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Abstract 

.- - Since its purchase in 1986, the KERN ECDS-PC system has become an es- 

-sential tool in- the work of SLAC’s survey group. The principal element of its 

computational software is the adjustment system (in fact analogous to a pho- 

- togrammetical bundle adjustment) which, unfortunately, has proved inflexible to 

the. varied demands of precision accelerator alignment. 

With the refusal of KERN to part with the source code, it was decided to 

produce an “in-house” adjustment system that could cater for the survey special- 
-- - ities of SLAC. This report documents the mathematical and theoretical aspects 

of the resulting programs; “SDCD” (3-dimensional coordinate determination) 

.and “INTER2” ( an interim program used to’convert the raw data logged by the 

ECDS-PC system to a formatted input file for SDCD). 

In addition, “SETOUT” provides an option of setout angle calculation, using 

output from the adjustment program. 

- (Submitted for Publications) - 
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1. INTRODUCTION 

In the field of particle accelerator engineering, probably more so than other 

industrial applications, the precision and accuracy required for the construction 

of machine elements must be exceedingly high. Thus continuous and stringent 

quality control is of high priority and it is in this application that the ECDS-PC 

system has proved to be indispensable, either replacing or complementing existing 

industrial optical tooling techniques. Its greatest assets are the ease with which 

a 3-dimensional local reference system can be established, the automatic data 

collection to an on-site computer, and the accuracy and operational simplicity of 

the electronic theodolites. 

The basic configuration of the-KERN ECDS-PC system consists of two KERN 

E2 theodolites (up to eight can be used concurrently), a portable IBM PC with 
.- - 

hard disk, and several interface boxes and cables allowing communications be- 

tween the instruments and the computer. At SLAC the PC and other accessories 

-are mounted on an electric cart. 

It is not the intention of this document to prevaricate on the operations of 

the ECDS system, yet prior to a discussion concerning the adjustment software 

it is necessary to illuminate the two types of reference system permissible. The 
-- 

-- - ‘object” system is used if three (or more) points on the object surface (Le., 

the element to be surveyed) have known coordinates. Theodolite positions and 

orientations are obtained by resecting from these “control points,” while, further 

“object points” can be coordinated by theodolite intersection. 

The “local” system is established more arbitrarily: the simplest (and most 

common) method is to define coordinate axis by setting the coordinates and 

orientation parameters of one theodolite station to zero, and obtain a scale from 

observations to a subtense bar. Thus the seven parameters necessary to form a 

3-dimensional datum are obtained with respect to which the network is adjusted. 

In fact, in terms of adjustment, both cases can be united in an analogy to the 

method of photogrammetical bundle adjustments (1) where colinearity equations, 
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survey ground control, and tie points determine the relative orientation and po- 

sition of individual plates in a photographic block. Cameras represent theodolite 

stations, ground control symbolizes known object points, and tie points corre- 

spond to intersected object points. The ECDS adjustment program does in fact 

adopt the bundle approach, incorporating an ingenious conversion of measured 

horizontal and vertical angles to imaginary photo coordinates. On the other hand, 

3DCD avoids this route, hence no further references to photogrammetry are nec- 

essary. However, methods of structuring the large normal matrices involved in 

bundle adjustments have been adopted, and form the basis of the structure in 

SDCD. 

The principal arguments for an alternative to the ECDS adjustment program 

centered around the desire for self-determination rather than continued depen- 
.- - 

dency upon external and inflexible powers. In fact few complaints can be leveled 

at the present ECDS system except the unavailability of the source code ren- 

ders adaptations and expansions of the system impossible, unless, of course, one 
- 

crosses KERN’s palm with a considerable amount of silver. In the long run the 

cheapest and most flexible option was to generate our own software. To a certain 

extent the present capabilities of 3DCD are similar to those of the ECDS-PC 

system, although the former permits “theodolite-to-theodolite” (parallel colli- 
-- - 

mation) observations, statistical analysis of the final coordinates, and output of 

angular residuals (rather than the latter’s meaningless values). But, hopefully, 

the structured design of the program (despite being written in FORTRAN) will 

facilitate further adaptations as the need arises. 

It is envisaged that data collection software will be written at SLAC and 

combined with 3DCD to form a complete coordinate determination system, to- 

tally independent from KERN’s. Until then program INTER2 forms an interface 

between ECDS raw data and SLAC’s adjustment program. 

Similarly, other peripheral programs (e.g., circle fits, coordinate transforma- 

tions, etc.) may be added to the overall package. At present only one such 
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program exists; SETOUT. This permits the calculation of setout angles to ideal 

coordinates in an “object” system. 

-- - 
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2. 3DCD - A THREE-DIMENSIONAL ADJUSTMENT 

2.1 Introduction 

It appears that the solution of most least squares problems follows the pre- 

described flowchart: 

I establish a mathematical model, 

u 
linearize the model, 

(form observation equations 

u 

‘), 

I determine a suitable method of least squares adjustment, 

. . - form the normal equations, 

u 

find a solution to the normal equations, 

-. - 

and, indeed, this pattern is adhered to here. All the mathematical equations 

associated with these five sections will be derived, but it is assumed that the 

reader is already familiar with the underlying principles of least squares analysis 

and survey network adjustments. 

2.2 The Mathematical Model 

- - 
- Before deriving any equations it is necessary to introduce and define coordi- 

nate systems, rotations, observable quantities, and parameters upon which the 

model can be based. 

-- 
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Each theodolite station is defined within the model by its position coordinates 

with respect to the network reference system, and three relative orientation pa- 

rameters, i.e., the theodolites are assumed non-leveled. (Conventionally the ver- 

tical 2 axis is defined by the direction of the gravity vector, assumed constant 

over the network and parallel to the 2 axis of the reference system. Hence the 

orientation of the perpendicular XY plane about the Z-axis is the only relative 

orientation parameter.) On the other hand, object points involve just the three 

coordinate parameters. Hence the number of unknowns in the network can, at 

present, be expressed as 

u=6m+3n (2.21) 

where m is the number of theodolite stations, n the object points. 

