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ABSTRACT 

We argue that supraluminal correlation without supraluminal signaling is a 
necessary consequence of any finite and discrete model for physics. Every day, 
the commercial and military practice of using encrypted communication based on 
correlated, pseudo-random signals illustrates this possibility. All that is needed are 
two levels of computational complexity which preclude using”a smaller system to 
detect departures from “randomness” in the larger system. Hence, the experimen- 
tal realizations of the EPR-Bohm experiment leave open the question of whether 
the world of experience is “random” or pseudo-random. The latter possibility 
could be demonstrated experimentally if a complexity parameter related to the 
arm length and switching time in an Aspect-type realization of the EPR-Bohm 
experiment is sufficiently small compared to the number of reliable total counts 

..- - . which can be obtained in practice. 

GENERAL ARGUMENT 

In any finite and discrete theory such as ours [l], any question as to whether a 
finite ensemble has a specific attribute can be answered “NO” or “YES.” Thus, with 
respect to any particular attribute and a well-defined (strictly constructive) compu- 
tational procedure, we can define an attribute distance relative to some reference 
ensemble by the number of computational steps it takes to bring the ensemble into 
local isomorphism with the reference ensemble. If we call the number of steps which 
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. increase the distance I and the number of steps which decrease the distance D, the 
attribute distance is I - D. If we take as our unit of time the computational step, 
this gives us the attribute velocity as I - D/I + D, which is obviously bounded by 
fl (I + D has to be greater than zero in a discrete and finite theory). Thus, any 
attribute and any computational procedure specify a limiting velocity. 

If we use such a theory to model physics, we must specify which attributes in the 
theory are to correspond to those physical attributes which specify a physical object. 
In general, these will specify different limiting velocities. Clearly the transmission 
of causal (i.e., physically effective) information between two physical objects will be 
limited by the minimum of these maximum velocities and can be identified with c, the 
physical limiting velocity. However, if we talk about the correlation or synchronization 
of a more limited set of attributes - for example, spin - this need not be limited 

- by the velocity of light. We conclude on general grounds that in any finite and 
discrete model for physics we can anticipate the occurrence of phenomena like the 
supraluminal correlations predicted by quantum mechanics and observed in EPR- 
Bohm type experiments [2]. Th’ IS should come as no surprise to computer scientists 
who know that in complex systems synchronization and correlation are not limited 
by the computational information bandwidth (transfer velocity). 

To see how this fact can be used to make an explicit computer model of supralu- 
minal correlation, we start by quoting Ref. [2], p. 49: 

“Consider (1) a system composed of a Universal Turing machine with a finite - 
memory, and (2) b’ a mary number generator G. Such a system is incapable of deciding 
whether or not the number generator produces repeating binary strings of length n 
whenever the memory is smaller than an amount m equal to n + log2 n. 

“Suppose that the Turing machine takes as input a particular substring of length 
n output by G, and we wish it to determine whether or not the number generator 
G is producing this substring repeatedly . . . . The Turing machine must consume an 
amount of memory equal to n in order to store the string; then, the computational 
space cost C, for any computation on the substring, including direct comparison with 
a second substring, is at least as great as C, for a count of the number of symbols n 
in the substring (log2 n). Thus, n + log2 n sets a lower bound on the computational 
space cost Cs(0) f or any algorithm which may be selected to make this decision. 

---- “It follows that the system cannot decide whether or not the target string has 

-- been produced if it has memory less than n+logz n. But this means (that) this system 
cannot distinguish between number generators which produce repeating strings and 
(those which produce) random numbers. Clearly (we have assumed that) the symbols 
in the repeating strings will occur with equal probability, as required for a random 
distribution. However, since this system cannot detect that a given string is repeating, 
it cannot detect that some string of cyclicity n is repeating. Thus, for systems with 
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‘+ less than n + log, n memory, a generator producing repeating strings of minimal 
. cyclicity n cannot be distinguished from a generator producing random numbers.” 

