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ABSTRACT 

We use the ground-state wave function in the light-cone gauge to study the 

spatial properties of fundamental strings. We find that, as the cut-off in the param- 

eter space is removed, the strings are smooth and have a divergent size. Guided by 

these properties, we consider a large-N lattice gauge theory which has an unstable 

phase where the size of strings diverges. We show that this phase exactly describes 

free fundamental strings. The lattice spacing does not have to be taken to zero for 

this equivalence to hold. Thus, exact rotation and translation invariance is restored 

in a discrete space. This suggests that the number of fundamental short-distance 

degrees of freedom in string theory is much smaller than in a conventional field 

theory. 
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1. SPATIAL PROPERTIES OF STRINGS 

Many systems in statistical mechanics and field theory exhibit string-like ex- 

citations. Superconducting fluxoids, domain boundaries in 2+1 dimensional mag- 

nets, Nielsen-Olesen vortices and electric flux tubes in QCD are a few examples. In 

many respects they are similar to the idealized objects of string theory, which we 

will refer to as fundamental strings. There are, however, significant differences. In 

particular, these field theories do not have massless gauge bosons or gravitons. This 

raises the following interesting question: can fundamental string behavior occur in 

a field theoretic or statistical mechanical system ? A related question is whether 

- string theory can be simulated on a computer which stores information in terms of 

local degrees of freedom and evolves it according to near neighbor interactions on a 

discrete lattice, as in lattice gauge theory. The purpose of this work is to show that 

the answer is positive. Our construction of such a theory will be guided by a study 

of the spatial properties of fundamental strings. We will show that these properties 

are highly peculiar. In particular, both the average length and the average size 

of the region occupied by a fundamental string are divergent. Motivated by this, 

we will assume that the field theoretic system we are looking for must have an in- 

stability which creates the divergence in the size of strings. This instability would 

ordinarily exclude it as a sensible theory. Indeed, as in the conventional description 

of fundamental strings, almost everything one might think of calculating diverges, 

except for the spectrum and the S-matrix. All these features may seem surprising, 

but they are unavoidable in any theory of fundamental strings. In order to display 

them, we consider what the typical fundamental string looks like in space-time. 

A- _P_ We will begin by considering the wave function of a string in the light-cone 

frame. The points of a closed string are parametrized by 0 running from 0 to 1. 

The parameter is defined so that the total longitudinal momentum P+ is uniformly 

distributed over g. The light-cone hamiltonian for the transverse coordinates of 

- 

2 



the string is 
1 

-. -. H=; 6 6 - dXi 2 

sxqo) GX+T) '+ (x 
)> 

0 

(1.1) 

The D - 2 transverse coordinates are free fields with mode expansions 

X”(g) = xi, + x(x; cos(27rnf7) + Xi sin(27rn.g)) (14 
n>O 

The wave function of the ground state of the string has the product form (dropping 

the superscript ;) 

- B(X(a)) = n((z)1’2eXp(-Wn(X: +X3)/4)) 
n 

(l-3) 

with wn = 2mz. Squaring this gives a probability distribution for the transverse 

pkition of the string. We will use this distribution to generate a statistical en- 

semble of strings and plot their transverse positions. To carry this out in practice, 

it is necessary to truncate the mode expansion at some maximum wave number 

N. This is one of the ways of introducing a cut-off in the parameter space of the 

string. Passage to the continuum limit is achieved as N -+ 00. This cut-off pro- 

cedure can be thought of as introduction of time averaging into the measurement 

of transverse position of the string. Indeed, if the string is ‘photographed’ with 

light-cone time exposure 7, then all the modes with wn >> l/r average to zero and 

can be neglected. The cut-off is removed as r + 0. 