.- - Coordinate reference systems are all right-handed and the rotations about 

their axes are positive if clockwise when viewed from the origin along the positive 

- axis {Fig. 1). The three relative theodolite orientations parameters are rotations 
. . - about the theodoiite axes (z, y, z) that transform the theodolite system so as 

to render it parallel to the network reference system (X, Y, 2). They have the 

following notations: -- 

- - 

Fig. 1 
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R, = n = rotation about the z-axis = pitch 

R, = 4 = rotation.about the y-axis = roll 

R, = x = rotation about the z-axis = yaw . 

They are applied in the order x, then 4, then R. 

The observations involved in the model mainly consist of horizontal and ver- 

tical angles, although, in the case of local reference systems, a small number of 

distances will be included. Horizontal angles, p are measured clockwise in the 

xy plane with 0 position along the y-axis, while vertical angles, X are measured 

in the perpendicular plane. Thus Jo lies between O-400 gons, X between f 100 

gons. (Angles defined under a different system can easily be transformed to a 

compatible form.) The number of independent observations, n must be greater 
.- - 

than or equal- to the sum of unknown parameters U. In the former case least 

squares analysis is required to yield a unique solution. The redundancy, r, of the 

model is: 

r=n--u . (2.22) 

-- - 
At this stage we can establish equations that combine parameters and observ- 

ables to form our mathematical model. Consider a pointing from a theodolite 

station with coordinates (XT, YT, ZT) to an object point (X,,, Y,, ZO). The 

cosine direction vector with respect to the network reference system and as a 

- function of the parameters is: 

- - 

where D is the distance between the two points. An equivalence of this vector 

can also be calculated from the observed angles (fig. 2). With respect to the 
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theodolite system its components are: 

x=sin/.Lcosx 

y = cospcosx . 

z=sinx 

. Fig. 2 

-- - 

Multiplying by the rotation matrix R = R,&ZyoRZ, this vector is transformed 

to the network reference system, whence the equation: 

-- 

(2.23) 

- - 
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where 

i 

cosqkosx - cos q5 sin x sin 4 

= cosfIsinx+sinRsin~cosx cosRcos~ -sin$Isindsinx -sinSZcos4 

sinnsinx - cosRsin+cosx sinRcosx + cosnsinbsinx cos R cos 4 1 

or 

.- -  

I 

R= 

Since R is orthogonal, its inverse is equivalent to its transpose, and equation - 
2.23 can be rewritten as: 

with 

D2 = (Xc, - xT)2 + (y, - &‘)2 + (20 - zT)2 - 

I 

(2.24) 

(2.25) 

- - 

11 



2.3 Linearized Observation Equations 

To produce equations from which observation equations can easily be derived, 

expand (2.24) and (2.25) to obtain the following: 

A = rll(-% -XT) + nl& - YT) + 7-31(& - ZT) 

B = r12(-& - XT) + r22(Yo - TT) + ?-32(& - &‘) (2.31) 

c =%(x0 -XT)+ f23(E - YT)+ 733(& - ZT) . 

Let: 

E = A2 + B2 

G=C/D2 . - 

Then noting that: 

sinX = z 

-. - tanp = x/y 

we can express the three types of observations as individual functions of the 

parameters as follows: 

D2 = (X0 - xT)2 + (y, - yT)2 + (20 - &‘)2 (2.32~) 

p = tan-l(A/B) (2.326) 

- - X = sin-‘(C/D) . (2.32~) 

Clearly all three are non-linear. Since the generalized methods of least squares ad- 

justment apply to expressions concerning linearized parameters, equations (2.32) 
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must themselves be linearized. This is achieved by truncating their Taylor se- 

ries expansions to first order terms only (2). For a function of n variables, 

Y = f(51,52, S’S, x~), the linear Taylor series approximation in the neighborhood 

of x0 = (xf, x$, . . . . x;) is given by 

where dx= (dxl,dxz,..., dxn) the vector of increments applied to x0. 

In our case (x1,x2,.. . , Xn) is the vector of parameters, (XT, YT, ZT, n, 4, x, 

X0, Y,, Zo), and x0 is the vector of their initial approximate values. (The method 

of obtaining approximates is discussed in Chapter 3.) dx is the vector of unknown 

increments that, when calculated from the least squares solution, will be added to 

- the approximate parameters. It must be stressed that the linear Taylor expansion 

-is only an approximation to the value of a function within the vicinity of x0. 

-Therefore an iterative approach is necessary: dx is determined, added to x0, 
- to produce x0 = x0 + dx, which is then fed back into the linear observation 

equations, and so on, until the size of dx becomes sufficiently small as to be 

negligible. The number of iterations required is dependant upon how close the -- 

initial approximate values are to their true values 2. [Figure 3 helps to convey 

-- - this principle: as dx decreases, the closer the linear approximation of the function 

at x0 is to the actual function y” = f(xO)]. 

f ( x0 + dx) 

Fig. 3 
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As an example, the term referring to the XT parameter in the vertical angle 

observation equation will be derived. Rearrange (2.32~) to give: 

DsinX=C=ri3(~O-~T)+~23(YO-YT)+~23(~O-XT) . 

Taking the partial derivatives of both sides: 

sin XdD + D cos XdX = r31 (dX, - dXT) + r23(dYo - YT) 

+ r33(dZo - d&) + (X0 - XT) 2 + $ + 2 
> 

+ etc. 

