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ABSTRACT 

We obtain-a number of results by reexamining conformal field theory on the 

- plane, using only elementary mathematics in the process. In particular we red- . 
-. 

erive the constraints on conformal dimensions found by Vafa, using the crossing 

symmetry of four-point amplitudes; find stronger, inequality versions of these con- 

ditions which constrain the magnitude of the conformal dimensions of primary 

L- - 

-. - 
fields which can appear as intermediate states in a given amplitude; and study 

the conformal bootstrap perturbatively using the power series expansions for con- 

formal block functions. This latter approach gives constraints of a quite different 

type, in particular tree level constraints on the central charge. 

- 
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1. - INTRODUCTION 

T, The study of two-dimensional conformal field theories (CFT’s) has flourished 

in recent years. CFT’s have proved useful for the study of infinite dimensional 

algebras in mathematics, represent many two-dimensional statistical systems at 
- 

- their critical points, and provide the building blocks for the classical solutions 

of string theories. Not surprisingly, then, considerable attention has focused on 

. .-. 

the problem of classifying all CFT’s. In the seminal work in this field, Belavin, 

Polyakov and Zamolodchikov (BPZ) g ave an essentially complete formulation of the 

parameters which characterize a CFT, the constraints that these must satisfy, and 

how these constraints might be solved in principle (the “conformalbootstrap”) [l]. 

A CFT is completely fixed in principle, once we have specified its central charge, 

the conformal dimensions of its primary fields and the structure constants defining 

.the three-point couplings. The sole nontrivial constraints that these parameters 
- 

must satisfy is the crossing symmetry of the four-point amplitudes on the plane. 

These amplitudes are built from functions whose coordinate dependence is deter- 

mined entirely by the conformal symmetry, the so-called conformal blocks. 

-- - 
Unfortunately, in practice we only know how to calculate the conformal blocks 

laboriously, order by order in a power series expansion, which in general is not 

a suitable form for imposing the crossing symmetry constraints. For this reason, 

interest in the conformal bootstrap has faded and a number of reformulations of 

the classification problem have been proposed. Probably the most popular of these 

focuses entirely on the analytic and modular properties of the correlation func- 

tiEis of a particular subset of CFT’s, the so-called rational conformal field theories 

(RCFT) [2]-[lo]. Using this approach, Verlinde [3], Vafa [4] and others [5-91 have 
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derived constraints on  the central charge and conformal dimensions which may ap- 

pear in a  RCFT as a  function of the fusion rule algebra of its primary fields (that 

is, the knowledge of which primary fields couple to which) and, more recently, 

Moore and Seiberg have suggested an explicit realization of this “modu lar geome- 

- - try” approach in terms of the duality matrices relating different sets of conformal ‘a - 

blocks [!I. 

_-. 

Despite such advances there. has been no definitive progress made along these 

lines in the general problem of classifying conformal field theories. Indeed some 

of the -simplicity, power and generality of the original conformal bootstrap has 

been lost along the way. In emphasizing modu lar geometry we have sacrificed our 

detailed knowledge that conformal symmetry in fact completely fixes the conformal 

blocks. In restricting ourselves to RCFT’s we are hoping that this subset is in some 

sense a  good approximation to the space of all CFT’s; but even if RCFT’s are dense 
. . 

- 
in the space of CFT’s (as has been suggested [a]) they may not provide any natural 

or useful parameterization of it, much as an infinitely branched tree can be made 

dense in the plane but provides a  hopelessly awkward description of it. 

-- - 
For these (and other) reasons we believe that the conformal bootstrap still 

represents the most promising approach to classifying CFTs, and so deserves re- 

newed attention. The chief utility of RCFTs, we believe, lies in providing simpler 

constraints which m ight help in constructing and testing new CFT’s. In this spirit 

we present three results in this paper. F irst, we will rederive the constraints on  

conformal dimensions which seem to us to be of the most practical use, namely 

thzse found by Vafa [4]. W  e  will present this entirely in the language of BPZ, show- 

ing how these conditions follow directly and naturally from the crossing symmetry 

3  



. ._ 

constraint of the conformal bootstrap. Second, using a trick inspired by work of 

Mathur, Mukhi and Sen [6], we will strengthen Vafa’s constraints, turning them 

into inequalities which, in essence, tell us that the dimensions of the primary fields 

appearing as intermediate states in any given amplitude must not be “too” big 

- . relative to the dimensions of the external fields. For example, if two self-conjugate 

primary fields, 41 and 42 (of the Virasoro algebra or some extension), fuse only 

to a third primary field, $3 (and its descendents), then the conformal dimensions 

.-. must satisfy A3 + k/2 = Al + A2 with k a non-negative integer or the CFT will 

be inconsistent. 

Finally, we will show that in some cases the conformal bootstrap can be solved 

“perturbatively,” using the power series expansion of the conformal blocks. The 

trick is to consider particular amplitudes, such as those involving only a single 

intermediate state primary field, which are fixed up to a finite number of param- 
- 

eters by their known analytic structure. The unknown parameters are fixed using 

the first few terms in the relevant conformal block expansions; the crossing sym- 

metry constraints may then be imposed order by order in the expansions. This 

-- - method gives constraints of a rather different sort than those found by “modular 

geometry” methods, including tree-level constraints on the central charge. For ex- 

ample: any CFT which contains a dimension l/2 primary field, +, such that the 

$+ operator product ex pansion contains only a single Virasoro primary field (and 

its descendents) must have central charge c = l/2, regardless of the remaining 

operator content of the theory, or else the (@/N/J+) amplitude will not be crossing 

symmetric. 

In section 2 and the beginning of section 3 of this paper we will review in some 
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detail the conformal bootstrap of BPZ and introduce rational conformal field the- 

ories and some of their most basic properties. The latter part of section 3  contains 

the derivation of Vafa’s conditions. The new inequality constraints are presented 

in section 4  and the perturbative treatment of the bootstrap comprises section 5. 

- - All of these results follow just from studying the four-point amp litudes of primary 

fields on the plane. This allows us to avoid the use of sophisticated mathematics 

which is often required to discuss general N point amp litudes on arbitrary genus 

__. Riemann surfaces and characterizes most of the recent literature on this subject. 

Thus our discussions may also serve as a  pedestrian introduction to these more 

abstract formulations. Indeed, the four-point functions on the plane often repre- 

sent the simplest nontrivial examples of the general structures they consider and 

so it is instructive to see constraints arise at this level. W e  will make comments 

_  to this effect throughout, as well as argue why higher genus considerations are of 
. 

- secondary importance in the problem of classifying CFTs. In section 6  we conclude 

with some discussion and speculation on the classification of CFTs and how this 

issue impacts on string theory. 

-- - 
2. CONFORMAL FIELD THEORY ON THE PLANE 

The bulk of our knowledge of conformal field theory is contained in the clas- 

sic paper of Belavin, Polyakov and Zamolodchikov (BPZ) [l]. W e  assume a  basic 

knowledge of this work (see e.g. [ll] f or a  good introduction) and begin by col- 

lecting together those formulae and results which we will need for the subsequent 

discussions. 

The operators in a  conformal field theory fall into representations of two inde- 
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pendent Virasoro algebras L and 1 ; these algebras are completely specified by the 

central charges c and C. Specifically, 

[Ln, Lm] = (n - m)Ln+m + $” - ~)&+7n,0 (24 
- a - 

and the analogous relation for x. The irreducible representations consist of primary 

fields, c#;(z,~) with h o omorphic 1 and anti-holomorphic conformal dimensions Ai 

and Ai, satisfying, 

[cm, $hi(Z, Z)] = Zm+l &di(z, 2) + ai(m + l)zm$i(Z, Z) (2.2b) 

-and descendents of primaries obtained by applying products of L,, z, operators 
- 

(m, n < 0) on the primary fields. Following BPZ, z and z are treated throughout 

as independent complex variables; one is restricted to be the complex conjugate 

of the other only at the very end of a computation. The Virasoro generators are 

2 - 

--- - Fourier components of the stress energy tensors T(z) and T(z) , e.g., 

(2.3) 
n=--00 

These are not primary fields, but descendents of the identity operator. 

The form of the two- and three-point functions of primary fields in a conformal 

field theory is fixed by demanding invariance under projective transformations, 

that is the subgroup of the conformal group generated by {Lo, L1, L-1) which 
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smoothly maps the complex plane onto itself. Specifically, 

(dn(‘l, Zl)d7TZ(Z27 72)) = Snm(Zl - Z2)-2A”(Z1 - ,Fjc~)-‘~~ (2.4) 

(h(zl~ zl)d2(Z2,22)$3(Z3,z3)) = cl23 - 

(zl - Z2)A3-A’-A2(z1 - z3)*2-*~-Ayz2 _ z3)A1-A2-A3 (2.5) 

(zl _ ~2)~3-&-~2(~1 _ ,3)~2-&-~3(52 _ 23)&-A2-A3 . 