A string configuration is determined by a sequence of values of Xi and Xk, 

with n = 1, . . . , N and i = 1, . . . , D - 2, sampled with probability 

P(Xi) = gp2 eXp(-Wn(Xi)2/2) - (1.4) 

and similarly for Xz. Each such configuration defines a parametrized curve in (D - 

2)-dimensional space. By necessity we show projection of string onto 2 transverse 
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dimensions. Each run consists of choosing 100 x (D - 2) random numbers from their 

i ,; respective probability distributions. For each run we compute curves with N = 10 

. to 50, with increments of 10. We adopt the following method: as we proceed, for 

example, from N = 10 to N = 20, the coefficients of the normal modes with the 

first 10 wave numbers are kept the same as for the N = 10 ‘snapshot’. Therefore, 

for each run, increasing N corresponds to ‘photographing’ the same string with 

shorter exposure. The ‘snapshots’ generated by one such run are shown in figure 1. 

In fact, we find that different runs are overwhelmingly likely to produce ‘snapshots’ 

with the following features. 

- 

1) The size of the region in transverse space occupied by string grows slowly with 

N. A quantitative measure of this is r, the rms distance of a point on the string 

to its center of mass: 

T2 = ((x’(“) - xQ2) P-5) 

Since there is no preferred point on the closed string, we can arbitrarily set CY = 0. 

=(D-2)&Xz)=y5$ (1.6) 
n=l n=l 

The rms radius of the string grows with the mode cut-off as &$V. 

2) The plots of total string length L vs. N appear to be linear. To show this 

analytically, we start with 

W) = j WI> da, 
0 

where v’ = dJ?ld 0. By translation invariance in CY, (L) = (IiY’I(n = 0)). Using 

<- _T_ 

vi(c7 = 0) = 5 nJi?t (1.8) 
n=l 

and the fact that each J?i is gaussian distributed, one can show that vi is gaussian 
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distributed with variance 

i ,; 

. 

. . -. 

c2 = 2T-5 n = nN(N + 1). 
1 

(1.9) 

It is easy to show that this implies 

(L) = (IT?/) - C N N (1.10) 

- 

3) The string becomes space-filling in the limit N --+ co. Since the rms radius 

grows only as JiGgZ,* the string tends to cover the same region of transverse space 

many times. As we remove the cut-off, the string passes arbitrarily close to any 

point in space. 

4) The string is smooth. As the number of modes increases, there is no tendency to 

develop small-scale structure in space. Transverse line curvature is a quantitative 

measure of smoothness. We will now show that, in any number of transverse 

dimensions greater than two, the expectation value of curvature is completely cut- 

off independent! The transverse extrinsic curvature is conveniently expressed as 

161 
Ic=7 

where a’~ is the component of a’ = d2Y?/dn2 normal to ii. Since 

(1.11) 

$$(n = 0) = -4n2 5 n2XA, 
n=l 

eq. (1.8) implies that a’ and v’ are uncorrelated. Therefore, 

(4 = WLl> (a) - 

(1.12) 

(1.13) 

* In other words, the Hausdorff dimension of the fundamental string is infinite. 
-t1t t n wo ransverse dimensions the expectation value of the extrinsic curvature diverges due 

to a relatively high likelihood of cusps. 
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We find that (1/v2) N l/C2 and (1Zll) N c, where ,; . . -. 
g2=en3 

1 

= (~N(N + 1,>" N c4 (1.14) 

It follows that (K) - c/C2 is independent of the cut-off! 

- 

5) The entire string consists of O(N) smooth ‘loops’. The structure of a loop is 

roughly independent of N. Adding modes simply adds more loops. Furthermore, 

each loop occupies a fraction - l/N of the parameter space 0. Thus, in a fairly 

uniform manner the individual loops tend to carry a longitudinal momentum - 

P+/N. To show that no ‘accidents’ occur as we proceed to high values of N, we 

have plotted in figure 2 the section of the string confined between (T = 0 and 2/N 

for N = 20 and N = 500. The remarkable similarity between the two can be 

qualitatively regarded as a statement of conformal invariance in our approach. 