Noting that D cos X = dm = F; and sin X = C/D then: 

gdD+FdA=rx(dXo-dXT)+... . 

-Isolating the dXT term, and noting its coefficient (hi) in the distance obser- 

vation equation is -(X0 - Xr)/D, then -- 

-- - 
dX = $(-Q1 + (Xo - XT)&)dXT + . . . = +(X0-XT)-r31)dXT+... . 

The complete linearized observation equations are of the form (3): 

dX = gdXT + g2dYT + gd& + g4dR + g,d4 + g6dx + g7dXo + gsdYo + g9dZo 

+&j-c hldXT + h2dYT + h3dZT + h4dfI + h&j -t h&x + h7dXo + hadYo $- hgdZo 

dD = f&XT + f&VT + f3dZT + f4dXo + f,dY, + f6d& 
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where 

91 = (l/J’)(G(Xo - XT) - %) = -97 

92 = (l/J’)(G(Y, - YT) - r23) = -gFj 

93 = (l/F)(G(Z, - ZT) - r33) = -99 

94 = (l/W--m(Yo - YT) + r23(Zo - ZT)) 

-. 

!?5 = (l/F)((Xo - xT)(- ??3 sin n f r33 cos 02) + (Y. - YT) (r13 sin 0) - (z. - zT)rlJ COS 

g6 = 0 

hl = (l/E)(mA - rllB) = -h7 

h2 = (l/E)(mA - r2lB) = -hs 

h3 = (l/E)(rszA - r31B) = -hg~ 

.- - h4 = h(Y, - YT) - h2(Zo - ZT) 

-h5 -= (x0 - XT)(-h 3 03s fl f h2 sin a) - (Y, - YT)hl sin R + (Z, - ZT)hl cos Cl 

-hg’ll 
. - 

fi = -(x0 - XT)/D = -f4 

f2 = -(& - YT)/D = -fs 

f3 = -(Z. - ZT)/D = -f6 .’ 

A general, and abbreviated form of these equations is 

dl=l%+ij8 (2.33) 

where 

- - 6 = vector of unknown increments to the theodolite station parameters 

8 = vector of unknown increments to the object point parameters 

2, ii = the coefficients of the observation equations. 
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^. . . 

Also let: 

i = the observation consistent with the final parameter values, 2 

v = the observation’s residual 

1, = value calculated as a function of the parameters 

2, = the observed value . 

Then 

i = I, + dl 

?l=i-1, . 

dl = (I, - l,) + v 

i - Hence (2.34) can be written as: 

Bui + B2i = (I, - Zc) + TJ 
- 

(2.34) 

(2.35) 

or 

BS=f+v . (2.36) 
-. - 

If all observation equations are united under the format of 2.36, then B is 

a matrix of order n x u, where n is the total number of observations and u the 

parameters, 6 is a vector of dimension u, and f and v are vectors of dimension 

12. 

2.4 The Unified Least Squares Approach 
- - 

The observation equation (2.36) is in the form that requires probably the most 

simplified application of least squares: only condition equations are involved and 
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each condition contains only one observation (2). Minimization of the function 

4 = vtwv 

with respect to the parameters, x, produces normal equations of the form 

, 
Ni=t’ (2.41) 

where 

N’ = BtWB (2.42) 

t’ = BtWf 
.- - 

f. -and 2 = N’-It ’ is the vector of parameter unknowns. 

At this stage it is necessary to give a brief explanation concerning the weight 
. . - matrix, W. Each observation is assigned an a priori standard error, oli, its value 

based upon the capabilities of the instrument used and a degree of operational 

experience. For the observed.angies the default standard error is 0.0005 gons. -.- 

All observations are assumed independent of one another, i.e.: 

COV(Zi, Zj) = 0 Vl/li # lj s 

Therefore the a priori variance-covariance matrix, &u, is an n x n diagonal matrix, 

the ith diagonal term being at where li is the ith observation. The weight matrix 

is its inverse: 

W=Qh’ . 

‘. 

- - 
- Finally there remains the task of establishing the reference datum, i.e. fix- 

ing the seven parameters that will position, orientate, and scale the network. 

As mentioned in the introduction (section l), depending on whether a local or 

17 



object system is used, this can be done by fixing coordinates, theodolite orien- 

tation parameters, or distances. In the case of distance, this is simply achieved 

by giving the observation a very large weight (small standard error) thus re- 

stricting any variation. For parameters, two approaches are open. First, one 

can eliminate the fixed parameter from the normal equations. Or, second, the 

parameters can also be treated as observed quantities: applying a large weight 

to an “observed” parameter will hold it invariant in the adjustment. The latter, 

the unified approach, has been chosen because it has the advantage of general- 

ity: if each parameter approximate value is accompanied by an a-priori standard 

error it can be constrained to any degree by the user, independent of input and 

computational routines. 

.- - Mikhail (2) gives two derivations of normal equations that correspond to 

the unified approach. Here let us consider the observation equation of the ith 

parameter in the format of (2.34) 

. . 
- dxi = (20 - Xc)i + Vi (2.43) 

and its contribution to the normal equations, where x0 is the initial approxima- 

tion, xc the initial approximation updated after successive iterations, and dx the 

unknown parameter incrementation of the current iteration. Grouping all the -- - 
parameter observations, assumed independent, together the equation: 

Ids = fi f vz 

is obtained, I being the u x u identity matrix and the other elements u x 1 

vectors. Its contribution to the normal matrix is: 

PW,,I 5s w,, 

- md to the right-hand-side vector 

PW,,f - Wzzfx 

where W,, is the weight matrix of the observed parameter. Hence the normal 
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equation becomes: 

(N’ + Wz,)* = (t’ + Wmfz) 

or 

N2=t . (2.44) 

The components of equations (2.44) and (2.42) have the same dimensions, hence 

the introduction of the unified approach has no effect upon the format of the 

normal equations. N is a u x u matrix, u being the number of parameters, whilst 

? and t are vectors of dimension u. 