. __. In writing (2.4) we have normalized the primary fields and defined them such 

that they are self-conjugate (which we can always do) in order to keep our nota- 

tion as uncluttered as possible; in particular, with this choice th.e structure con- 

stants Cijk are completely symmetric in their indices. This definition is not always 

the most natural or convenient for a given conformal field theory so we will in- 

_ dicate, when appropriate, how our final results are modified when fields are not 

- self-conjugate. 

It is often convenient to calculate correlation functions within an operator 

framework,with Hamiltonian Lo + Lo, and “in” and “out” vacuum and primary 

-- - 
states defined by 

LIO) = L,lO) = 0 n 2 -1 (2.6a) 

(OIL, = (O& = 0 n 2 1 (2.6b) 

(2.7a) 

- 

(iI = z ii: co (Ol$bi(Z, .Z)Z2LoZ2Lo . (2.7b) 
7 
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Then (2.4) and (2.5) become - 

(ll$m(z, jf)ln) = c~mnzAe-A~-A~,~e-~--~~ , 

- 

and the states of the form 

L-k,L-~, . ..L+&& . . .&Ji) ; 
kl 5 . . . 5 kN 
Ic 

1~...<k 
< 

-M 
(2.10) 

form a- basis for the space of descendents of the primary state 1;). Note that 

{Lo, Ll, L-1) is the largest subgroup of the Virasoro algebra which leaves the 

vacuum invariant. 

- . 

As BPZ showed, a conformal field theory is completely specified once the cen- 

-tral charges, c, E, dimensions of the primary fields, Ai, Ai, and structure constants 

for the primary fields, Cijk, are given. Any correlation function involving de- 

scendent states [or equivalently powers of T(z) or T(z)] can be reduced to one 

involving primary fields alone using (2.1)-(2.3) and (2.6). Correlation functions 

of more than three primary fields can be reduced to sums (generally infinite) of 

products of three-point functions using the operator product expansions of primary 

fields which, apart from the Cijk, are completely fixed by conformal invariance. In 

practice, it is the inherent difficulties involved in this procedure which prevents 

the complete solution of generic conformal field theories. We will examine this in 

some detail for the four-point function; this will be the chief object of our attention 

throughout the present work. 
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Invariance of the vacuum under projective transformations allows us to write 

- 
an arbitrary correlation function of four primary fields in the form 

(h(zl, +d2(z2,.~2)~3(z3,53)~4(Z4,54)) 

Z.Z 
rI( 

zi _ zj)Y/3-*t-*j (z& _ Zj)7/3-.&-A JY(x:)fiT) ’ 
(2.11) 

i<j .a - 

with y E CtZl Ai and Y a function of the anharmonic ratios 

(zl - z2)(z3 - z4) (21 - Z2)(Z3 - 24) 

x = (21 - z3)(z2 - 24) a: - (21 - Z3)(Z2 - 54) . 
(2.12) 

The factors in front of Y in (2.11) are fixed only up to multiplication by factors of 

x or Z; We have chosen the specific form to be completely symmetric in the four 

coordinates (z;, 5;). In the operator formulation, 

Y(x,Z) G z *3+*43(1 _ xc> A2+A,-y/3$3+&ry/3 
( 

1 _ ++&-T/3 

(2.13) 

(1/&(1, l)h(x,z)14) . 
. 

- . We can re-express Y as an infinite sum of products of three-point functions by 

inserting the identity operator in (2.13) in the form I = C I s)(s I where the sum 

runs over all states (properly normalized). In conformal field theory all states are 

-- - primaries or their descendents given by (2.10), so (2.13) becomes 

Y(x,~) = A(x,z) c c 
primparies {ki}{k;}{~i}{~j} 

(11~2(1, 1)~-{lii}~-~~i,IP)(PI~{k~}~~li;~~3(x,1C)14) (2.14) 

where A is the prefactor in (2.13) and 

- ,+kij = L-&-k2 *. . L-kN 0 < kl < k2 5 -. . 5 kN 
(2.15) 
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(2.16) 

and the analogous definitions for the anti-holomorphic quantities labeled by g. The 

three-point functions appearing in (2.14) can be explicitly evaluated using (2.2), 

(2.6) and (2.9). The difficult part of the calculation is computing and inverting ,- 
- 

the matrix M in (2.16) h h w ic arises because the basis of descendent states (2.10) 

is not orthonormal. Note that 

~M~,~lf,~l = 0 unless 5 ki = 2 ki , 
i=l j=l 

(2.17) 

so that M is block diagonal and may be inverted “level by level” with the level 

given by C-k;. This corresponds to a computation of (2.14) order by order in 
* 

powers of x. Also observe that for fixed p, (2.14) is proportional to the structure 

. . constants C1zP, C34p and is a product of holomorphic and anti-holomorphic terms. 
- 

Thus, 

y(x~z) = c’c12~~ c34p jl2,34(p~~).fl2,34(p~~) , 
P 

(2.18) ?- 

-- - 

with the “conformal block” f&34 given explicitly by 

and analogously for the “anti-block” j. In principle, jl2,34(PlX) is completely 

spmified given c, Al, AZ, As, A4, AP; In practice, for generic values of the conformal 

dimensions, we only know the first few terms in the power series which, plugging 
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. . ._ 

(2.9) into (2.19), begins 

-- - 

fl2,&+) = .ap-7’3[1 + o(x)] . (2.20) 

The power series expansion will have a finite radius of convergence if the opera- 

tor product expansions of the theory do; the convergence of the OPE’s has been 

argued to follow from conformal invariance, and is assumed in the bootstrap ap- 

proach. Note also that the conformal blocks are analytic functions of z except at 

the possible branch points z = 0, 1,oo and on the branch cuts which join them; 

more precisely, each block is a single branch of some analytic function. z = 0, 1, co 

correspond to those points where two or more of the operators defining our ampli- 

tude fuse together. 

In calculating the general four-point amplitude we have chosen a particular 

decomposition, (2.14), which can be represented diagrammatically as 

There are, however, two equally good alternative decompositions we could use 

which, if our theory is consistent, had better give the same results. This demand 

2 3 

(2.21) 

is the crossing symmetry constraint of BPZ: 

(2.22) 
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; 

- 

. __. 

. - 

-. 

or, explicitly in terms of conformal blocks, 

~cl%J c34~ fl2,34(d+fl2,34(PI~) = cc13q c24q f 13,24 

P Q 

@) fl3,24 (4d) 

= c c14r c23r fl4,23(+ - z)fl4,23(rll - 5) , 

T 
(2.23) ia - 

where we have used (2.12) to re-express, 

h - z3)(z2 - 24) i 1 

(zl - 22)(x3 - 24) - : 

(21 - z4)(22 - z3) = 1 _ z 

’ (21 - 23)(22 - 24) 

. 
(2.24) 

There areho additional factors in (2.23) b ecause of the symmetric choice of pref- 

actors in (2.11); this will prove somewhat more convenient than .the asymmetric 

convention for the conformal blocks defined by BPZ. 

It is not d&cult to see that if all of the four-point amplitudes in a theory 

.are .crossing symmetric, then in fact there is a unique result for every N-point 

amplitude regardless of how we choose to decompose it. For example, 

- +L-((: =+Q3 (2*25a) 
5 

follows immediately from the four-point result 

(2.253) 

TICis the problem of constructing and classifying all consistent conformal field 

theories on the plane boils down to calculating the conformal blocks for arbitrary 
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conformal dimensions and central charge and determining the possible complete 

sets of these which satisfy (2.23) f or some values of the structure constants, C;jk. 

Unfortunately, the general conformal blocks are not known and the power series 

expansions of them are of little direct use for imposing crossing symmetry; the 

- - expansion for fr2,34(z) does not in general converge for II: near 1 or 00 about which 

the Series for fr4,23(1 - 2) and fr3,24(1/ ) z converge, respectively. We will address, 

and is some special cases be able to sidestep, this difficulty in section 5. _ 

A brief aside on the subject of correlation functions on higher genus surfaces is 

in order. The work of Cardy, in particular, has demonstrated that physically mean- 

ingful constraints on the operator -content of a CFT arise from the demand that it 

can be consistently formulated on a torus [la]. 0 ne might worry that the conformal 

bootstrap is incomplete, ignoring as it does everything but the correlation functions 

-on the plane. This is correct, but in practice the genus one restrictions are of only . 
- 

secondary importance and can be satisfied comparatively easily given a complete 

solution for a CFT on the plane. Without entering into details, the necessary new 

ingredient on the torus is the invariance of correlation functions under the modular 
-- - 

group generated by r + r + 1 and r + -l/r, where r is the modular parameter of 

the torus. In practice, invariance under r + r + 1 is insured if all of the operators 

in the CFT have integer spin (A - a E 2). I nvariance under r + -l/r serves as 

a completeness condition, necessitating that any operator which is mutually local 

with respect to all of the operators in the theory (that is no branch cuts appear in 

any OPE’s) is also included. We know of no rigorous proof of this last statement, 

bZ it has so far proved to be the case that any CFT completely consistent on the 

plane has been formulated consistently on the torus, perhaps after some suitable 

13 



truncation or filling out of the-operator spectrum. There is no denying the efficacy 

of examining modular invariance on the torus for isolating a complete, consistent 

set of operators in a given CFT; we only wish to make the point that consistency 

on the plane - guaranteed by the conformal bootstrap - is the primary consid- 

-- - eration in classifying all CFTs. Finally let us note that demanding a consistent 

formulation of a CFT on a Riemann surface of genus greater than one gives no 

new conditions after we have guaranteed consistency on the plane and torus. This 

__. has been argued for some time in the context of string theories (see e.g. [13] and 

references therein) and has recently been shown more rigorously by Moore and 

Sieberg for RCFTs [5] and, independently, by Sonoda [14] for CFTs. 