One may wonder if any of the effects discussed above are artifacts of the sharp 

mode cut-off. We have checked that this is not the case. Also, one can introduce 

a different regularization which is. quite appealing on physical grounds. Imagine 

chopping the string into 2N + 1 segments, each one carrying longitudinal mo- 

mentum P+/2N + 1. Each segment is replaced by an indivisible ‘parton’ m with 

transverse coordinates X”(m). A rough way to describe this is to say that the 

string cannot be subdivided into pieces with longitudinal momentum less than 

P+/2N + 1. Th e regulated string hamiltonian is 

H=2N+1 s 
s 

2 -sxym) sxym) 
+ (Xi(m + 1) - X$72))” 

> 
(1.15) 

It is exactly diagonalized by Fourier modes (1.2) evaluated at discrete positions 

g(m) = m/2N + 1. The ground state wave function is given by (1.3) with frequen- 

cies wn = (4N + 2) sin(rn/2N + 1). In fig ure 3 we show a typical picture of the 

regularized string (N = 50). Note that, as more and more discrete points crowd 

the a-axis, the string never becomes continuous in space. We can show that, as 

c 
-- 
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N + 00, the average distance in space between each pair of neighboring partons 

approaches a constant value a, which is of the order of the Planck length. This is 

responsible for the linear growth of the total length. It is also easy to show that the 

rms radius grows as J&3. Thus, all the important information about the spatial 

properties of string can be obtained in the regularization where the string never 

becomes continuous in space. This suggests that, if the transverse space is replaced 

by a lattice with spacing of the order of a, the critical properties of strings will not 

be affected. In what follows we confirm this expectation by explicitly constructing 

a class of discrete field theories which give rise to the fundamental string behavior. 

One may wonder whether any of the strange effects described above are ob- 

servable. In particular, the infinite rms radius seems very unphysical. However, 

it does lead to an observable effect. Consider scattering of a high-energy string 

from a string at rest. The interaction is mediated by string exchange. In the 

light-cone frame of the fast string of energy E the lifetime of the interaction is 

of-order r = l/E. Oscillations with frequency >> l/r average to zero. Thus, 

we retain a number of modes N E. This introduces a mode cut-off and gives an 

observable particle radius N Jii. As the resolution is improved, the string 

‘expands’. This phenomenon leads to the well-known Regge behavior of scattering 

cross-sections satisfied by the dual amplitudes.‘) Thus, the effect is indeed observ- 

able and presents no difficulty for scattering of strings by strings. On the other 

hand, if the string is scattered by a local external field, then the interaction is 

instantaneous. Therefore, the string must appear infinite. Thus, the fundamental 

strings cannot be consistently coupled to local external fields: they are either a 

theory of everything or of nothing. 

The difference between the fundamental strings and the extended objects in 

the conventional field theory can be easily exhibited by studying the spatial distri- 

>- _T_ bution of the longitudinal momentum P +. For a hadron, this could be measured 

by interaction with external gravitational field. The result is a non-singular form 

factor F(q2). F or a fundamental string, an analogous form factor can be ob- 

tained by observing that the distribution of P+ is measured by the vertex operator 
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&X+d”X+ exp( iq . X), w h ere Q is the world sheet index. In the light-cone gauge 

.-.- X+ = r and the form factor reduces in D = 26 to .~ 

%12) = da exp(iq . X(a)) 
> 

- exp( - iq2 log N) (1.16) 

In the limit N + co the form factor is non-vanishing only at q = 0. It follows 

that P+ is smeared uniformly all over transverse space. This peculiar property 

applies not only to the ground state of the string but also to any finitely excited 

state. For any such state the change in the wave function relative to the ground 

state concerns only a finite number of normal modes and becomes negligible in the 

limit N + co. The strange behavior of the gravitational form factors is possibly 

connected with the existence of the graviton: at least for the massless spin-2 state 

it could be foreseen on the basis of general principles. A theorem by Weinberg and 

Witten states that, in a Lorentz invariant theory with a Lorentz invariant energy- 

mementum tensor, the gravitational form factor of a massless spin-2 particle must 

satisfy F(q2 # 0) = 0. H ow do various theories get around this theorem? In 

Einstein gravity one cannot define a Lorentz invariant energy momentum tensor. 