2.5 Structure of the Normal Equations 

The format of the normal equations is based upon that used in bundle ad- 

- justments: the vector of parameter unknowns, x, is arranged in such a way that 
. . - the non-zero coefficients of the corresponding normal matrix lie within a struc- 

tured pattern, resulting in reduced storage requirements and greater efficiency of 

solution algorithms. Consider any observation of type “theodolite-object” (the -- 

only type that occurs in the analogous bundle adjustment) of the form derived 
-- - in 2.35, i.e., 

B18+B2b=.f +v 

or 

=f+v (2.51) 

where B1 (order 6 x 1) contains the ‘coefficients of the theodolite parameters, 

-ard B2 (order 3 x 1) those of the object point. Also assume that the vector 

of parameters A is ordered so that all those associated with theodolites are at 

its head, followed by those of the object points. Finally, partition -the normal 
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equation into: 

N=.(; ;) t=(;) 
where N is square of order m x 6 (m = number of theodolites) and N is square 

of order n x 3 (n = number of object points). Both N and N are symmetric since 

N is symmetric. Now the contribution of 2.51 to the normal equation is given 

by: 

_ normal matrix: 

BTWB = 

right-hand side: 

BTWf = 

- 

B:WB1 B:WB2 

(BfWB# B;WB2 > 

B;‘W f 

B;Wf 

. 
The Bf WB1 term will be assigned to matrix N, as only theodolite coefficients 

are concerned. It is in fact a 6 x 6 matrix whose diagonal lies on the main diagonal 

-- 

-- - of I’?. The cross product term BfWB2 is located in E and is a 6 x 3 matrix. 

BiWBz, referring only to object point parameters, is a 3 x 3 matrix lying on the 

diagonal of i’?. Since (at present) theodolites cannot observe theodolites, object 

points likewise, we are at the bundle adjustment structure of N, where both i’? 

and fi have strictly diagonal forms, see fig. 4. In past work at SLAC it has often 

been desired to incorporate collimation type observations between theodolites: 

an observation of type “theodolite-theodolite.” Clearly the diagonal structure 

of j$ can no longer be maintained as the cross term B:WBz will also lie within 

$-This is easily resolved by storing the entire upper half of I$ (symmetric) as 

a vector (see Appendix 1). At first this measure appears rather wasteful, but 

in fact a matrix of this size has to be stored and inverted during the solution 
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procedure anyway. Therefore the addition of “theodolite-theodolite” capabilities 

has no detrimental effect upon storage requirements and execution speed. 

The one remaining problem is the inclusion of distances. These observations 

could possibly be of the types “theodolite-theodolite” and “theodolite-object” 

-- - (both already catered for) or, as is usually the case, “object-object.” Such an 

observation type would destroy the diagonality of l?, usually the largest partition 

of N. One obvious solution is to group together object points (in the parameter 

vector) that are involved in distance observations. The resulting format would 

henceforth require 3 x 3 partitioning of the normal matrix - a most unpleas- 

ant thought. A more attractive alternative is to ensure all distances are of the 

type “theodolite-theodolite” by transferring object points included in distances 

to the vector of theodolite parameters. Although inelegant, this proposal alle- 
- 

%&es the necessity to sort observations into three different groups and allows 

retention of the less cumbersome 2 x 2 partitioning. In fact, the principal nor- 

mal forming and solving algorithms remain virtually unchanged by structural 
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-. 

alterations caused by the addition of distances observations. One disadvantage 

does occur, however, with the introduction of dummy orientation parameters as- 

signed to the transferred object points. They are assigned zero values and do 

not affect the adjustment, although the size of i$ is unnecessarily increased. This 

could be avoided, but only to the detriment of simplistic algorithms. Alternately 

these additional parameters can be eliminated by deleting the necessary rows and 

columns from I’?. In 3DCD neither of these cures are presently used because the 

number of distances in a network is relatively small and, hence, the reduction 

of efficiency is minimal. The final structure of the normal equations is shown 
- 

- 

in fig. 5. Note that N is divided into m x n submatrices (of order 6 x 3 each), 

where m is the number of theodolite stations (not including distance stations), 

and n the number of object points. These submatrices are referred to as xij: 

.- - if one considers the pointing from theodolite station i to the jth object point, 

-then the B: WB2 term is added to Nij. Similarly the non-zero diagonal of I? 

is divided into n 3 x 3 submatrices. In fact each submatrix is symmetric hence 

only the upper triangular section is stored in vectors of length 6. Each submatrix 

is referred to as fij. 
/-m-+--d- 

m = Number of theodolite station parameters 
- - d = Number of distance pcint parameters 

n = Number of objet! point parameters 
8-88 6095A5 

I 

Fig. 5 
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2.6 The Solution Procedure 

First, let us clarify that: 

m = number of true theodolite stations 

d = number of distance related points transferred to the list of theodolites 

n = remaining number of object points 

c=m+d . 

From 2.44, the solution of the normal equations is given by 

A = N-It . (2.61) 

Let A4 be the inverse of the normal matrix, such that: 

(2.62) 

- where Ir,I2 are identity matrices of dimension m + d and n, respectively. Ex- 

pan-ding 2.62 gives the following equations, 

-- - 

ltiii + NMt = I1 a) 

ii%f+%ti=O b) 

w%+i;r32=0 c) 

$a+fiti= I’ d) 

- - 
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Hence, to summarize, the inverse normal matrix consists of the partitions 

n;i = (I\i _ pfi-1$)-l 

M  = -j&$7&y-1 . 