This fact is the basis for modern commercial and military encryption 
systems [3]. 

As a practical example, suppose you are in Tokyo and have a colleague in London, 
in these space-like separated regions (i.e., your separation remains space-like in any 
Galilean frame connected to your common frame by a Lorentz transformation) each 
of you receive simultaneously an encrypted message from your home office in Chicago. 
The encryption uses a pseudo-random sequence of bits that cannot be decoded with- 
out using a more powerful computer than the computer in Chicago needed to send the 
message, yet you and your colleague, having the appropriate key number, need only 
a simple wallet card computer to decode it. Modern computer times are such that 
each of you has the information in a time less than the velocity of light would allow 
you to communicate with each other. This gives a more accurate correlation than 
implied by quantum mechanics, but is in no way mysterious. To simulate quantum 
mechanics, all we need do is to introduce a specific noise function into the detectors 
without destroying the correlations. 

PtiOPOSED COMPUTER SIMULATION 

An actual computer experiment along these lines was started by MJM [4] and 
HPN. It has not been completed, but some results already obtained are interesting. 

.- ._ . 
-- The first step was to construct a model for a polarization detector for polarized par- 

titles, which gives a count with probability cos2 x where x = rk/N, 0 5 k 5 N is 
the discretized angle that the beam polarization makes with the 100% transmission 
angle of the detector. The guts of the programming for this is a pseudo-random num- 
ber generator routine Pick(B) h’ h t w K re urns any integer 0 5 b 5 B with frequency 
l/(B + 1). Given this routine, Manthey’s coding only takes three lines: 

b : = Pick (B) 

y : = cos x 

if b 5 B x y x y then detector : = 1, elsedetector := 0 . 

.--F.- We checked that this routine does indeed give a number of ones divided by the 
number of trials which reproduces the function cos2 x to the accuracy to be expected 

_I from the number of trials; we tested this with B = 500 for nine equally spaced values 
of 0 5 x 2 7r/2 and 500 trials for each x. Given two detectors, which can obviously 
be set at different angles with respect to each other and the beam polarization 0 
by defining the detector setting as 0d and taking x = 8 - 0d, the simulation of an 
experiment in which two polarized signals with the same polarization are set to two 
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distant detectors is also easy,. The same routine (Pick) can be used to generate . 
two beams with pseudo-random polarization 6 but 100% correlated (i.e., the same 
value of k for both); since we have simulated a polarimeter rather than a Stern- 
Guerlach detector we cannot tell the difference between correlated and anticorrelated; 
the counting statistics will be the same whether we are modeling spin l/2 or spin 1 
polarization. G iven the beam polarization 8 and the two detector settings 6r,&, the 
probability of getting a count in detector 1 is cos2(8 - 191) and so on, so the four joint 
probabilities for having two coincidence counts, a count only in detector 1, a count 
only in detector 2, or no counts, are, respectively, 

dll = cos2(B - 01) cos2(0 - e2) 

dlo = cos2(0 - 01) sin2(0 - 02) 

doI = sin2(0 -e1)cos2(e -e,) 

doI = sin2(8 - 01) sin2(8 - 02) 

and add to unity as they should. The correlation between the two detectors [5] is 
dll : dlo - doI + dll and hence our model so far is expected to give cos 2(6 - 
13r)cos 2(0 - 62) = 1/2cos 2(6r - f32) + 1/2cos 2(26 - 81 - 6,). Consequently, if 
our source emits all polarizations with equal probability, the second term will average 
out and the calculation will give only half the quantum mechanical prediction [5] of 

. cos 2(81 -e,). 
-- 

Clearly, we must examine the situation with more care. What we have modeled 
so far is a source that emits two photons from an incoherent source which are forced 
to have the same polarization. Clearly, except for the digital photo-detection, this 
is a “classical” situation and contains no surprizes. We have imposed distant time 
correlation, but not the distant quantum mechanical wave function correlation which 
requires that once we “forced a dichotomous choice” on one quantum the other must 
exhibit precisely the (same or opposite depending on the spin state we model) po- 
larization even when detected in a space-like separated region. As Bell has proved, 
simply by introducing a “hidden variable” in such a way as to produce perfect cor- 
relation for 01 - 02 = 0 and perfect anticorrelation for 61 - (32 = 7r/2, it is still not 
possible to reproduce the quantum mechanical prediction so long as this additional ..-. 
sg-mplexity does not couple the setting of one detector to the setting of the other. 