On the other hand, in 26-dimensional string theory the form factors are Lorentz- 

invariant by construction, and the theorem must apply. It seems to require that, 

if the graviton is to exist in string theory, it must be smeared all over transverse 

space. This suggests that the fundamental string theory uses its infinite zero-point 

fluctuations to allow the existence of gravitons. 



2. LATTICE THEORY ON THE LIGHT CONE 
. . -. 

- 

In this section we describe a light-cone lattice’.gauge theory due to Bardeen, 

Pearson and Rabinovici.3) It has string-like excitations which become free in the 

large-N, limit. This theory has a parameter, p, which governs the average length 

of string in the ground state. For p greater than the critical value pC the average 

length of string is finite in lattice units. For p = pC the average length of string 

diverges. We will be interested in the range p < pu, where the theory is unstable 

with respect to infinite growth of strings. This instability is similar to the behavior 

of the fundamental strings discussed in the previous chapter. In fact, we will show 

that, for p < pC, the strings in this light-cone lattice theory are identical to the 

fundamental strings. This exact equivalence does not require lattice spacing to be 

taken to zero. 

We introduce the light-cone variables Z+ = (x0 + $-I)/& Z- = (x0 - 

~“-~)/fi, and xi, where i labels the D - 2 transverse directions. Following 

Bardeen, Pearson and Rabinovici we replace the transverse space by a (D - 2)- 

dimensional cubic lattice n’ with integer coordinates. On each directed link of the 

lattice L there is a unitary matrix-valued variable which satisfies U;j(L) = UT,(-L). 

In the light-cone quantization the variable Z+ is treated as time. After passing to 

the light-cone gauge A- = 0 the gauge theory light-cone Lagrangian becomes 

L =-j / dx-{ c t+pU(L)d’U(-L)) + c tr(U(&)U(L2)U(L3)U(L4))+ 

links daq 

g4/dx-‘c Ix- - x-‘IP(Z, x-)J-“(?T, x-‘)} 
ii 

where the index p refers to the + and - directions and the lattice spacing has been 

set to 1 for convenience. J?(S) denotes the longitudinal momentum current at the 

site Z. To make the theory tractable, ref. 3 relaxes the condition of unitarity. 

Thus the matrices U are replaced by gM where M(L) are general N x N complex 

matrices. In order to restore unitarity, ref. 3 introduces the effective potential for 
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i 

M: 

. . -. 
V(M) = p MijMG + g2X MijM&MlkMc (2.2) 

The speculation of ref. 3 is that the continuum limit of the U(N,) gauge theory 

can be obtained by tuning ~1 and X along a renormalization group trajectory, as 

the lattice spacing is being taken to zero. We will not pursue this interesting idea 

here. Instead we will argue that, with no fine tuning, there exists a broad range of 

parameters where this theory exactly reproduces fundamental strings. 

For our purposes it is necessary to add to the lagrangian other terms quartic 

in M which would be trivial if gM was unitary. These are the plaquette-like terms 

tr(M4) shown in figure 4. The trace is taken around all possible loops of length 4 

and zero area. In fact the second term in (2.2) is of this type. All other terms of 

this type reside on pairs of links, L and K, beginning at the same vertex: 

- 

6L = -,‘A’/ dx- gtr(M(L)M(-L)M(K)M(-K)) 
, 

(2.3) 

Using standard methods we derive the light-cone hamiltonian 

k($M(L)M(-L) + x M(L)M(-L)M(L)M(-L))+ 

xl):r(M(L)M(-L)M(r()IM(-K)) - Ctr(M(L1)M(L2)M(L3)M(L4))- 
daq 

Ix- - x-‘IJ_“(Z, x-)J-“(?T, x-‘)} 

(2.4) 
The link fields may be decomposed into creation and annihilation operators: 

Mij(x-) = -& J -$=(Aij(k) exp(-ilcx-) + B&(k) exp(ikx-)) 
?r 

(2.5) 

0 

which obey the commutation relations 

LAijck)7 Ail(q)] = [Bij(k), Bll(q)] = SikSjlS(k - q) (2.6) 
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Each link is assigned a direction and At(k) creates a string bit which carries 

- longitudinal momentum k and points from index i to index j along the link’s 

direction. t Similarly, Bij (k) creates a bit pointing from j to i and opposite to 

the assigned direction. An oriented string state is defined in the following way. 

