We have seen in this paper 

. that moduli space is described naturally by an SO(2,l) gauge theory on a curved 

two-dimensional background. 

There remain several open problems. Since so little is known about moduli 

space topology, it would be fruitful to explicitly compute some of the invariants. 

This should not be too difficult, since we are dealing with a two dimensional field 

theory about which much is known. There is also a question as to whether there 

are any global anomalies. We don’t know what effect torsion groups in moduli 

space will have on the quantum field theory. It would also be interesting to extend 

this work to obtain a description of super-moduli space. We would naively expect 

that a supersymmetric version of a topological SO(2,l) gauge theory will do the 

job. This should be a straightforward extension of the current work. It may lead 

to interesting consequences. 
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