3. CONSTRAINTS ON RATIONAL CONFORMAL FIELD THEORIES 

The most thoroughly studied class of solutions to the conformal bootstrap 

. . -equations (2.23), and indeed the only one studied in BPZ, is the set of discrete 
- 

minimal models. These include all of the unitary theories with c < 1 [15] as 

well as a countably infinite set of nonunitary models which nonetheless possess 

well-behaved crossing symmetric amplitudes (and are of physical relevance in two- 
-- - 

dimensional critical phenomena). The possible modular invariant combinations of 

minimal model characters have been found and fall into an ADE classification: two 

infinite series and three exceptional invariants [16]. Fateev and Dotsenko obtained 

the structure constants for the diagonal (A series) modular invariants by explicitly 

solving the crossing symmetry constraints [17]. Each of these diagonal minimal 

theories contains only a finite number of primary fields, each of which is uniquely 

specified by its conformal dimension. As a consequence, all of the necessarily finite 

number of conformal blocks (or antiblocks) appearing in a particular factorization 
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of any four-point amplitude are linearly independent functions of IL: (or 2). BPZ 

found these to be a basis of solutions of certain differential equations in J: (or 2) 

satisfied by the correlation functions as a consequence of the existence of null states 

in the Virasoro algebra for the minimal models. One should not be surprised then 

- - to find that the sets of conformal blocks appearing in different factorizations of a 

given four-point amplitude are alternative bases for the same space of functions 

and hence linearly related to each other. In fact, this property follows from the 

analytic structure of the crossing symmetry constraint, (2.23), alone. That is, any 

linearly independent sets of holomorphic and anti-holomorphic functions satisfying 

necessarily satisfy 

y(x) = c M%Jj(,) (3.26) 
. . J - 

F(2) = C j@Gg.i(q , (3.2b) 
j 

where A4 and &l are square (Nf = Ns) invertible matrices with constant en- 
-- - 

tries. To see this, consider the Nf equations obtained by applying & to (3.1) 

for n = O,+.-, Nf - 1, as a simultaneous system of linear equations for the f”. 

The determinant of the matrix of coefficients is just the Wronskian for the set of 

functions f;i, 
-1 

f f -Nf . . . 
af' . . . tpf 

iv(“) z 

- aNf-l -1 f . . . a’Vf-‘fNf 

(3.3) 

The rows of (3.3), or for that matter the columns, are linearly independent because 
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the Nf functions are, and hence r;i/‘(%) is not identically zero. Thus we may invert 

our system of equations to obtain a solution of the form (3.2a). For f (which 

depends only on X) to be a nonzero solution, Mij must be independent of 5, 

[which is self consistently guaranteed by (3.2b)]. The analogous manipulations 

- - may be used to solve for f2,#, and # which establishes (3.2b) as well as the fact 

. .-. 

that M and i@ are square and invertible. 

The chief utility of the relations (3.2) is, as we will see, that they allow us 

to say a great deal about the purely holomorphic half of a conformal field theory 

without any specific knowledge of the anti-holomorphic half. Moreover, most of 

these results follow solely from the-analytic structure of the correlation functions - 

:.. 
- not from the detailed definition of the conformal blocks given in (2.19). It is largely 

this fact, and a desire to exploit our extensive knowledge of analytic functions on 

Riemann surfaces, that motivates the study of so called Rational Conformal Field 
- . 

Theories (RCFT) [a-lo]. 

In direct analogy with the.minimal models of BPZ, we define RCFT’s to be 

any theory -in which any amplitude is decomposable into a finite sum of products 
-- - 

:: 

of linearly independent holomorphic and anti-holomorphic “chiral blocks.” These 

chiral blocks consist of the contributions to the amplitude of a single “primary” field 

and all of its “descendents” where these terms are now defined relative to some 

extended algebra of holomorphic fields which contains the Virasoro algebra and 

whose generators are restricted to have integer conformal dimensions. For example, 

if the Virasoro algebra is extended by a Kac-Moody algebra the chiral blocks are 

‘ciirrent” blocks and the RCFT is one of the Wess-Zumino-Witten models [18]. 

The reader should be warned that the precise definition of RCFT seems to vary 
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from author to author depending on their needs at hand. The definition of RCFT’s 

we have given, while somewhat lax, is sufficient for our immediate purpose which 

is to rederive Vafa’s constraints on the dimensions of primary fields as a function 

of their fusion rule algebra [4]. Th ese will follow solely from the analytic structure 

- - of the four-point crossing symmetry constraints (2.23) when only a finite number 

of chiral blocks appear, each with singular expansions of the form (2.20). Thus 

we don’t need to require that the total number of primary fields appearing in our 

__ theory is finite, which is typically included in a definition of RCFT’s, (that is we 

include what have been dubbed quasi-rational CFTs [9]) but we need the restriction 

that generators of the extended chiral algebra have only integer dimensions, which 

_ is relaxed in some definitions. In section 4 we will strengthen Vafa’s relations, 

turning them into inequalities which again will be valid for any RCFT as we have 

defined them. 

. . 
- . Now, if we consider any four-point amplitude (f$r&&&) of primary fields in 

a RCFT the chiral blocks appearing in different factorizations, (i.e., in the s, t and 

u channels) are linearly related, 

j=l 
N 

(3.4a) 

(3.46) 
j=l 

where ;,j = 1,2... N label the N independent chiral blocks and the C’s are con- 

stant matrices. Collecting the fi’s into N-dimensional vectors, F, we can write 

(3.4) in shorthand notation as - 

(3.5) 



The index 0, 1, co indicates, that J’s, for example, has as components the blocks 

fi’,,s,(~) each of which has an expansion of the form (2.20) about IC = 0, 

(3.6~) 

- 

where y = C A; [the sum of the dimensions of the external states as in (2.11)] and 

we have written di for the conformal dimension of the primary field appearing as 

the intermediate state in the z “’ chiral block in the “0” channel. Similarly, we have 
. __. 

FL(x) G ~&~(1/2) M (l/x)di-y/3(bo + br(l/z) + e-e) for x + 00 (3.6b) 

F;(X) = fi4,2s(l -x) M (1 - x)~‘-~‘~(co + cl(l - X) + mm*) for x N 1 . (3.6~) 
- 

Note-that the exponent in (3.6) is precisely the same as in the conformal block case, 
. . 

- . (2.20) because, by assumption, the generators of the chiral algebra in a RCFT have 

integer dimensions and so all of the descendent fields contributing to the jth chiral 

block have dimensions di + integer. Unlike the conformal block case, however, it is 

-- - possible in a RCFT that in some amplitudes the primary intermediate state does 

not appear, in which case the leading singularity, di+ integer - y/3, is contributed 

by a descendent field ( i.e., the a, b, c coefficients in (3.6) need not all be non-zero). 

Also, we cannot in general define all of the primary fields to be self-conjugate and 

at the same time maintain their status as primary fields under the extended algebra 

of the RCFT. 

- -‘In large part, we know the analytic structure of the chiral blocks. Each block 

is a branch of an analytic function of x with the possible branch points at 0, 1,oo. 
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.- 

-- 

- 

Furthermore, we know the singularity structure at each of these points. If we 

analytically continue the functions F:(x) about a closed path encircling the branch 

point x = c but no others, .it is clear from (3.6) that we will pick up only a 

phase: Pi(x) --) e2~~(~:-d3)~$+ Th’ is operation of analytically continuing about 

- a closed path is known in the theory of differential equations as a monodromy 

transformation. Defining M, to be the monodromy operator about x = c, the result 

above translates into the statement that M,, acting on F,, can be represented by 

a diagonal matrix, M,, 

.M,(F,) = M,F, = 

0 

*. (3.7) 

e2ai(d:--y/3) 

. . 
- We can also determine how the functions Fi transform under A!.!, where d is another 

of the points O,l, 00. To do this we use the matrix C,d to express FE in the Fd 

basis in which Md is diagonal; perform the monodromy transformation, and then 

transform. back to the F, basis, i.e., -- - 

Md(F,) = Md @Fd) = ‘$MdFd = c,dhtd(c:)-lF, . tw 

If we analytically continue Fo, say, about a closed path not containing x = 0, 1, 

or 00 such as Cr in figure 1 we will, of course, leave Fo unchanged. This result is 

-Ealtered if we deform the contour on the Riemann sphere in a region where Fo is 

analytic. In particular we can deform Cr in figure 1 to C2 which clearly represents 
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a successive operation of MO, Ml and AI,. Thus, we have the identity 

- 
&0(~1(~0(~0))) = Fo (3.9) 

which, using (3.8), becomes 
- 

C,-M,(CP’)-lC;Ml(G)-lMo = I , (3.10) 

with I the N x N identity matrix. 