2i;r = k-1 _ fi-1N’M 

Equation 2.61 is now written in the form 

-. (i)=($ E)(Z) 
which, upon expansion, yields: 

(2.63) 

(2.64) 

(2.65) -- 

Equations 2.64 and 2.65 express the values of the solution vector. Described below 

are the necessary computational steps required to arrive at numerical values. 

1. Inversion of fi-l: fi is divided into symmetric submatrices of order 3 x 3, 

stored as 6 x 1 vectors. Each submatrix is individually inverted (see 3 

below), i.e., 

NI 0 
-. . 

0 -. . 

fin I 
-1 

= 
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2. Forming R = fi - xI?--lN’.: 

6m, 3n 

. . 
- 

‘NI&l . . . . . . &&l 
. . . . . 

. . ; . . 
N&-p . . . . . . xmnlip 

6m, 3n 

.- t 
Nil 

. 

. 

. . . 
-t 
Nln 

. . . 

. . . 

. . . 

. . . 

-t 
N ml 

. 
Xn 

3n, 3n 

r11 
I I1 

. . . . . . . ZZZ . 71321 . . . . . . 
rim 

. 

. . 

fmm 

where 

R is symmetric, therefore only the upper half need by calculated. To avoid 

storing Nfi-l? each submatrix, rij, is evaluated, placed in a 6 x 6 tem- 

porary matrix and then subtracted from the relevant section of i’? (stored 

in vector form). 

3. Inversion of R: R is a symmetric matrix of order (n + d) x (n + d) stored in - - 
vector format (see Appendix 1). The method of inversion chosen uses the 

modified Cholesky UtDU decomposition, where D is a diagonal matrix and 

U is an upper triangular matrix with all elements on the leading diagonal 
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equal to 1. The inverse is given by: 

h-1 = U-‘D-l(U-‘)t 

Let: 

u= _ 

1 u12 u13 . . . Ulc 

1 u23 

*. . 

*. 

1 1 D= . 
Then the algorithms for obtaining U and D from the elements (nij) of i’? 

are as follows: 
i-l 

& = ??,;i - xdkkU:i i : 1 + C 

k=l 

i-l 

Uij = (?Zij - C dkkUkiUkj)/& 

. k=l 

-- - 
The inverse of U, denoted as V, is given by: 

j-i 

“ij = % - c 

i: c-+1 
uikvkj. 

k=i+l 3 ':c-+i+l 

where V is of the form, 

1 ‘ul2 2113 . . . WC 

1 2123 

1 
*. . 1 

- - 

Y 

4. Calculation of Q = ?-Nfi-‘?‘: The evaluation of Nfii-l has already been 
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obtained in 2). Therefore: 

6c, 1 6c,l 6m, 3n 3n, 1 

and so 

.- - 

Each submatrix Qi is a 6 x-1 vector and overwrites the vector Z?i in terms 

of storage. Note that the dimension of Nfii-lF is smaller than that of ?‘, 

hence some elements of ? remain unchanged. 

5. -Produce Ak(? - Efi-l?‘) = &fQ = i: Th is is a straightforward matrix _ 
. . - multiplication adapted to the structures of A.? and Q. The vector i is 

divided into c individual 6 x 1 vectors such that 8i contains the increments 

to the ith theodolite station parameters. 

6. Calculate 5’ = ? - ?b: 
-- - 

Sl 
. . . i-’ . . 

ST& 

3n, 1 

--G&l 
. . . N 

. 

. 

. 

. 

. 

. 

-Lm 
. . . . . . N 
3n, 6m 

61 
. . . 

-1 

. . . 

irn 

6m, 1 

and so 
m 

si = C whisk . 
k=l 
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7. Produce fi-l(5!’ - $&) = k-IS = 8: 

r 
61 

. . . 

. . . 

&z 

3n, 1 3n, 3n 

Sl 

. r-j 
&lSl 

. . . 
- 

. - r : I . . . . 

ST8 lV;‘& 
3n,l 3n, 1 

8 is segmented into 3 x 1 vectors. Each ith subvector is simply evaluated 

by forming I?%r’Si and refers to the parameters of the ith object point. 

8. 8 and 8 are now used to update the parameter values and the next iteration 

is initiated by returning to the formation of the observation equations. 

This procedure is repeated-until convergence to a specific preset tolerance 

occurs. A solution is deemed convergent if the average absolute value of all 

coordinate parameters is less than 0.01 mm, i.e., if t = m + d + n (the total 

number of points in the adjustment) then: 

i:l I Xi < 0.01X t . 
i=l 

Similarly for Y and 2 coordinate parameters. 

-- - 
2.7 Inversion of the Normal Matrix and! Production of Statistics 

Once the least squares solution has been .obtained it is necessary to produce 

various indications of how “good” the fit is. The first source of information is 

the calculation of the observational residuals produced by comparing observed 

values with those calculated from the final parameter values. Examining the 

residuals allows one to detect inaccurate pointings. Also from the residuals one 

can produce a statistic called the reference standard error given by: 

vtwv 
J- 

tTo= - 
r 

where r is the degrees of freedom in the adjustment. In the case of a unified least 
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squares approach r is equivalent to the number of “real” observations (angle and 

distances). This statistic clearly expresses the average of the ratios of u priori 

standard errors of observations with the actual residual obtained. Therefore the 

expected value of oO is unity if all observations are consistent with the adjusted 

parameters. 

Finally some idea of the precision of the adjusted parameters is required. The 

covariance-variance matrix of the parameters, as all least squares texts will prove 

-. [see (2)], is given by 

Q AA =a,2N-’ . 