_- We agree that Bell has not provided a rich enough model to reproduce quantum 
mechanics. However, if the “hidden variable” refers to the product space of the two 
detector settings, we claim that (for finite settings and finite time steps) it would be 
possible to construct detectors that would pick up from a signal 6, X where X refers 
to this product space, enough local information to produce the correlated statistics 
required for any choice of pairs of detector settings made pseudo-randomly at each 
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. location. We have not yet made a specific model to illustrate this contention, so as 
of this writing the proposition remains conjectural. But we feel that the possibility 
exists because of the encryption analogy discussed above. 

The basic idea for our proposed model would be to make the “seed” for the local 
random number generator to be the same for each detector. Given the seed, the 
operation is, of course, deterministic. One standard way to get a seed is to use the 
reading of the “wall clock” in the computer. Each local detector uses a different wall 
clock., but if we take account of the transit time from the source down the cables to the 
two detectors, we can insure that the “seed” each of the space-like separated detectors 
picks up when the signal arrives is the same. This calibration relies on standard 
Einstein clock synchronization and can be cross-checked by both the calculated and 
the measured transmission time of the signals along the cables independently of the 
EPR program. The experimental protocol then becomes independent of whether or 
not the actual detections are space-like separated. If this can be shown to be “Lorentz 
noninvariant,” conventional theory is in much deeper trouble than the problems which 
arise in trying to reconcile quantum mechanics with relativity. We claim that it is 
obvious nothing in a simulation using a single computer will work differently when 
we introduce spatial separation of the source and the two detectors. 

Some checks should obviously be .performed once the program operates. The first 
is to check that if we shift the data table so that the detections correspond to different 
beams, the correlation washes out. If this check fails, we have a bug in the program! 
A second is to simulate Aspect’s rather than Clauser’s experiment by changing the 
detector settings after the signals have been launched and before they arrive. This 
can easily be done, but we predict that, so long as we seed the detectors in the way 
described above, we will still get the quantum mechanical result. On the other hand, 
if we seed the two detectors independently without the synchronization, the correla- 
tion should wash out. Finally, if we go from one case to the other by introducing 
time delays from the synchronization which produces the quantum mechanical result, 
we should - depending on the details of the time cycles in the pseudo-random num- 
ber generator - find a transition from the quantum mechanical case to results in 
agreement with Bell’s Theorem. This would simulate a new theory in which. quantum 
mechanics is valid only up to a constant of nature whose existence has yet to be 
demonstrated. 
--a+-- 

CONCLUSION 

For us, the implication is obvious that the current EPR-Bohm type experiments 
do not rule out a mechanistic model for quantum mechanics if the model is of suffi- 
cient computational complexity, contains the appropriate conservation laws to allow 
Einstein synchronization of clocks and dichotomous variables analagous to “spin.” 
For instance, if the cycle length in which the universe is pseudo-random rather than 
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random is the number of events which occur within the event horizon of the visi- . 
ble universe every ti/m,c2 seconds, we could never detect departures from quantum 
mechanics on the time scale available to us for experimentation. However, if there 
is some large but measurable parameter that marks the transition region between 
quantum mechanics and macroscopic physics, such as the number that Leggett [6] 
is trying to detect in macroscopic tunneling experiments between SQUIDS, it is al- 
together possible that sophisticated experiments of the Aspect type with very rapid 
switching times might also be able to give evidence for physics that goes beyond con- 
temporary quantum mechanics. We conclude that continued attention to precision 
experiments of the EPR-Bohm type is fully justified. 
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