As it stands, (3.10) is of little practical use because knowing the C matrices 

is virtually tantamount to having a complete solution to the theory, requiring as 

it does detailed knowledge of the chiral blocks and structure constants. We can, 

however, eliminate the C dependence from (3.10) by taking the determinant (fol- 

lowing Vafa [4]); This leaves det (M,MrMo) = 1 or, using the explicit expressions 

- (3% 
N 

Cc d;+d”,+di)=Ny (mod 1) . (3.11) 
i=l 

-- - 

For a given four-point function in a RCFT, (3.11) equates the dimensions of the 

primary fields appearing as intermediate states summed over the N independent 

chiral blocks and three independent channels with N times the sum of the di- 

mensions of the four external primary fields, up to some integer. The detailed 

knowledge of the structure constants, C;jk, dropped out of (3.11) with the depar- 

ture of the C matrices, but a remnant remains in the knowledge of which chiral 

blocks appear for a given correlation function. For this reason, we introduce the 

f&on rule coefficients, N;jk, which have been exploited to great success by Ver- 

linde [3]. Nijk is a non-negative integer denoting the number of independent ways 
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._ 

the two primary fields 4; and 4j can fuse in their operator product expansion to 

_  -- 
give ~~ or one of its descendents (4;dj - XI, Nijkdk). For the diagonal m inimal 

mode ls the Nijk are all either.zero or one depending on whether Cijk vanishes or 

not, because apart from the overall factor Cijk, the OPE of two primary fields 

- - (of the Virasoro algebra) fusing into a  third is completely fixed by the conformal 

symmetry. This is why, in particular, there is a  unique conformal block for each 

intermediate state primary field (once the factorization and external fields are spec- 

. __. ified). The Nijk are also either zero or one for the non-diagonal m inimal mode ls; 

W e  must be  careful in this case, however, to include all of the purely holomorphic 

fields of the mode l in the extended algebra used to define which fields are primary, 

in order to ma intain the one to one correspondence between primary fields and _  

chiral blocks [_8,9]. F  or a  general RCFT this one to one correspondence need not 

hold; there can be mu ltiple independent parameters specifying the coupling be- 

. . 
- . tween a  given three primary fields and hence more than one independent chiral 

block labeled by a  single intermediate state primary field (again for fixed external 

states). Nijk is just the mu ltiplicity of independent three-point couplings for & 4j 

-- - and 4k, and NijkNe,k is the corresponding number  of independent chiral blocks 

f:,,,,(x) with th e  intermediate state primary field &. 

W e  can now rewrite the sum over independent chiral blocks in (3.11) as a  

sum over different intermediate state primary fields mu ltiplied by the appropriate 

mu ltiplicities. For our generic four-point amp litude, (&$2&&), we then have 

- &Zes 

c Nl2iN34i(Al + A2 + A3 + A4 

Y (Nl2iN34i + Nl4iN23i + N13iN24i)di = 
(3.12) 

1) 7  .> (mod 
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which is precisely Vafa’s condition [4]. 

The derivation of (3.12) we have given above is essentially directly equivalent 

to that given by Vafa, although we have avoided any sophisticated mathematics, 

as advertised. The modular transformations on the punctured sphere (i.e., Dehn 
- 

- twists) of ref. [4] are just the monodromy transformations considered here. We have 

gained two minor benefits in the present derivation, however. First, we have seen 

quite explicitly how Vafa’s conditions are included in the constraints of crossing 

symmetry of four-point amplitudes given by BP2 (as we knew that they must 

be); In particular we see what information was lost in taking the determinant 

of the original matrix equation to reach (3.12). Second, we have traded Vafa’s 

- somewhat mysterious identity between certain sequences of Dehn twists for two 

familiar results: that projective symmetry reduces the four-point functions in a 

-conformal field theory to functions of a single anharmonic ratio [z in (2.12)], and 
. 

- 
that we can deform the contour Cl to C2 in figure 1 without changing the result 

of analytically continuing around it. 

-- - 

An obvious question to ask is whether we can obtain any new relations by 

similar examinations of higher point functions on the sphere. We argued in section 2 

that crossing symmetry of four-point amplitudes guarantees the same for higher 

point functions. We have seen above, however, that (3.12) represents just a small 

part of the crossing symmetry constraints; It is not clear a priori whether the higher 

point analogues of (3.12) might not give some complimentary information. The 

analysis given above is easily extended to M-point amplitudes. These are functions 

eflM - 3 independent anharmonic ratios whose singularity structure is once again 

known from the appropriate OPE’s. We will not present the computation here, 
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but the result, 

c 
blocks 

d;, + di3 . . . di,M-((M-4)&-):n, 
j=l 

0 (mod I>, (3.13) 

,- 

in fact gives no new constraints on the conformal dimensions not already contained 

in (3.11). Th e only complication which arises in demonstrating this is determining 

which particular combinations of constraints of the form (3.11) reproduces (3.13) 

(we remind the reader that there is an a prioridifferent condition of the form (3.11) 

for each nonvanishing four-point amplitude). 

Finally,let us note in passing that the duality matrices, C,d, which we have 

eliminated from (3.10) t o obtain Vafa’s constraints, are treated as the principle 

variables of interest (in place of the chiral blocks) in the recent systematic formu- 

lation of “modular geometry” advanced by Moore and Seiberg [5]. They examine 

the consistency conditions these matrices must satisfy if all amplitudes in a RCFT 

are crossing symmetric and factorize properly. For example, it is clear from the 

analysis we have given of the four-point functions that for consistency we must 

have, e.g., CiCrW = Corn [c.f., (3.5)]. Moore and Seiberg have found a complete 

set of such consistency conditions; unlike the full crossing symmetry constraints of 

BPZ, new conditions on the duality matrices arise from examining five-point func- 

tions. Much of the considerable effort (and accompanying mathematics) involved in 

-tEir treatment enters in defining and manipulating chiral vertex operators. These 

allow one to relate the duality matrices involved in different amplitudes and thus 
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define precisely the notion that the matrices relating 

k 

and P-4 
3 

i 1 
for example, are the same as those relating, 

The same framework applies for arbitrary genus g amplitudes as well, the chiral 

blocks in this case are also functions of 39-3 complex moduli. In appropriate corners 

of moduli space these reduce to chiral blocks on the plane. For example, the chiral 

. -block with intermediate state $j for the two-point amplitude (&(Z)&(W)) on the - 

torus becomes a four-point chiral block on the plane for (&&$j4j) in the limit Im 

(T) + oo. Alternatively, in thelimit that z + 20, the residue of the most singular -a- 

piece of the.chiral block is the character xj which is a block for the one-loop vacuum 
-. - 

amplitude. It is these correspondences which underlie Verlinde’s results relating 

the behavior of the characters in a RCFT under modular transformations to the 

fusion rule algebra and duality matrices on the plane [3]; this has been shown 

clearly and quite explicitly in [7]. 

- 
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4. INEQUALITY. CONSTRAINTS ON CONFORMAL 
DIMENSIONS OF PRIMARY FIELDS 

- Consider the constraints (3.11) or (3.12) for the special case of a four-point 

amplitude in a RCFT with only a single chiral block contributing, 

do + 6-T d, + M = y MEZ . (44 

In this case we must have Fe(x) = Fl(x) = F,(x) (or atleast equality up to a 

constant factor). We know the behavior of this function [call it ‘F(x)] at each of 

the points, x = 0, l,oo, at which it is not analytic [see (3.6)], and this fixes its form 

to be 

F(x) = Xdo--Y’3(l - X)d1-7’3 UO + UlX + . . . UMXM 
> . . (4.2) - 

M=y-do-dl-d, . 

Here the ai are coefficients undetermined by the known analytic structure and 

M is fixed by the condition that F(x) - (l/~)~~-y/~ as x + 00. We now see 

.-- - the significance of the integer M appearing in the condition (4.1) obtained from 

crossing symmetry: it is the order of the finite polynomial in the expression (4.2) 

for the chiral block. Furthermore, M cannot be arbitrary. If F(x) is to have the 

correct analytic structure about x = 0, M must be non-negative. Thus, (4.1) in 

fact becomes an inequality which limits how big the intermediate state conformal 

dimensions can be for a given sum, y, of the external state conformal dimensions. 