Consider an oriented connected loop I consisting of links Li, with i running from 

1 to N. The Fock state associated with this loop is 

tr{#(Ll, kl). . . Ot(h, h)} IO > (2.7) 

where Oij = NF1’“Aij or N-‘12B,ti d epending on whether a given string bit points 

along or opposite the assigned direction. 

An important feature of the N, + 00 limit of the theory is that the light-cone 

hamiltonian (2.4) d oes not split or join strings. If we apply it to a one-string 

state of the form (2.7), we obtain another such state. Therefore, there exists 

a linear dynamical equation for one-string states, which is simply the light-cone 

Schroedinger equation. Such an equation should not be confused with the Migdal- 

Makeenkoequation4) for the expectation value of the Wilson loop in a gauge theory. 

One conspicuous difference is that the Migdal-Makeenko equation is non-linear 

even in the large-N, limit, where strings become free. We believe that all the 

useful information about the large-N, limit of the theory in (2.4) is contained in 

the linear Schroedinger equation. On the first glance, solving this equation appears 

to be formidable. It is even difficult to write it down in an explicit form, since the 

action of various terms in the hamiltonian is quite complicated. Nevertheless, there 

is a phase of the theory, where the hamiltonian can be easily analyzed and shown 

equivalent to a free field hamiltonian. Fortunately, this is the fundamental string 

phase we are after. For now, let us compare various terms in (2.4) with (l.l), the 

hamiltonian of a free fundamental string. For example, the term 

qwvwL)) P-8) 

C 

plays the role similar to the second term in (1.1). It accounts for the potential 
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energy due to the string tension. The other terms in (2.4) can locally displace 

.=- bits of string.* They are the analogues of the first term in (1.1); i.e., they give 

rise to the string kinetic energy. Below we will argue that, in the phase of the 

lattice theory where strings are infinitely long, its light-cone hamiltonian (2.4) is, 

in fact, identical to (1.1). W e will show this in detail for the lattice model in one 

transverse dimension. There, each lattice state can be mapped into a function X(a) 

used in the light-cone description of the fundamental strings. Let the string carry 

longitudinal momentum kt. Starting with an arbitrary lattice site, we identify 

it with X(a = 0). The first link is represented by a segment between 0 = 0 

and a = kl/kt. Thereafter, each link is represented by a segment with length 

- 

in parameter space proportional to its longitudinal momentum. At the point pi 

the function X(ai) is given by the lattice coordinates of the corresponding site. 

Between sites 0; and ai+r, X(a) can be defined by a linear interpolation. 

The phase structure of the model is governed by the string potential energy, 

which comes from the action of (2.8) and is N ,Y c;” ki’. It is clear that, for 

sufficiently large values of the string tension p, the ground state will be dominated 

by states with small numbers of links, with each link carrying a significant fraction 

of the total longitudinal momentum. In this case we do not expect a behavior 

similar to the fundamental strings. As we decrease p it becomes energetically 

favorable to have a larger number of links with smaller k. In fact, it is clear 

that, for a sufficiently negative p, an instability develops which favors strings of 

infinitely many links each one carrying infinitesimal k. Evidently, in this case 

the a-axis becomes densely populated suggesting the possibility of a continuum 

description in a-space. Indeed, from here on ‘continuum limit’ will always refer to 

the continuum limit in parameter space, and not in real space. 

.- -1. 