_ Therefore the standard error of each parameter is obtained from the diagonal of 

the-inverse normal matrix, already derived in equations 2.63. Recall the parti- 

-tioned rotation of N-l, i.e.: 

-- 

. 
-- - and that M has already been produced during the solution procedure. Hence 

there remains the formation of 

and 

- - ri;r = i-1 _ (Nfi-‘)‘a . 
‘, 

The procedure for their calculation takes the following steps: 
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1. Formulation of Ni’?-l: 

-11 
. . 

. 
- 

k Nnl . . . . . . 

Fin 

. 

4 

. . 

rrnn 

. . . . . 

. . . . . . 
- 
Nmli?;’ . . . Nmnfiil) 

6m,3n 

The submatrices fiz:’ were evaluated during the solution procedure. Each 

6 x 3 submatrix rc“,jfi?’ is formed in turn and overwrites YVij in the pro- 

- gram. 

- 2. Produce -A?xfi-l = M: Recall that Ak is a 6c x 6c square symmetric 

matrix and (Nfi-l) is of order 6m x 3n. Obviously the dimensions are 

not compatible for multiplication due to the distance points that have no -- 

contribution in N. Therefore partition fi and Nfi-’ as follows 
-- - 

Then 
. 

n;iEfi-1 = mnl 

( ) Fin1 

- We will see below that only the matrix product rtznl of order 6m x 3n is - 
necessary and is calculated by a multiplication algorithm adapted to the 

respective structures. The produce is stored in a system of submatrices 

similar to that initially used for w (see section 2.5). 
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3. Produce (?iffi-l)?@: R everting to the partitioned notation introduced 

above, this produce is expressed as 

(ni 0) Ttnl 
i > 

= n:rhnl 
m nl 

thus indicating that the prior formation of Etnr was unnecessary. In terms 

of submatrix notation, the product is: 

3n, 6m 6m, 3n 

- .- 

of which-the ijth term is 

Pij = 2 ?$.%J-j e (2.71) 
k=l 

-. - 

Note that the 3 x 6 submatrices ~j actually contain (NijNJT1) formed 

in step 1). Only the diagonal terms (Pii) need to be calculated since we 

are concerned with standard deviations of final parameters and not their 

covariances. 

Now that &f and A? are available the standard errors are obtained by locating 

the relevant diagonal term, taking its square root and multiplying by oO. 

2.8 Relative Errors 

Program 3DCD also permits the calculation of transversal relative errors 

between selected pairs of object points. (Note: distance points, i.e., scale bar 

targets, and theodolite stations have not been included in relative error determi- 

nations.) 
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Suppose the ith and jth object points have been selected. The first step is to 

produce the necessary 6 x 6 submatrix of the lower-right partition of the inverse 

normal matrix (ti) i.e., 

Qij = 

The expression for the P submatrices have already been derived in eq. 2.71. Since 

Pii and Pjj are calculated during the production of the a bsolute standard errors, 

it remains to obtain Pij. 

Let the upper-half of the symmetric Pii matrix be represented as: 

-. . 
Similarly for Pjjs Also: 

-- - 

Pii = 

Pij = 

QZiZi QyiZi QZiZi 
QYiYi Qyizi 

QZiZj QZiyj QZiZj 

QzjYi QYiYj QYizj 

QZjZi QyjZi QZiZj 

From these matrices two error values are obtained as follows. A relative error in 

the 2 direction is obtained directly from the &ii matrix. 

aLj = uo2(QZiZi + QZjZj - 2qzizj) 

-- 

- 
where o. is the reference standard error (see section 2.7). The second value is the 

transversal error of the relative error ellipse in the XY plane i.e., the distance 

from the center of the ellipse to its perimeter, perpendicular to the line connecting 
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points i and j (see fig. 6). Let: 

Qzz =’ Qzizi + qzjzj - zq,i,j 

QYY = QYiyi + qyjyj - 2qyiyj 
Qzy = Qyiz< + qyjzj - qziyj - qzjyi 

From these three values the relative error ellipse parameters are calculated: 

-. L = \/(4Qiy + (Qzz + QyJ2) 

= = go(Qzz + Qyy + L)l/“/h 

! b = %(Qzz + Qyy - ~)‘l”/Jz 

29 = tan-’ . . - (9.““6,,) 

where a and b are the semi-major and semi-minor axis respectively and 8 is the 

angle between the semi-major axis and the z axis (see fig. 6). 
-- 

-. - 

a-88 
6095A6 

Fig. 6 
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If E is the grid bearing of j from i, then the angle, E, between the semi-major 

axis and the line connecting i and j is given by 

E=;+e-B 

and the transversal error is obtained from: 

c$ = a2 cos2 E + b2 sin2 E . 

-- 

-- - 

- - 
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3. INTER2 - A DATA FORMATTING PROGRAM 

3.1 Program Description 

3DCD was written with the intention of combining it with a SLAC produced 

data collection package thus forming a system similar, but completely indepen- 

dent, to the ECDS-PC system. Until this is achieved, program INTER2 acts 

as an interface between the raw data collected by the ECDS system and the 

3DCD adjustment program. One of the main functions of INTER2 involves the 

calculation of approximate parameters for theodolite stations and object points. 

It must be mentioned that INTER2 will only accommodate a limited range 

- 

of coordinate reference system constraints. In the case of an “object system” (see 

section l), there are no problems, but for “local” systems the program expects 

the datum to be defined by fixing the six parameters of a single theodolite station 

(as is most often the case). INTER2 is capable of converting any ECDS raw data 

file-into a formatted input file for 3DCD, even including “theodolite-theodolite? 

observations, as long as right-handed coordinate systems are maintained and 
- 

units are always gons and millimeters. 

