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ABSTRACT 

. . 
We construct a new class of non-topological soliton stars which appears in 

field- theories with non-linear matter interactions coupled to classical Einstein 

gravity. If 40(- 10-l - lo4 GeV) is a free-particle inverse Compton wavelength 

and mpl is the Planck mass, their energy density E: - c$:, radius p - mpl/ @, 

-- 

-- - global charge Q- m$/ c#$ and mass M - rn$ / 4: obey a generalized Chan- 

drasekar limit. 
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In 1986, Friedberg, Lee and Pangfl] g ave a complete formulation of scalar 

and fermion non-topological solitons where Einstein gravity played an important 

role: soliton stars. The prototypical solutions examined were of two sorts: 

i) Very small with radius p - c$;l (40 is a free-particle inverse compton 

wavelength which we take to lie in the range - 10-l - lo4 GeV and 

mpl is the Planck mass) with very large scalar field strengths 4 - mpl: 

mini-soliton stars. These were first studied by Ruffini and Bonnazola 

and Breit, Gupta and Zaks [2]. Th e ver weakly) interacting case was ( y 

first studied by Colpi, Shapiro and Wasserman [3]. . _-. 
ii) Very large radius p - m$/ 4: with huge mass M - m$/ q$: M - 1012 

solar masses and p - 10-l light years for 40~ 300 GeV. We will call 

these very large soliton-stars. 

, We regard the soliton stars appearing in the literature [1,2,3] thus far as either 

too-large or too small for interacting matter fields. Mini-soliton stars have scalar 

.field strength 4 -mpl and energy density s - 4: m$. If an interaction X44 

with X - 1 is introduced, it would induce an energy density - X rn$ if the field 

strength remained 4 -mpl and this would completely destabilize the solutions. 

Mini-soliton stars with tiny self-interaction have been considered [3] but with X - 

4: I mgl - 1O-32 for +0 - lo2 GeV they suffer a fine-tuning problem (why is 

X so small?). Even if we were to find solutions to the classical coupled Einstein 

and scalar field equations for soliton stars with 4 - mpl and E: - rn$ at the 

classical level, one has to wonder what role quantum gravity would play for such 

huge energy densities; to answer this we would need to know the correct theory 

of quantum gravity. 

‘Very large soliton stars’ are in our opinion too large because their average 

energy density E - 4: /m$is so small. How do such large objects, light-years 

across, get into causal self-contact and establish coherence in the matter field 4 - 
&d-to-end? If they are to be formed in the early universe, how could they be 

larger than the particle horizon? 
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In this paper we introduce a new class of non-topological soliton stars which 

avoids the above problems: Q-Stars. They consist of an interior (I) with radius 
.3 

P - mpl I 402, a surface region (S) of thickness - 4; 1 and an exterior (E) 

where there is no matter so that, in the spherically symmetric case, the metric 

is Schwarzchild. The energy densities are low E - 4: so quantum gravity plays 

no role. We call them ‘Q-Stars’ because the surface region is a specific sort of 

non-topological soliton or Q-ball [4,5]. 

In order to see clearly the structure of Q-Stars, we start with a simple exam- 

ple. Consider the case of one complex scalar field @  in a spherically symmetric 

metric. 

ds2 = -e2u dt2 + e2’ dp2 + p2 (da2 + sin2 Q dP2) (1) 

The metric u(p), B (p) is ime-independent while the complex field @  has the t 

time-dependence of a rigid rotator. 
- 

and has a potential energy density U(@t@). The theory has an unbroken global 
. 

U(1) (or SO(2) f i we use a two-component real field) symmetry 
-- 

-- - 

so there is a conserved current 

and a conserved charge 
- - 

Q = 
J 

fi dx’ dx2 dx3 j” (5) 

(3) 

(4 
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W2 

w = 2 e-2u42 

(6) 

(7) 

The conserved global charge Q stabilizes the Q-Star against decay into the 

vacuum; hence the name. There is a kinetic energy density 

so that the equation of motion for the matter field 4 is 

e-2u d24 I-- 2 
&,2 + ‘j + 

(8) 

(9) 

-The Q-Star equations have a dimensionless quantity 

. . E2 =87rG4Z (10) _ j . 

which is very small; E - lo-l6 for 40- 300 GeV. We will use the smallness of this 

quantity to great advantage working to lowest order in E throughout this paper. 