- - Can we turn the general result, (3.11), f or an arbitrary (but finite) number, N, 

of chiral blocks contributing to the four-point amplitude into an inequality? To 
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extend the argument given above to this case we need some combination of all the 

chiral blocks which has simple analytic structure which we can identify. We have 

already introduced such an object in section 3, the Wronskian of the chiral blocks 

(c = 0,1,4, 

(4.3) 

The point of using a determinant is that it changes by at most some constant 

factor when we perform any linear algebraic operations on its rows or columns. In 

particular, given that Fo, Fl, and F, are linearly related, we know that WC)(X) K 

IV1 (x) 0; W,(X). We also know the behavior of the most singular part of W(X) 

as x + 0,l or 00 (it, of course, is regular elsewhere on the Riemann surface of the 

- blocks). For example, - 

W(x) = x ~i(d;)--fV/3y-N(N-1)/2 
(a0 + a1z + a2x2 + . . .) (4.4 

-- - 
as x + 0. The third factor in the exponent is just the number of derivatives 

appearing in a given term of the determinant (4.3). The expression for W(X) near 

2 = 1 is analogous to (4.4), while for large x we have 

W(x) M s 
0 

xi d,-N/3y+N(N--1)/z 

The derivatives with respect to x make W(x) less singular as x --+ 00 by powers 

of (l/x) but more singular as x + 0 or x + 1. The same logic which led to the 
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single block result (4.2) now gives 

W(x) i xci dd--Nl3y-N(N-l)/2(1 _ x)Ci df--N/3Y--N(N--1)/2(ao + ulx + . . . UMxM) 

(4.6) 

- M=Ny+N(N--j/2--e(d;+d;+d,) MEZZO . (J-7) 
I=1 

Once again M must be a non-negative integer for W(x) to exhibit the correct 

behavior about x = 0. Thus we have not only reproduced the result (3.11) but 

turned it into an inequality. In terms of the fusion rule coefficients, the sum of 

intermediate state dimensions over the N-independent chiral blocks is as before in 

(3.12). 

In any of the diagonal minimal models, the most singular contributions to the 

conformal blocks in a given channel are made by Virasoro primary fields, each with 

-a distinct conformal dimension. As a consequence, W(x) is of precisely the form . 
- 

given in (4.6) with us, a, and C,” ai all non-zero. In a rational conformal field 

theory,this is not necessarily the case; W(x) may not be as singular as implied in 

(4.6) for arbitrary ai and so the relevant inequality may be stronger, i.e., M 2 
-- - 

some positive integer. For example, in a RCFT it is possible, as we have indicated 

before, to have multiple independent chiral blocks contributing to a particular four- 

point amplitude which all involve the same intermediate primary state, or possibly 

different primary states all with the same conformal dimensions, and hence share 

the same leading singularity structure. In this case, the most singular contributions 

to the chiral block cancel in the determinant defining W. In our generic four-point 

a@litude, (+162d’3$4), th e number of independent chiral blocks in a given channel 

with a particular intermediate primary of dimension d” was given in (3.12). Let us 
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use a shorthand notation for the sum of these multiplicities over different primary 

states 4; with the same dimension Al, suppressing the dependence on the external 

states, 

- 
N,e ZE C Nl2; N34i; Nf G C Nl4i N23i; N& E C Nl3i N24i . (4.8) 

Ai=Ao Ai=Ae Ai=At 

Consider, now the expression for W(x) defined in a given channel, WC(x), [i.e., 

(4.3)]. If N,” is bigger than one, then N,” of the column vectors in the definition of 

WC have the same leading singularity structure. Without changing WC (aside from 

a constant) we can take linear combinations of the Nf columns such that the most 

singular term in the expansion for the Fe’s cancels in N,” - 1 columns, the next 

most singular is absent from N,” - 2 columns, and so on down to the last column 

in which wehave canceled off the N,” - 1 most singular terms. We can perform the 

same procedure on other sets of columns corresponding to other N,’ > 1. We then 
. . 

- find that W( ) b t x a ou x = 0, for example, is not so singular as implied in (4.4), 

but at most given by 

-- - 
W(x) M x xi N~di-N/3Y-N(N-1)/2+Ci No(,liO-l)/2(uo + ulx + . . .> , tw 

as x + 0. Thus considering the behavior in all three channels we find a stronger 

inequality than (4.7). In terms of the fusion rules, 

Ny+N(N-1)/2=M+xN&Ae 
, 

c 1 ;[N;(;: - l)]; 
(4.10) 

M>K> - M,IGZ>O . 
c=O,l,m i 

TIE lower bound for K may be greater than given in (4.10) if the leading contrib- 

utor to a chiral block is a descendent rather than a primary field, (and hence the 
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singularity in that channel is softer than naively expected) or if Nf > 1 and there 

are other blocks contributing with dimensions A = A, + n, n E 2 5 N,” + 1. The 

argument leading to (4.10) is easily extended in these cases. 

The inequalities we have derived are quite simple to impose in any RCFT for 
- ,l) - 

which we know the fusion rules and conformal dimensions. Let us consider some 

simple examples to see, in particular, how stringent the inequalities can be and 

qualitatively what information- they carry. Consider first a single free boson. The 

generic four-point amplitude of primary fields is 

> 4 

A= eikl~(zl)eikz~(z;)eik~~(Z3)eik4~(z4) 
, c 

Ici=O. . (4.11) 
i=l 

The conformal dimension of eikid * is x7”/2, and the structure constants just enforce 

. - momentum conservation in three-point functions. In each channel only a single 

conformal block appears. The primary fields which are the intermediate states in 

these blocks are ? - 

yp ,-hannel : ,i(h+kz)4 
-- - 

d‘17?channel : ,i(k1+4)-$ (4.12) 

Thus (4.7) reduces to, 

M = i C kf-i((kl + k~)~+(lcl + Ic~)~+(kl + 1?3)~) = -ICI C iii = 0 . (4.13) 

- 

The inequality given in (4.7) is saturated for this case. This fact implies, according 
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to (4.2), that the conformal block is given by, 

(4.14) 

- _ To put this in a more familiar form we can use (2.11), (2.12) and (2.18) to obtain 

~ the holomorphic half of the full four-point amplitude in (4.11), 

A A 

l-u 

zi _ Zj)ki.b . 

__. i<j 
(4.15) 

Notice-that we have obtained the four-point amplitude purely from the knowledge 

of the fusion rule algebra and the conformal dimensions of the. states involved 

(including intermediate ones). In general, any four-point amplitude depending on 

a single chiral block can be determined in the same fashion up to a finite number of 

-parameters (the coefficients ai in 4.2). We will further exploit this fact in section 5. 

- 
Finally, note that if we had chosen self-conjugate primary fields (sines and cosines 

in place of simple exponentials) it would have proved inconvenient; the amplitudes 

would be more complicated and two conformal blocks would contribute to each. 

-- - 
Consider next the first of the unitary minimal models, the Ising model. There 

are three primary fields of the Virasoro algebra 1,0,1c, with dimensions 0, l/16, 

l/2. The fusion rules are q!$ - I; ou - I + +; $g N r~ and the obvious ones 

involving the identity, I. The nontrivial four-point functions are (q!+&!~), (q!q!~aa), 

(aaaa). 0 1 n y a single conformal block contributes to each of the first two. In 

these cases (4.7) gives 

- (@,!~q!$) : Ad= 4A+ = 2 
(4.16) 

(y!n,!wcr) : A4 = 2A+ = 1 . 
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Two conformal blocks contribute to (gogo), giving 

(aaaa) : M = 8A, + 1 - 3A+ = 0 . (4.17) 

Note that the Ising fusion rules and Vafa’s constraint (A4 E 2, unrestricted) alone, 

- - constrain A, and A, to satisfy 

2A4 E Z ,A+ = 8A, (mod 1) . (4.18) 

__. The fact that M 2 0 tells us considerably more, in particular if A, = l/16,3/16 

or 5/16, then A, can only be equal to l/2. 

