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ABSTRACT 
- 

We review Coleman’s wormhole mechanism for the vanishing of the cosmo- 

logical constant. We find a discouraging result that wormholes much bigger than 

the Planck size are generated. We also consider the implications of the wormhole 

-. - theory for cosmology. 
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A wormhole is a microscopic contact between two otherwise smooth regions of 

space-time. It is small and costs little action but can connect arbitrarily distant 

regions. Evidently, wormholes provide a connection between the largest and the 

smallest distance scales encountered in physics. Such a connection may be neces- 

sary to solve the cosmological constant problem. ’ Recently, Coleman2 and Giddings 

-and Strominger3 considered the effect of wormholes in the Euclidean path integral 

(EPI) of quantum gravity. Similar ideas were explored by Banks.4 Remarkably, it 

was shown that the entire effect is to modify coupling constants and to provide a 

probability distribution for them. Coleman has advanced an even more remark- 
_- able claim5 that the probability for the cosmological constant is overwhelmingly 

peaked at zero. 6 We are going to review Coleman’s arguments for determination 

of the cosmological constant and other fundamental parameters and discuss the 

implications of his theory for physics of the early universe. 

1. .I /!. 
- The basic assumption is that the EPI of quantum gravity is dominated by 

geometries which consist of some number of large universes connected by wormholes 

of Planck size. To begin with, we will treat the wormholes as dilute so that their 
. . 

- . emissions are independent. Let ( JQx d enote the expectation value of M in a large 

universe of spherical topology without wormholes and with parameters X. Now 

consider the effects of wormholes. Suppose that the two points connected by a 

wormhole are z and x’. If 4;(x) forms a basis of local operators at x, we assume 

-. - that the effect of a wormhole is to insert the expression iCij&(~)$j(x’) into the 

EPI, where Cij - exp(-Sw) and S, is the wormhole action. It is important to 

distinguish wormholes from the ordinary processes whose amplitudes fall off with 

distance: since wormholes ‘short circuit’ space-time, the coefficients C;j do not 

depend on x and x’, at least when the two points are distant. The sum over any 

number of wormholes attached to one large universe exponentiates to yield 

- - 

where J dg denotes EPI over smooth metric and all other fields in one universe. If 
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I(g, A) = Xi J dx$i, th is can bemanipulated into the form 

(2) 

where Dij is the inverse of Cij. Similarly, we can take into account processes 

involving additional large universes ( figure 1 ). Each one gives a factor X(X+a) = 

J ds exd-Q, X + 4) in the a-integrand. The combinatorics again exponentiate 

giving 

(M) = $Jdnexp (-kDij,iaj> exp (Jdg’e-l(gr>A’m)) /dgMe-l(gjA+a) (3) 

where N is a normalization factor. This can be written as 

-which implies that any expectation value is a weighted average over expectation 
- 

values in ordinary universes without wormholes, with couplings X + Q. The same 

formula would result for an ensemble of worlds with a statistical distribution of 
. . 

- coupling constants. If p is not peaked sharply, we have lost power to predict 

measurable parameters. 

Do wormholes create non-localities? Yes, but only the familiar ones, associated 

with space-time independence of all the coupling constants. Since Eq. (4) has a 
-- - 

single overall integral over ai, wormholes equalize the couplings in all regions of 

space-time including the large universes which would otherwise be disconnected. 

To calculate p(o) in Eq. (4), we need to know X(X + (Y), the EPI in a large 

universe without wormholes. Let us compute the effective action in a smooth 

universe with metric gij by integrating over fluctuations of all the fields: 

I’=~d4x&j(h-~R+aR~~c~R’bcd+bR~~R.1+cR2+...) (5) 

Por<implicity, we assume that A, l/G, a, etc., are linear functions of the o’s. If 

we approximate I’ by the first two terms, then the variational equation is R;j = 
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8rGAg;i. Its minimum action solution is the 4-sphere whose radius becomes large 

as A + 0. Therefore, let us restrict I to large 4-spheres of radius r: 

Ar4 - &r2 + A1 + $ + . . . 
> 

(6) 

-For small A, I has a stationary point at p2 = & with I’(T) M -& + yAl. 

Coleman suggests that this saddle point dominates the EPI in one large universe. 