-- - First, rescale all dimensionfull quantities with 40. 

p”=p40 
8 = d/40,6 = w/40 (11) 

K KC = w/ 4:, v/4:, u/4; 

In this paper, we will use the notation that all quantities with a ‘twiddle’ have 

been resealed with respect to 40. 
- 

Y The Q-Star ansatz is illustrated in Figure 1. It consists of three regions: an 

interior (I), surface (S) and exterior (E). W e d iscuss each of these regions below. 
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I. Interior Region 

_. - - 
There is a thick interior region (I) with radius pB- - mpl/ 4:. For do- 300 

GeV this will be - .Ol - 1 cm., The outer edge of (I) in units of 4;l (inner edge 

of the surface region S) is given by 

p”s- = E-%s (12) 

_- 

‘,, 

. . 

-. 

p”’ ET-a: (13) 

with S a scale of order 1 and 0 5 x 5 1 in the interior. In the interior, the 

metric and matter fields vary smoothly over distances c-l so that 

du do d$ 
- - O(E) 

dp’ @  dF 

du do d& 
dz’dz’dx 

- - o(1) 
(14) 

E and %, on the other hand, are 0 (1) in the interior so that we can imme- 

diately solve the matter equation (9) to lowest order in E : 

- v=o 

(15) 

(16) 

Now define the metric fields 

A = e-20 

B = e-2u (17) 
B = $e--2U = $B 

Equation (15) 11 a ows us to eliminate & with respect to B and rewrite 6,@ in - 
Eerms of B alone in the interior. We must then solve the Einstein equations 

G pv = 8rGTp,. 
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. ;’ (18) 

I (respectively the Gtt and G PP equations) subject to the boundary condition that 

there is no matter for x < 0 . 

A(x = 0) = 1 
. _-. 

We will get a second boundary condition on B(x = 1) 

of the interior region (I) with surface region(S). 

S: Surface Region 

The Q-Star ansatz has a very thin surface region S with interior (exterior) 

. . && ET- (ES+ ) . 
- . 

F&9+ - p”ss_ 
EL 

- ok) (20) 
-- 

(19) 

by studying the interface 

The surface thickness is thus of order 4,-l, the particle compton wavelength, 
-- - 

which for 4. - 300 GeV is about lo-l6 cm. The matter field varies rapidly 

within the surface but the metrics do not. For p”s- 5 p” 5 Fs+ 

(21) 

Y -‘We thus take the metrics to have constant values u,,,.f,,, and geurface within 

the surface and write the matter equation (9) to lowest order in e (remember that 
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all dimensionful quantities have been resealed with respect to 40) 

This equation is easily understood by an analogy first given by Freidberg, Lee, 

and Sirlin for non-topological solitons in the absence of gravity [4]. If we think 

_-. of p” eii*urf=a as the ‘time’ and q as a ‘distance’ then eq. (22) is just Newton’s 

equation for a mechanical particle rolling around in a ‘potential’ Fau,.face - 6. 

There is no ‘friction’ because $ + y - O(E) within the surface. Thus, a 

first integral of eq. (9) follows immediately; within the surface 

.  .  

-. .  

The (resealed) ‘kinetic energy’ V from eq. (8) plus the ‘potential energy’ 

KLrfcace - i? is conserved. We will assume that in the exterior region (E) that 

V = iV = i7 = 0 so eq. (23) f 11 We also get a boundary condition on o ows. 

B(x = 1) (5 = 1 is also the point p” = p”s- ) because in order to match interior 
-- - 

and surface solutions (see eq. 16 or 23) 

v (1) = 0 

[iv- i&=1 = 0 

which gives the boundary condition on B(1) = G2e-2U*urf=e. Together with eqs. 