Finally, a more general but equally simple example. Consider an RCFT which 

contains some self-conjugate primary fields 41 and 42 which fuse to only a single 

primary field, e.g., 4142 N 43. The amplitude ($I&&&) will be built from a 

-single chiral block. In two channels the intermediate primary state is 4S3 and in the . . 
- 

third channel it can only be the identity, 1. This follows because 4141 N I + . . ., 

$242 N I-+-, and by crossing symmetry the same number of blocks contribute 

to each channel (in this case one). Equation (4.10) gives 

o 2 M = 2(A1+ A2 - A3) , (4.19) 

so, in particular, A3 5 Al + AZ. This simple case illustrates the basic content 

of the inequalities we have derived: in any amplitude the average dimension of 

the intermediate state primary fields appearing in different channels must not be 

too large compared to the dimensions of the external states. If the external state 

di?iiensions are small, then some intermediate state dimensions can be relatively 

large only if others are small or there are many intermediate primaries appearing. 
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Finally, we should mention the work of Mathur, Mukhi and Sen which inspired 

our use of the Wronskian in the derivation of the inequalities given above. These 

authors examine the Wronskian determinant formed from the genus one characters 

of a RCFT (d erivatives taken with respect to the modular parameter 7) and use 

- - its known modular properties to find an inequality quite complementary to the one 

we have presented here, 

(4.20) 

Here n is the total number of primary fields in the RCFT, hi ‘their conformal 

dimensions (assumed distinct) and c is the central charge. The less restrictive 

version of (4.26) with ! an arbitrary integer was also given in Vafa’s paper. Unlike 

-the .inequalities we’ve derived from amplitudes on the plane, (4.20) is valid only for 
- 

a RCFT with a finite number of primary fields and gives only a single condition 

for any given RCFT. It does, however, constrain c which (4.7) does not. 

5. REVIVING THE CONFORMAL BOOTSTRAP -- - 

The constraints of Vafa, their generalizations given in the previous section, and 

the genus one constraints of Mathur, Mukhi and Sen provide convenient handles 

for directly studying the objects of most immediate interest in rational conformal 

field theories, the central charge, conformal dimensions and fusion rules of primary 

fields. They give us only partial information, however, and if our goal is the 

tEsification of all conformal field theories then we shall have to do better. The 

most popular line of investigation currently seems to revolve around the twin hopes 
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that: (1) RCFT ‘s can be completely classified using our detailed knowledge of the 

analytic structure of amplitudes defined on arbitrary genus Riemann surfaces and 

(2) that RCFT’s form an in some way natural, dense subset of all conformal field 

theories. The work of Moore and Seiberg mentioned briefly in section 3 represents 

- - the most explicit and systematic formulation along these lines to date. From a 

practical point of view, their results are much more complicated and involve much 

less convenient variables than the examples listed above, but one must expect this 

if we are trying to completely classify all RCFT’s. Unfortunately, however, their 

consistency conditions on the duality matrices are not sufficient in themselves to do 

this job. At best, they constrain-the values of conformal dimensions only modulo 

one and of c modulo eight, and thus do not include the inequalities of ref. [6] or 

those givenhere. This should not be too surprising in that the constraints of ref. [5] 

follow purely from consistency conditions on fitting chiral blocks together to form 
. . 

- . amplitudes. As BPZ showed, however, we have much more detailed knowledge at 

our disposal. All chiral blocks are built from conformal blocks which are completely - 

fixed (in principle) by the conformal symmetry. 

-- - 
As an alternative approach to the problem of classifying conformal field theories 

we would like to suggest that it is time to reexamine the conformal bootstrap of 

BPZ. The chief stumbling block involved is our lack of explicit expressions for the 

general conformal blocks. We will not remedy this situation here (unfortunately). 

Instead we confine ourselves to examining four-point amplitudes which are almost 

completely fixed by their analytic structure. In short, we will test the feasibility 

-ofemploying methods such as those discussed in sections 3 and 4 to attack the 

conformal bootstrap perturbatively. The basic trick will be to look at four-point 
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amplitudes with only a single conformal block contributing. As discussed in the 

- 
previous section these amplitudes are fixed up to a finite set of parameters [c.f. 

(4.2)], which can be further reduced if the amplitude has additional symmetry. 

We will then employ the explicit expansions of the conformal blocks discussed in 

- - section 2 to some finite order to completely fix these unknown parameters and 

thereby-find constraints on the allowed dimensions and central charges. We note 

in passing that many of the computations and manipulations used below have _ 

appeared, working towards a different end, in [19]. 

To-begin, we restrict our attention to conformal field theories which include at 

least one primary field, $J, such that the OPE of 1c, with 1c, contains only a single 

Virasoro primary (which must necessarily be the identity operator, 1) and its de- 

scendents. As in the previous two sections we will focus only on the holomorphic 

-degrees of freedom, imagining for example that we are considering a theory com- . . . 
- 

pletely symmetric in its holomorphic and anti-holomorphic parts. By assumption, 

onIy a single conformal block, F(x), contributes to the amplitude ($$q!$). In each 

“channel” the intermediate state appearing is the identity, do = dl = d, = 0. We 
-- - 

know, then, the form of F(x) completely from its analytic structure [cf., (4.2)], 

F(x) = x -4/371 - x)- @6(1 + urx + . . . uMx”); M=4S ) (5.1) 

where S is the conformal dimension of II, which we see must necessarily satisfy 

46 E 2. We can restrict F further by using the fact that the amplitude ($q!$$) 

i-s completely symmetric in its external legs and hence must be invariant under 

permutations of zr, ,752,~ and 24. Given our symmetric definition of the conformal 

_ 
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blocks this translates into the-condition, 

F(x) = arF(1 - Z) = o!,F(l/z) . (5.2) 

We have included real constants, cyr and (Y,, because the anti-holomorphic block 
_ - 

F(z)could contribute a compensating factor under the given transformation leaving 

the total amplitude invariant as required. If we call the undetermined Mth order 

polynomial appearing in (~.~),.PM(z), then (5.2) gives, 

,* - 

PM(X) = o&(1 - Xc> = @P&l/++ . (5.34 

PM(O) = 1 . (5.3b) 

(Y and ,B are-censtants (trivially related to crl and LYE) and (5.3b) serves to nor- 

malize P and guarantee that P includes no overall factors of 5 or 1 - x. In general, 

there are solutions only if cy = (-l)M and p = 1; there is no solution for PI. It is 

not difficult to prove that 

&(x) = 1 - x + x2 (5.4) 

P3(x) = 1 - ix - ix2 + X3 (5.5) 

and all higher order polynomials are sums of products of these two of the appro- 

priate order, 

I,J 
21+3J=M 

Thus, for example, P4 = P2, 2 P5 = P2P3 and there is a one parameter family of 

SdUtiOnS for Pf5,aP: +(I - a)P,". 
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Our strategy is now to compare the almost fully-determined expression for the 

conformal block [(5.1) and (5.6)] with h owever many terms in the explicit expansion 

for the conformal block (2.19) we have stomach to calculate. This computation 

simplifies for the case at hand (A; = S, i = 1,2,3,4; Ap = 0) and we give the result 

- - to fifth order here, 

F(x) = f&11x) = x-4/36(1 - x)+[l - ,126 1 + qx2 
[ 

262 3 62 9 __. + TX + (pc2 + llc) (5b2 + 2s + 2” + 20)x4 WV 

Here c is the Virasoro central charge. BPZ derive this expansion only up to order 

z2 but for arbitrary intermediate state [l]. The product of the two square brackets 

must equal P46 in our case, so we Taylor expand the first bracket and compare 
- 

the product with P46 order by order. The first few orders may be used to fully 

determine P4a [i.e., the U~J in (5.6)] f or small enough S, and subsequent orders 

serve to give c and rule out inconsistent solutions. 

-- - 
PI does not exist so there are no consistent solutions with S = l/4. Comparing 

(5.7) taking S = l/2 with P2 gives the order x2 constraint 1/2c = 1 or c = l/2. 

The coefficients of the higher powers of x must vanish (to agree with Pz), and 

this is indeed found to be the case for c = S = l/2 to the order we have given 

in (5.7). The Ising model has c = l/2 and a spin l/2 field which when fused 

with itself gives just the conformal family of the identity so we are certainly not 

suiprised to have found this solution. What is perhaps surprising, however, is 

that c = l/2 is the only consistent solution. That is if a conformal field theory 
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.- 

includes a dimension l/2 primary field which when fused with itself gives only the 

conformal family of the identity, then the central charge must be l/2 regardless of 

whatever the rest of the conformal field theory might be. This illustrates one of 

the strengths of the conformal bootstrap: we can learn a good deal from a single 

- - four-point amplitude without making any assumptions about the remainder of the 

theory. Note that a theory built by tensoring the Ising model with some other 

CFT is not a counterexample to the above result as might seem to be the case. 

This operation indeed leaves the Ising correlators unchanged and increases c, but 

the conformal symmetry is generated in the tensor product case by the sum of the 

individual stress energy tensors. There are then an infinite number of fields in the 

tensor product theory appearing in the $11, OPE which are primary with respect 

to this total-stress energy tensor. 

We proceed by substituting 6 = 3/4 into the product of the square brackets . . 
- 

-- - 

in (5.7) and equating this, order by order in x, with P3. In analogous fashion 

to the case above we find a single consistent solution, c = -3/5, which agrees 

with one of the nonunitary minimal models of BPZ. The minimal models are each 

characterized by a pair of positive co-prime integers p and Q, with central charges 

and allowed conformal dimensions of primary fields given by 

c = 1 _ 6(P - cd2 
Pq 

A,, = ~&--r,~--s = 
(‘p - sq)2 - (p - q)2 1 5 f I q - 1 . 