In order to discuss this phase we need a regulator in the form of a minimum 

allowed longitudinal momentum. Following ref. 5 we will think of the matrices 

M(x-) as anti-periodic in the x- direction. Then the k-space is discretized and 

e 
-- 

* The reader can check this by applying various terms in the hamiltonian (2.4) to simple 
string configurations. 
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the zero-momentum links are excluded so that each link carries an odd integer 

r multiple of the minimum momentum km. The total,length of string cannot exceed 

kt/k, = N in lattice units. The limit N + 0~) defines our lattice string theory. 

3. EFFECTIVE HAMILTONIAN AND 
EQUIVALENCE TO A FREE FIELD 

_ We will begin studying this model in the limit p t -oo. In this limit the 

ground state and low-lying excitations consist of strings of maximum possible 

length kt/km = N. To solve for their wave functions, we use degenerate per- 

turbation theory in the ‘kinetic terms’ of the hamiltonian. It turns out that the 

current-current interaction has vanishing matrix elements between the states of 

maximum allowed length. The only terms in the hamiltonian that act to move the 

string in the transverse dimension are the plaquette-like terms introduced above. 

Fo’rtunately, the model based on these terms is soluble exactly. Below we describe 

the necessary construction in some detail. 

- 

If the maximum allowed length is N then the string configurations that need 

to be included are labeled by series of N pluses and minuses subject to the closed 

string constraint that their sum is zero. This requires N to be even. It is convenient 

to think of these configuration as series of Ising spins 03(i). There are two types 

of terms that need to be taken into account. The first one, 

A’ C dx-Mij(n)Mjk(n -I- l)M&.(n + l)Mi(n), 
n J 

is shown in figure 4b). The second one, 

xc J dx-Mij(n)Mfj(n)Mkl(n)M~(n), 
n 

(34 

(3.2) 

is shown in figure 4~). It is not hard to show that, to leading order in NC, the 
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action of (3.1) on states in the spin representation is equivalent to 

I r 

. Yi+ ( 1+ a3(n)a3(n + 1) 

2 + a+(n)a-(n + 1, + g.-(n>g+(n + 1)) (3.3) 
n 

where in terms of the standard Pauli matrices 

01 + ia 
c7+ = 

01 - icr2 

2 ’ 
CT- = 

2 (3.4) 

and we have set g2NC = 1. Similarly, the term (3.2) is represented by 

AN x(1 - as(n)m(n + 1)) (3.5) 
n 

- 
Let us choose temporarily 2X = X’ = 1. Then, up to an additive constant, the 

hamiltonian is simply given by the quantum XY model: 

- 

H = N x(c+(n)a-(n + 1) + a-(n)o+(n + 1)) (3.6) 
n 

Actually, since we have ignored the center of mass motion of strings, the above 

hamiltonian is only applicable to states that are translation invariant on the trans- 

verse lattice (have zero lattice momentum). A generalization of the effective hamil- 

tonian to states of finite lattice momentum will be given below. But first let us 

show that the quantum XY model can be solved by introducing anti-commuting 

variables 

$+(n> = iwn n a3(++(n>, (3.7) 
m<n 

.- _T_ 

$-(n) = iSn n a3(m>o-(n>. (3.8) 
m<n 

These are the staggered fermions on the lattice in the parameter space of the 

string.* In terms of these variables the fermion number on a site &73(12) is given 

C 
-- 

A- These fermions have nothing to do with the world sheet fermions of superstrings. 
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bY ~[~+@4,w41. Th e t ransverse spatial separation between any two points on 
I r the string is then given by twice the fermion number contained between these two 

. points. Since the string is closed, we must always work in the sector where the 

total fermion number is zero. We define a fermion doublet 

f/w = g ( i;:;2;3 

Then in the continuum limit N --+ 00 the hamiltonian reduces to 

H = i J a+ do+tnz 

(3.9) 

together with the boundary condition $(a = 1) = -$(c = 0). CY acts on Dirac 

indices as the Pauli matrix 01. It is well-known 6p7) that a Dirac fermion is equivalent 

td a periodic boson variable $( CY w ic is defined so that the fermion number ) h h 

density 

(3.11) - 

From the previous discussion it follows that the separation between two points 

on the string is -$=(d(crr) - d(a2)). Th ere ore f the bosonized variable -$=$(a) is 

a smeared version of the original lattice position X(a). The boson hamiltonian 

equivalent to (3.10) is 

iIIzrn + 27T C m(ULUrn + iiL;i,) 
m  

(3.12) 