Then, X z exp(-I’(r)) and 

p=~exp(-~D,nia,)exp(exp(~--~Ai) +&-- yA1) (7) 

The cosmological constant problem is solved since the absolute maximum of this 

function occurs at G2A = 0. This defines a surface in the a-space. On this surface 

.tlie probability depends infinitely strongly on the value of Al. Is there anything 

-- - 

that prevents Al from being driven to --co ? Let us suppose that each ai is bounded 

by strong effects due to violation of the dilute wormhole approximation. Indeed, 

the shifts of parameters induced by wormholes of size a are proportional to their 

density in space-time. When density becomes comparable to 1/a4, wormholes 

pack space-time densely and we.assume that further wormholes of this size ca.nnot 

appear. This seems to put a bound on the shifts of parameters introduced by 

wormholes. However, there is a loophole: we have overlooked the contributions of 

the wormholes which are much bigger than the Planck size. One might think that 

they are suppressed by a large action: the eigenvalues of D;j which correspond to 

large wormholes are enormous. However, the other terms in (7) are so singular 

as A + 0 that no finite Dij can restrict the variation of the o’s. In addition, on 

purely geometrical grounds, a high density of small wormholes does not prevent the 

large ones from appearing ( figure 2 ). Thus, if Planck-size wormholes pack space- 

time densely, then much bigger ones appear to further shift A1 until they become 

dense, and so on. Eventually, we are forced into an unphysical conclusion that 

wormholes of macroscopic sizes must be generated. Although these effects are best 
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addressed in a renormalization group framework, our qualitative discussion casts 

some doubt over the consistency of Coleman’s saddle point analysis. Assuming the 

exponentially large contribution of each 4-sphere as A -+ 0 solves the cosmological 

constant problem, but also leads to the unpleasant side effect of creating an infinite 

driving force on wormholes of all possible sizes. This suggests that the Euclidean 

de-Sitter space (the 4-sphere) is unstable with respect to wormhole fluctuations. 

Undoubtedly, we need a better understanding of the EPI in a large smooth universe. 

Perhaps, if this quantity has a power law rather than the exponential growth as 

A + 0, the troublesome macroscopic wormholes can be avoided. 
. _-. 

Although the present version of the theory may be incomplete, we find the 

basic set of ideas very attractive. Ignoring the possible difficulties outlined above, 

we are tempted to test these ideas on other issues, such as cosmology. It will be 

disappointing if the theory truly predicts nothing rather than something: a cold 

. - universe devoid of matter and energy. We must hope that there is some number of 

universes whichhave undergone an interesting cosmological development. To study 

generation of heat, we include a scalar field 4 with a double-well potential V(4)'. 

-. . Now there are 2 Euclidean saddle points: the bigger (smaller) 4-sphere is relevant to 

nucleation of the universe in the lower (higher) well & (&). Eventually, tunneling 

from $a to $a, accompanied by generation of heat, takes place in the classically 

allowed region. Therefore, a warm (cold) universe can be recognized in the EPI as 

-. - the smaller (bigger) 4-sphere. In analogy with figure 1, we assume that the EPI is 

dominated by networks of large and small bubbles connected by wormholes. One 

likely outcome of the theory is that wormholes drive both V( &) and V(q5b) to zero. 

Then there can only be cold universes. We have argued7 that there should also 

be models where only V(#,) is sent to zero. Under these circumstances, there is a 

finite number of warm universes in contact with an infinity of cold ones. Due to 

this contact, V(&) = 0, which implies that the cosmological constant in the warm 

universes vanishes. The details of this scenario may vary depending on the specific 
- 

mechanism for inflation. However, the idea that the cosmological constant in our 

warm universe is driven to zero by contact with an infinity of cold universes can 
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be quite general. 

Acknowledgements: This talk is based on joint work with T. Banks7 where the 

difficulty with the large wormholes was first mentioned. It was suggested to us by 

V. Kaplunovsky. The present form of the argument was inspired by conversations 

with S. Weinberg. Conversations with M. Wise are also gratefully acknowledged. 

REFERENCES 

1. A. Linde, Phys. Lett. 200B (1988), 272 

2. S. Coleman, Nucl. Phys. B307 (1988), 867 

3. S. Giddings and A. Strominger, Nucl. Phys. B307 (1988), 854 

4. T. Banks, Santa Cruz preprint SCIPP-88/09 

-5. S. Coleman, Harvard preprint HUTP-SS/A022 

6. The idea that the probability for the cosmological constant is peaked at zero 

appears in an earlier paper by S. Hawking, Phys. Lett. 134B (1984), 403 

. . 7. I. Klebanov, L. Susskind and T. Banks, SLAC-PUB-4705 
-. / . 

FIGURE CAPTIONS 
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1) A number of large Euclidean universes connected by wormholes. 

2) A large wormhole with small wormholes attached to it. 
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Fig. 1 
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Fig. 2 