3.2 Theodolite Approximate Parameters 

-- 

-- - During the observation of a network using the ECDS system each theodolite 

must undergo an initial orientation procedure from which approximate parame- 

ters for that theodolite can be calculated. This procedure differs slightly for the 

two different reference system types: 

- - 
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Object System -From the coordinates of the object control points, the direction 
of the X-axis is estimated, the theodolite turned along that 
direction, and its horizontal circle set to zero. This defines 
the yaw (rotation about Z-axis) as 0. The zenital angle is also 
recorded. The theodolite is then turned through approximately 
300 gons (defining the Y-axis) and the zenital and horizontal 
angles noted once again. Finally an object control point is 
observed and its distance from the theodolite guestimated. 

Local System - As above except that the sights along the X and Y axis are au- 
tomatically assigned horizontal directions of 0 and 300 gons re- 
spectively and zenital angles of 100 gons. The reference theodo- 
lite is then observed and its distance guestimated. 

In the object system the axis orientation observations in the vertical circle are 

used to calculate estimates of the roll (rotation about Y-axis) and pitch (rotation 

about X-axis). Clearly the telescope should be set to a horizontal position during 

the -above procedures to ensure reasonable approximations of roll and pitch. The 

-rotations are simply obtained by converting the X-axis and Y-axis vertical angles 

into radians. It is assumed that these angles are relatively small, hence the effect 

of applying roll first to the theodolite axis before calculating pitch is deemed 

unneccesary. 
-- 

-- - In order to approximate the coordinates of the theodolite stations consider 

the cosine direction vector, V, obtained from the zenital and horizontal directions, 

i and X, to -a reference point with known coordinates (X, Y, 2). 

(3.21) 

- - 
Using the rotation matrix R = R, o R, o R, (where R, is an identity matrix) 

described in section 2.2, the .vector g is transformed to the network reference 

system, i.e., making it compatible with X,Y,Z. Multiplying by the estimated 
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distance, d, we obtain 

and subtracting the result from the values X, Y, 2 gives the approximate coordi- 

nates of the theodolite station: 

(z&(f)-(E) 
(see fig. 7). 

- - 
AZ 

-1 
"(Xo,YotZ,) 

D //------~-x 
__-- __-- 

- 
Fit. 7 

s-is 
6C95h7 

3.3 Object Point Approximate Coordinates 

Once the theodolite station approximate paramters have been obtained, 

INTER2 reads the pairs of horizontal and zenital angles from which it deter- 

mines a list of object points. 

- The approximate coordinates of each object point are determined by individ- 

ual least squares adjustments that assume the theodolite stations fixed, and that 

minimize the sum of the perpendicular distances, Di, from the cosine direction 
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. 

. 

vector of each angle observation pair (see fig. 8). 

- - Fit. 8 

,Y 

-- Vector projected 

onto XY plane 

- - 

Fig. 9 

a-88 

6095A9 

-- 
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First, for each observation pair to object point N, calculate the cosine di- 

rection vector as in 3.21, and transform it from the theodolite system to the 

network reference system by applying the rotation R described in section 3.1. 

The result is the vector z~,y~,z~. Now, referring to fig. 9, 7’ is the theodolite 

station and TH the vector ZN, ye, ZN. Let TN have cosine directions CC, y, z. In 

the right-angled triangle THN: 

TN2 = (X - XT)2 -i (Y - YT)2 + (2 - zzg2 

where X,Y, 2 are the unknown object point coordinates and XT,YT, 2~ the 

theodolite station coordinates. The angle between the sides TN and TN is 

defined by 

k’ 
case = gg 

& 
This is also the angle between the vectors TN and TH, given by: 

and 
X--XT Y - YT 2 - & x= 

-- - TN ‘= TN ‘= TN 

Now, 

- - 

Writing 

=xN(--T)+YN(y - YT) + zN(z - zd 

(all known quantities) 

-- 



then, 

TN=xNX+yNY+zj+--hN . 

so: 

D2 = TN2 - TH2 

= (x - xT)2 + (Y - YT)2 + (2 - &‘)2 - (XNX + ?/NY + ZNZ - hN)2 

D will vary as a function of coordinates X, Y, 2. This variation may be described 

by the partial derivatives of D2 with respect to X, Y, 2. 

- ;SD2,‘6X = (X - XT)-- (XNX + yNY + a?Nz - hN) ‘XN 

= (XNZ - 1)x +xNYNY+ N N X 2 .&(XNhN-XT) 

Similarly for SY and 62. The least squares method will minimize C 03 if the 

sum of the partial derivative equations above for each observation is equal to 0, 
- . i.e., 

-. - 

c XNYN 

c XNzN 

) CXNYN . CXNZN X 

C(Y& - 1) C YN~N 

c YN~N C(& - 1) 

)(Y)=(;izzz~) 

2 

or Nx = t. -Note that N is symmetric, hence. is stored as a vector of dimension 

6 (see Appendix 1). Its inverse is calculated (as for the inverse of Jk in section 

2.6) and hence the values of X, Y, 2. 

-- 

- - 
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4. SETOUT - CALCULATION OF SETOUT ANGLES 

In certain industrial survey situations misaligned elements need to be shifted 

to their ideal positions (with respect to an “object” reference system). One 

method of achieving this is to calculate setout angles for theodolites of known 

position, intersect the ideal position by turning the theodolites through these an- 

gles, and adjust the element position so that it coincides (as close as observational 

accuracy permits) with that of the intersected point. 

__ 

If the uobject” system has been measured using the ECDS system and ad- 

justed via 3DCD, the theodolite coordinates and orientation parameters are pre- 

determined and it is a simple task to obtain the setout angles. 

Recalling eq. (2.24) and letting X0, Y,, 2, now be the ideal coordinates, then 

_ the cosine direction vector of the setout pointing is obtained in the local theodolite 

system, i.e.: - 

where p is the horizontal setout angle, X the vertical. Therefore: 

-. - X = sin -l z 

p = tan-l(x/y) 

Note that ,U is the horizontal angle with respect to the Y-axis, and is simply 

converted to its equivalent with respect to the X axis by subtracting 100 gons. 