>- _Y_ 

- 

Since the field 4 is defined on a circle of radius & the center of mass momentum is 

restricted to integer multiples of 2fi. Th is is connected with the fact that we are 

studying the theory in the sector of zero lattice momentum: the states are invariant 

under discrete shifts of 2 lattice units. To introduce non-zero lattice momentum 

C 

-- 
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let us consider string states which pick up a phase exp(ip) when translated by one 

i ,; lattice unit.. The effective hamiltonian for this system is 

. 

H = N c(~+(n)o-(n + 1) exp(2ip/N) + a-(n>a+(n + 1) exP(-2iP/N)) (3.13) 
n 

To justify the appearance of phases in the above formula we note that whenever 

a+(n)a-(n + 1) acts on a string state, the center of mass moves 2/N lattice units 

to the right. Similarly, the conjugate term moves the center of mass to the left. In 

fact, the interaction (3.13) can be obtained from (3.6) by introducing a constant 

vector potential along the string. A gauge transformation 

- 
a-(n) + o-(n) exp(--2ipn/N), a+(n) + a+(n) exP(wnlN) (3.14) 

reduces (3.13) to (3.6) at th e e expense of a non-trivial boundary condition on the 

continuum fermionic variables: 

$o( = 1) = -$~(a = O)exp(-2ip). (3.15) 

Upon bosonization, this condition changes the constraint on the values of the center 

of mass momentum: 

Cm = &h(n + y), (3.16) 

where n is an integer. After inclusion of string states with non-zero lattice momen- 

tum, the zero mode in the boson hamiltonian has acquired continuous spectrum. 

As a result, (3.12) is the standard light-cone free string hamiltonian. The physical 

reason is the fact that, as N --+ 00, the possible positions of-the string center of 

mass become continuous. 

- - Now we would like to argue that relaxing the constraint X’ = 2X on the coeffi- 

cients of the plaquette-like terms does not in general violate the free boson behavior 

16 
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demonstrated above. In fact, this adds a term 

. . _ 
-cN c os(n)os(n +“l) (3.17) 

n 

- 

to the effective hamiltonian (3.13). This term can be interpreted as introducing 

dependence on the extrinsic line curvature into the string hamiltonian. 8, Depending 

on the sign of the coefficient c, it favors alignment or anti-alignment of the adjacent 

links. The continuum limit of this new hamiltonian is the Thirring model. For any 

-1 5 c < 1, the Thirring model is equivalent to a free boson field. The only effect 

of changing c is resealing of the string tension. Increasing c makes string wiggles 

look bigger on a fixed lattice scale. Therefore, pairs of adjacent links become more 

aligned. As c + 1 the size of the wiggles diverges. For c 2 1 alignment is favored 

too strongly and the relativistic free field behavior is no longer valid. On the other 

hand, for c < -1, anti-alignment is favored so much that the behavior of lattice 

strings is dominated by the lattice. Our discussion confirms the simple intuition 

that one should be allowed to take the spatial continuum limit in our lattice model 

without changing the equivalence with fundamental strings. However, if we increase 

the lattice spacing beyond the typical size of string wiggles in the ‘fundamental’ 

phase, a transition to the lattice-dominated phase takes place. Thus, for a broad 

range of parameters, the extrinsic curvature terms do not alter the critical behavior 

of strings. 