4P!l 7 - l<s<p-1 * 

w-9 

An algorithm for finding the fusion rules for these models is given in BPZ. One 
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finds, in particular, that the primary fields with dimensions 

Alp-l = A*-l,l = ;(p - 2)(q - 2) , (5.10) 

fused with themselves give only the identity operator. Thus each of the minimal 
- 

models must eventually appear in our current exercise. 

Equating P4 = P; with the expansion from (5.7) with 6 = 1 we find a new 

development. Matching the x ’ coefficients requires c = 1, which also guarantees 

that the x3 coefficients coincide, but for these values the coefficients of x4 and 

higher powers do not agree; Accordingly, there is no consistent solution for S = 1. 

This conflicts with the commonly held belief that the only Virasoro primary fields 

in the conformal field theory of a single free boson (which has c = 1) are the 

identity, the exponentials : ,W : , and 84. If this were indeed the case then 

-84 would be a dimension one primary field with [a~$] x [&$I N [I]. In fact, however, 

these are not the only primary fields. An infinite set of certain linear combinations 

of products of 4 derivatives are also primary under the Virasoro algebra and appear 

in the 84 x 34 OPE. The one of lowest dimension is : a3@j+ (&$)4 - 3/2d2dd2$ :, 
-- - 

- . 

of dimension four, accounting for why our assumption that [84] x [&j] fused only 

to [1] broke down first for the x4 term in the conformal block expansion. There are 

not enough Virasoro descendents of I and a$ to account for all of the independent 

combinations of C$ derivatives because not all of them are independent. That is 

there are Virasoro null states for c = 1 and A = iN2, N E 2 as can be seen from 

the Kac determinant formula. On the other hand, if we extend the Virasoro algebra 

to-include the generator 84, then the only primary fields under this extended 

algebra are I and the exponentials eilc$. 
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We can continue the present exercise for ever larger S; the results for the lowest 

few values which give consistent solutions to the perturbative bootstrap to order x5 

are summarized in Table 1. The minimal models are labeled by their (p,q) values 

(c.f. (5.8)). B g e inning with S = t the possibility for multiple solutions arises. 

- - Recall that P6 is determined by (5.6) up to a single free parameter. Comparing 

with (5.7) for S = 3/2 we can use the x2 coefficient to express this parameter in 

terms of c. Equating x3 coefficients turns out to give a redundant constraint but 

equating x4 terms gives a quadratic equation for c with the two solutions given in 

Table 1. There are no consistent solutions for S = $; as for S = 1, the solution 

valid to order x3 (in this case it is-c = 49) breaks down at order x!. Table 1 stops 

_ at S = 11/4 because Pl2 has two undetermined parameters and the expansion in 

(5.7) up through x5 is insufficient to fix both these parameters and constrain c. 

- . 
All of the examples of known consistent models appearing in Table 1 are mem- 

bers of the minimal series. The minimal models may, in fact, be the only solutions 

to the perturbative bootstrap in the class considered above which are consistent to 

all orders in the perturbative bootstrap, or there may be additional solutions for 
-- - 

larger values of S where the multiplicities of possible solutions are much greater. 

As yet we have not managed to settle this question; more detailed knowledge of 

the conformal blocks seems to be required. Unfortunately, a solution consistent to 

some finite order in the x expansion (such as the unknown c = -17 and c = 127 

entries in Table 1) might easily break down at some still higher order (as the c = 1 

and c = 49 cases did). These failed models may be healthy CFTs with additional 

prfmary fields appearing (as was the case for the free boson) or they might be 

unsalvageable. 
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So far we have only considered four-point amplitudes ($$r+!$) with $$ - 1. 

The methods described, however, have a much larger domain of applicability. Other 

amplitudes involving only a single conformal block may be examined in entirely 

analogous fashion. Again the amplitude is fixed up to a finite number of param- 

- - eters by the known analytic structure. These parameters are fixed by matching 

with the expansion of the conformal block in one channel to some finite order; 

matching higher order terms in the expansion or matching with the expansions 

of the conformal blocks for the other two channels then gives constraints on the 

central- charges and dimensions which may appear in a consistent CFT. 

To treat amplitudes involving not one but a finite number of conformal blocks 

- we can use the same methods, focusing not on the amplitude itself but on the 

Wronskian determinant made from the conformal blocks appearing in the am- 

-plitude. The Wronskian (as discussed in section 4) is again fixed up to a finite 
- 

number of terms by its known analytic structure. For example, assuming Ising 

model conformal dimensions and fusion rules the Wronskian for (gaaa) is com- 

pletely fixed [c.f. (4.6),(4.17)]; Ag reement with the conformal block expansions 

-- - 
requires c = l/2. In general, this analysis requires the expansions (to some order) 

for all of the conformal blocks appearing in the amplitude. Alternatively, we could 

use the method of ref. [6] to find ( a g ain up to a finite number of parameters) the 

differential equation satisfied by the conformal blocks, solve this in a power series 

for a given block and compare this with the expansion found from (2.19) for that 

block; this approach requires the expansion of only a single conformal block but in 

geiieral it must be known to a higher order in x because the differential equation 

involves more undetermined parameters than the corresponding Wronskian. 
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To some extent the conformal bootstrap may be treated perturbatively in 

RCFTs as well. If the extended chiral algebra is explicitly known, then the chiral 

blocks may be calculated order by order and the bootstrap handled just as above 

with conformal blocks replaced by chiral blocks. Alternatively, the reverse pro- 

- - cedure might prove feasible. That is, starting with some chiral block (or set of 

chiral blocks) we might, by examining conformal block expansions order by order, 

deduce which Virasoro primaries contribute and hence learn about the extended 

.-. .-. chiral algebra. 

Finally, we are not limited to examining a single amplitude and constrain- 

ing the central charges consistent- with it; we can deduce a great deal about the 

- rest of the operator content as well. For example, let us return to the ampli- 

tude ($q!$&) with r+!$ - I. F or any primary field 4 in the theory, the amplitude 

(~(Zl>~(~2>~(~3>~(~4)) wi11 b e nonvanishing; even if the $4 OPE is entirely non- 

- . 
singular we still have ($$&) = ($$)($d) # 0. In addition, in the “0" channel 

only a single conformal block can contribute represented by the diagram, 

and so the amplitude completely factorizes in its holomorphic and anti-holomorphic 

parts. Accordingly, only a single chiral block appears in the cross channel (“1” or 

“co”) but this might include any number of intermediate state Virasoro primary 

fields with conformal dimensions differing from each other by integers. Let us group 

all-of the candidate primary fields in the theory into families, {d;}, such that each 

member of the jth family has dimension Ai modulo 1, and Ai # Aj modulo 1 for 

41 



any two different families. Further, label the primary field in the jth family with 

the least dimension (which we take to be A;) ~$4. In a sensible theory each Ai is 

finite so a q+p exists for each family; if several fields have dimension Ai we take any 

one of them to be 4:. Now consider ($$4pqSp). As noted above, in the 0 channel 

- - only the conformal block of the identity contributes; in the other two channels only 

primaries within a single family, say { $j}, can contribute. The leading singularity 

of the amplitude as x + 1 or 00 is contributed by the intermediate state (or states) 

__. with least dimension which we will denote 45 with dimension Ai + k, k E 2 2 0. 

The singularity structure fixes the single block to be of the form 

F(&; x) = x -7/3(1 &)d-7/3(1 +UlX + -UMX")~ , (5.11) 

+/ = 2(Ai + 6) ; d=dl=d,=Aj+k 
(5.12) 

M=MfG2(Ai+S-Aj-k) . 

. . 
- . At this point it seems that M;” could be any positive integer, allowing an 

infinite set of values for Ai, but this is not the case. To see this we need to 

consider ($q!~q$#). Th ’ e intermediate primary state in the 0 channel is again I; in 

-- - the cross channel only one family of primary fields may contribute and this must 

be (4;). Furthermore, the member of (4;) which contributes to the amplitude 

with the least conformal dimension is clearly 4: so we have F(q$; x) of the same 

form as (5.11) with 7 = 2(Aj + k + 6); d = Ai and 

M=MfE2(Aj+k+S-A;) . 

The sum of (5.12) and (5.13) gives us the necessary restriction - 

M;+M;=46 . (5.14) 

(5.13) 
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Since the M’s must be positive integers there are only 4S possible choices for Mf. 

We cannot similarly restrict the value of a generic MT because c$F need not appear 

as the leading intermediate state primary field in any amplitude of the theory. 