Similarly X is converted to a zenital angle by subtracting it from 100 gons. 

- - 
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Further program documentation 

Programmers charged with updating the software will find extensive in-line 

documentation contained within the source code listings, as well as variable lists 

for all three programs in files SDCD.DOC, INTER2.DOC, and SETOUT.DOC. 

-- 

-- - 

- - 
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Appendix 1. Vector Storage of Symmetric Matrices 

Since its contributions are of the form BWB, the normal matrix of a least 

squares adjustment is symmetric i.e., (nij) = (nji). In this case it is only neces- 

sary to store the upper-triangular part of the matrix and the most space efficient 

storage is that of a vector representation. 

__ 

Let the upper-triangle of the matrix N be: ntl n12 1213 7214 

n22 n23 n24 r. 1. 7233 n34 

n44 

- Then its column-wise vector equivalent is: 

(nil n12 n22 7213 n23 n33 n14 n2.4 7234 n44) . 
. 

- 

The ijth term of N can be located in the vector via the expression: 
-- 

Vector index = I-V-1) +J 
2 

where I = ymx(i, j) , J = min(i, j). Similarly, if the dimension of N is n x n, 

then the length of the vector equivalent is: 

1= n++l) 
2 - 
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Appendix 2. User’s Guide 

INTER2: 

Two input files, both created by the ECDS system, are required for INTER2, 

one containing the raw observation data, the other the network reference control 

data, i.e., fixed parameters and scale-bar data. To invoke the program, simply 

type INTER2, and a prompt panel appears on the screen requesting the name 

of the observation data file (input file). There are few limitations on the naming 

of this file, although it must not have a file extension (see MS-DOS reference 

manual) .INP. The suggested convention is: 

-- 

fileid.RAW 

where fileid indicates the location of the survey network. The control file is then 

- expected to have the same filename as the input file with extension.DAT, hence - 
-under the suggested convention this would be: 

.fileid.DAT . 

Finally the output is written to: 

fileid.INP 

therefore the reason for excluding .INP as a file extension for the raw datafile. 
-. - 

Notes: 

1. The character length of point names in’INTER2 is limited to eight, whilst 

those of ECDS can be up to sixteen. Renaming of points, therefore, may 

well be necessary. 

2. Theodolite stations are still identified by integer indices. Due to the pos- 

sibility of “theodolite-theodolite” observations, object points can no longer 

use the same O-9 identifiers. - - 
3. Ten theodolites stations are permitted in INTER2, in comparison to eight 

in the ECDS. If the maximum number is necessary then the tenth-theodolite 

should be indexed as 0 (zero). 
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INTER2 produces a input file for 3DCD, including the calculation of approximate 

parameters for both the object points and theodolite stations. Therefore one can 

now run: 

SDCD: 

Typing 3DCD invokes the adjustment program, producing a prompt panel 

requesting the name of the input file, i.e., 

fileid.INP 

Three output files can be produced: 

fileid.OUT 

fileid.DBG 

fileid,STN 

&he first containing the overall adjustment results, the second certain debugging 
. . - . information (see below), and the third station parameters for use in SETOUT. 

During the program execution, the user is informed of the progress of com- 

putations via output to the screen panel. The number of the current iteration -I 

is shown, along with the sum of the absolute X, Y, and 2 coordinate increments 
-- - from the previous iteration. The user will also be told whether the solution has 

converged or diverged, although this will of course be obvious from the afore- 

mentioned X, Y, 2 incrementations. 

There are three output options available when executing SDCD: this option 

is entered on the sixth line of the input file after the specifier “LISTING =“. 

They are: 

LONG - default option: observation residuals and final parameter 
- - values are written to fileid.OUT. 

DEBUG - as well as the output written under option LONG, a second 

output file - fileid.DBG is created containing the observation residuals 
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and parameter incrementations after each iteration. This information 

is of assistance in detecting erroneous observations and blunders. 

STATS - this option adds a list of the standard errors of the final 

X, Y, 2 coordinates of both theodolite stations and object points. 

Notes: 

1. Each approximate parameter in the input file has an assigned a priori 

standard error with which we can vary the degree of constraint on points. 

2. Theodolite station names can be up to eight characters in length. 

3. All distance units are in millimeters, angles are given in gons. 

4. When using option STATS one can also obtain relative error parameters 

between selected pairs of points. At the bottom of the input file created by 
,. -- 

INTER2- is a heading: “Relative errors”. The user cca.n add a list of pairs 

of points using the format 

A8, 2X, A8 - 

e-g., 

POINT1 n n n n POINT2 

-. - Note that all pairs must consist of object points only: theodolite stations 

and distance points are not accomodated and will be ignored if entered by 

accident. 

5. A batch program is available that executes both INTER2 and 3DCD, per- 

mitting editing of files between programs. Type RUNSDCD and follow the 

prompts. 

1 

SETOUT: 

: 
1 

- -Two input files are necessary, the first containing the theodolite station pa- 

rameters from the 3DCD adjustment and named: 

fileid.STN 
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The second must be created by the user and contains the list of setout points 

and their ideal coordinates. A suggested name is: 

fileid.IDL 

Data should be entered into this file using the format: 

A8, 2X, 3F15.5 

facilitated by noting that the decimal points of the X, Y, 2 coordinate s should fall 

on the 20th, 35th and 50th columns respectively. The output file is automatically 

assigned the name: 

fileid.SET 

Notes: 

,. -- 1. The setout coordinates obviously must be in the same system as the theodo- 

lite stations. Therefore it is unlikely that SETOUT should ever be used in 

conjuction with a network measured in a “local” system. 

--- 

: 

- - 
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