- 

In section 1 we demonstrated that the spatial behavior and energy levels of our 

lattice string theory are completely determined by the equivalence with a massless 

free field in a-space. For example, this guarantees that the growth of the mean 

squared radius of string is logarithmic in the length of string. As in the usual string 

formalism, the ground state energy is quadratically divergent. In our system it has 

the negative sign. Conventionally, in the light-cone formalism this divergence is 

absorbed in renormalization of the speed of light. 

c 
-- 

- Next consider the corrections to the limit p + -co. Then the terms in the 

hamiltonian which act to decrease the total length of string become important. 
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For example, the plaquette-like terms can replace three links of longitudinal mo- 

r menturn.& by one link of momentum 3k,. Such perturbations act locally on the 

string and in the continuum limit can be represented by a series of operators local 

in a-space. -The only operators that can affect the critical behavior in a-space are 

renormalizable and super-renormalizable. It turns out that the only renormaliz- 

able operators that can be induced are just the two terms already present in the 

hamiltonian (1.1). Th ere f ore, a range of p must exist in which the effect of the cor- 

rections to the limit /.L + -KI is absorbed in resealing of the string tension. Since 

for large and positive p there exists another phase of the theory where strings have 

finite length, there must be a critical value p = pC where a phase transition occurs. 

- 
A straightforward generalization of this lattice field theory can be given in any 

number of dimensions. If D = 26 then, in the phase where strings are infinite, all 

the finite energy spectrum is identical to the spectrum of the conventional bosonic 

string. The same equivalence applies to the expectation values of products of vertex 

operators. 

4. CONCLUSIONS 

Perhaps the most striking result of this work is that a discrete theory is com- 

pletely equivalent to a free string in continuous space. No spatial continuum limit 

is required. This is possible because we are dealing with a theory of extended 

objects. Since their length diverges, the physics depends only on the critical prop- 

erties of the effective 1+1-dimensional field theory induced on the string. In this 

way, theories with discrete and continuous values of transverse space coordinates 

end up in the same universality class. The physical reason is that the instability 

only allows string bits with vanishingly small longitudinal momenta. Typically, the 

light-cone time scale for motion of the i-th string bit is N P+(i), i.e., the string bits 

move very rapidly and completely wash out any memory of the lattice. Evidently, 

this effect does not depend on the details of any particular lattice structure. We 

expect that there exists a large universality class of discrete theories which exhibit 

- 

Z 

-- 
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identical behavior for a broad range of parameters. They share one important 

r ingredient --. the instability. 

Another interesting question is the connection between the theory discussed 

above and the NC = 0;) QCD. The original work of ref. 3 suggested that QCD is 

a very special limit of this theory in which the spatial continuum limit is taken as 

the parameters are carefully tuned along some renormalization group trajectory. 

This should be contrasted with the fundamental string behavior which occurs for a 

broad range of parameters, without necessity of taking the lattice spacing to zero. 

- 

The construction of a discrete field theory which exactly reproduces bosonic 

strings makes it clear that string theory has vastly fewer short distance degrees 

of freedom in space than a conventional quantum field theory.* This was already 

suggested by the smoothness of the string pictures of figure 1. The absence of 

the short-distance structure in strings is probably the reason why the fixed-angle 

scattering amplitudes fall off exponentially at high energy.r’) e 

; Our model required the number of colors N, to be taken to co. It is interesting 

to study the new effects induced by a finite N,. The string can then split and join 

as in the conventional picture of string interactions. The string coupling constant 

is proportional to l/N,. It should be possible to determine whether the l/NC 

expansion reproduces the bosonic string amplitudes. 

Acknowledgements: Section 1 of this talk is based on joint work with M. Karliner.“) 

- 

* This was also suggested on very different grounds in the work of Atick and Witten (ref. 9). 
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FIGURE CAPTIONS 

Projections of string onto 2 transverse dimensions with mode cut-off varying 

from 10 to 50. 

The section of string confined between cr = 0 and 2/N for N = 20 (solid line) 

and N = 500 (dashed line). 

A typical configuration of the ground state of 101 partons connected by 

springs. 

The plaquette-like terms which would be trivial if the link variables were 

unitary. 
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