For each value of M;O we can compare (5.11) with the appropriate conformal 
- 

block expansion to fix the ui coefficients and the allowed values of Ai. The am- 

plitude is symmetric under the interchanges z1 H z2 or z3 ts 214 which translates 

into 

This cuts the number of independent coefficients in (5.11) in half, To proceed we 

_ need the conformal block expansion for 

Using the definition (2.19), th is is found to quadratic order to be 

f$+,d&) = ~-“~(l - x)~-~/~ 1 + (d - 6 - A)x+ 1 
L 

$@-+A-d)(J+A-d-1)+:&A )21+O(ii)] ) (5w 

where we have pulled out the same factors as in (5.11) in order to facilitate a 

direct comparison. To illustrate the method, consider the first case in Table 1, 

S = c = l/2. F rom (5.14) the possible values for Mr are 0,1,2. M;” = 0 requires 

-thXt all of the coefficients in (5.16) vanish, which to second order gives A = 0 and 

d = S. This is just the case C$ = I, which of course tells us nothing new. MF = 2 
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implies [c.f., (5.14)] that th e intermediate state in the 1 and 00 channels is the 

identity which in turn requires 4 = $. Th e remaining possibility is Mf = 1. For 

this case the polynominal in (5.11) is [making use of (5.15)] 1 - 3~. Comparison 

with the x coefficient in (5.16) g ives d = A; setting the coefficient of x2 to vanish 

- - then fixes A = l/16. Th is we recognize as the spin field, g, in the Ising model. The 

possibility remains of additional fields, 4’ with dimensions l/16 + k, k E 2 > 0. 

But we know from the Ising model solution that the conformal block fi~$,~~ is equal 

to the conformal block in the cross channel f+o,$,a with cr as the sole intermediate 

primary field. These functions depend only on c, A and S and so we have learned 

that no primary fields of dimension l/16 + k appear in our amplitude, hence they 

- do not appear in the $4 OPE. But then at least one of these operators must appear 

as leading intermediate primary in (r+!$@@) and hence have Mk = 0, 1,2. This 

.contradicts Ak = l/16+ k, h owever, and so none of these fields can be present. I, $ 

- and g are the only primary fields in the theory and, as we have seen, they satisfy 

the Ising model fusion rules. That we may regenerate a complete conformal field 

theory starting from a small piece is a deep and amusing feature of the conformal 

-- - bootstrap. 

The perturbative approach to the conformal bootstrap certainly requires more 

effort to apply then do the simple constraints described in sections 3 and 4. In re- 

turn for this we receive much more detailed and explicit information. For example, 

all of the information in the Kac determinant formula, which determines the spec- 

trum of dimensions in minimal CFTs, is generated order by order in the bootstrap 

exGcises considered above. At the same time we have explicitly determined some 

of the four-point functions of the theory. The manipulations we have employed, 
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in fact, provide the simplest means for calculating some four-point functions (and 

do not require knowledge of an operator representation, null states, etc.). As a 

final example of this, consider the correlation function of energy momentum ten- 

sors (TTTT) for arbitrary central charge. It is easy to show that the functional 

- - form in (5.1) is still valid for correlators of quasi-primary fields such as T(z) (that 

is, fields primary under projective transformations but not the full Virasoro alge- 

bra). For this case S = 2 and the unknown polynominal, by symmetry, must be 

Pi = uPi + (1 - u)P,“P2, [using (5.3)-(5.6)]. The parameter, a, may be fixed 

in terms of the central charge c by comparing the first few singular terms in (5.11) 

with the result obtained using only the singular pieces in the TT OPE, 

v4w4 = qz ” w)4 + (z I,)zT(“) + (z: ,)m4 - (5.17) 

_ The-final result for the holomorphic amplitude (with the factors in (2.11) restored) 

- . is 

(T(~l)T(z2)T(~3)T(~4)) = (g(zi - zj)m4’3) cxm8i3(l - x)-8’3 (5.18) 
.--- [1tx8+ (: ) $6 (x2+x6)- (:+4)(x3+x5)+ (:+3)x4] . 

Of course we could have obtained this result directly from the mode expansion 

for T and the Virasoro commutation relations but this would require considerably 

more effort and involve a correspondingly higher probability of error. 

6. DISCUSSION 

- - In sections 3, 4 and 5 we have obtained a number of results from reexamining 

conformal field theories on the plane. These, and the methods involved, should 

. 
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further our understanding of known CFTs, prove useful in calculating some ampli- 

tudes and hopefully shed light on the classification of all CFTs. The inequalities 

of section 4 provide stringent constraints on the conformal dimensions and fusion 

rules in any new candidate rational conformal field theories. The perturbative 

- -treatment of the conformal bootstrap, on the other hand, might lead to new non- 

rational .CFTs - a class of theories which remains basically unexplored. To push 

this method further will require the conformal block expansions to much higher _ 

order than we have computed for the “feasibility study” of section 5, but there is 

no real-obstacle to carrying this out (preferably by computer). 

We must emphasize that the methods we have described are no substitute for 

- knowing the conformal block functions. To quote BPZ, “. . .the computation of the 

conformal blocks. . .for general values of A,‘s is the problem of principle importance 

-for the conformal quantum field theory.” [l] K nowledge of the conformal blocks 
- 

would permit us to completely solve the exercises of section 5 which we have 

only nibbled at with the perturbative approach. Despite the lack of progress in 

this direction we do not feel that the determination of the conformal blocks is 
-- - 

intractable, especially given all that we already know about them. The general 

conformal block is a function of c, five conformal dimensions and the anharmonic 

ratio x which we know how to calculate order by order in a singular expansion 

about x = 0. In addition, we know the exact function of x for some specific values 

of the dimensions and c. For example, for the ($$u+!$) block considered in section 5 

we know F(x) up to a finite number of parameters for an infinite set of values {c, 6}, 

naiiiely, those corresponding to the minimal models [c.f., (5.8), (5.10)]. It should 

be possible to find the function which interpolates between these points. 
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Even the restricted problem of classifying RCFTs probably requires some de- 

tailed information of the general conformal blocks. For example, given a solution 

to the reconstruction schemesof ref. [5] or ref. [6], (th a is a well-behaved collection t 

of crossing symmetric chiral blocks which may be extended to N point functions 

- - on arbitrary genus surfaces), the question remains whether the chiral blocks are 

in fact composed of crossing symmetric conformal blocks. One must explicitly 

find the extended chiral algebra and check that it indeed contains the Virasoro 

algebra and also that the factorization of amplitudes in terms of descendent fields 

behaves properly. It would be extremely interesting to learn what functions can 

be valid chiral blocks. Perhaps alzy function of z with branch points restricted to 

_ z = ~0, 1,oo is a chiral block in some RCFT (or quasi-RCFT). Or, at the oppo- 

site extreme, perhaps all RCFTs can be represented as tensor products of minimal 

models (nonunitary ones included); the number of possible modular invariant com- 
. . 

- . binations and symmetries which can be generated in this class of theories is at least 

very large, as has been demonstrated for tensor products of Ising models in the 

context of string theory [13]. ’ 

-- - 
We conclude with a comment on one of the principle motivations for studying 

the classification of CFTs, the hope that it will further our understanding of string 

theory. CFTs form the building blocks for the possible classical vacua of string 

theory, which are already known to constitute an enormous set. The most im- 

portant problem in string theory is to understand the dynamics which may select 

between these possible vaccua. Definitive progress in this direction has been virtu- 

-aKy nonexistent (despite much effort) and is likely to remain so as long as we lack 

the knowledge of the full space in which the dynamics operates and a convenient 
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parameterization of it. This space of kinematics must at least include all of the 

- 
unitary CFTs with integer c, but likely it will have to be expanded well beyond this 

class of solutions to provide a smoothly parameterized space on which the phys- 

ically relevant dynamics might seem natural (and therefore be guessed). It may 

- - eventually prove prudent to relax some of the conditions on CFTs to obtain a more 

manageable space of string kinematics, in which case a true classification of CFTs 

will be unnecessary. For example, the general conformal blocks might themselves _ 

provide us with the necessary space; amplitudes in the full string theory may be 

expressible as weighted sums over all of the possible conformal blocks which might 

appear. 
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Note added: After completion of this work we recieved ref. [20] which also 

derives theinequality constraints that we have given here in section 4. In addition -- - 

this brought to our attention ref. [al] w ic includes a version of these constraints h h 

for the particular case of SU(2) WZW models. 
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1 S 1 Possible c 1 Known Examples 

I I 1 1 
2 F I (3,4) minimal (Isingj 

I I 3 ’ 
4 2 1 (3,5) minimal (nonunitaryj 

5 
4 

yg 
7 (3,7) minimal (nonunitary) 

3 7 
z i-G (4,5) minimal (tricritical Ising) 

3 
z 

-21 
4 (3,8) minimal (nonunitary) 

2 p (3,lO) minimal (nonunitary) 

9 7 -351 
33 (3,ll) minimal (nonunitary) 

9 ;I -17 ? 

Table 1: Some solutions to the perturbative bootstrap to order x5. 