(15, 16, 18, 19) this completely defines the interior region (I) as a solution of two 

coupled first-order equations in A and B with boundary condition A(x = 0) and 

B(x = 1). 
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Remember that in the interior 6 (F - 6) / 6& = 0 so in order to match 

solutions at x = 1 the surface solutions must start ‘rolling‘ with 

6@ - C) 

6 
lad = 0 (25) 

, 

so that the ‘acceleration’ of J is zero at x = 1 from eq. (22). Eqs. (24, 25) give 

-. . 

a boundary condition on B(1) and, together with eq. (22), define a certain kind 

of Q-ball or non-topological soliton [4, 5, 61. For the Q-ball, and therefore the 

Q-star, to exist the potential 5 (p) must rise at least like p near p = 0, go 

less quickly than p for some intermediate region, and then rise faster than p 

as p + 00. This is illustrated in Fig. 2 with solid lines. The flatness condition 

$(L+) - O(E) for the interface of the interior and surface regions in the Q-Star 

means that Fau,,,,, = v J2 
NN 

intersects the curve U(4”) at just one point as 

- shown in Fig. 2 with solid lines. Thus, the matter field in the surface ‘rolls’ in the 

potential (solid lines Fig. 2) reu,raCe - c starting at the point g(Fs-) = Js- 

-and ending at the point &(ps+) = Js+ = 0. It must end there for one complex 

field @ because we don’t want to break the global symmetry eq. (3) for the 

true vacuum at p” = 00; that would destabilize the Q-Star by inducing Q-non- 

conservation. (An example of a Q-star with a true vacuum with a spontaneously 

broken symmetry is given in example B below). Thus, the QrStar surface is (up 

-- - to terms of O(E)) a non-topological soliton which rolls without friction between 

degenerate maxima of Esu,raCe - c: 

The Einstein equations within the surface are (see eq. (18)) 

A-1+x2 = -S2x22g 

A-l-x&e = 0 
B da: (27) 

- 

since CVBurf,,, + v - fi = 0 within the surface. Note from eq. (27) that if A 

is constant within the surface, B and dB/dx will be also (as shown in Fig. 1). 

-- 
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However, differentiating (26) once with respect to p we have 

CA-~-X& 
$ (2) = $(-29 XC) + s x2 dz (28) 

I ( so that dropping the O(E) term and integrating across the thin surface 1 5 x 5 
1 + O(E) or p”- 5 p” 5 ps+ we get the surface discontinuty in dA/dx (see Fig. 

1) 

(29) 

We of course assume that there is no matter potential energy outside the Q-Star 

.- - soU(p”L&+) =o 1, 
E: Exterior Region 

. . Outside the surface, there is no matter so the metrics are Schwarzchild -. 

A = B--l .= 1 - 
2GM iz 
-----=I-- 

P 47rsx 
(30) -- 

-- - 

with resealed @  = M/+0 the Q-Star mass in units of 40. Note that the use 

of eqns. (26, 27) and (29) is crucial in order that the metric derivatives be 

Schwarzchild as well. We neglect the mass stored in the thin surface and write 

1 
M = 4rS3h 

E3 J 
dx x2@ + 5) (31) 

0 

- 
Note that the dimensionful factor 4: cv3 = (~TG)-~/~+;~ - m$/ r$z - 105’ 

GeV for cjo~ 300 GeV means that Q-Stars obey a generalized Chandrasekar limit 
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[7]. An equivalent formula for the mass is 

1 
M = 4d360 

E3 J 
dx x”(4E - 26) e”+’ 

0 

(32) 

Eqs. (15, 16, 18, 19 and 24) completely define the interior region in terms of A 
and B = G2 e-2U so we know f and U as functions of A and B. Thus since eqs. 

(31) and (32) are equivalent, we may calculate the frequency w and the charge Q 

0 

Note from eqs. (31) and (34) that the mass and charge each grow roughly as the 

. . -Q-Star volume (generalized Chandrasekar limit). 
-. . 

Recall that for general Q-balls without gravity (not Q-Stars) the acceleration 

_ 3 (x=1) is not zero. This comes from having an effective frequency (‘SC’ for -- 
‘supercritical’) Gf, as illustrated in Fig. 2 with dotted lines. A particle ‘rolling’ 

on the dotted hill without friction would start at the circled point with non-zero -- - 
‘acceleration’ and zero velocity and roll to &s+ = 0. Thus the Q-ball solutions 

without gravity have a parametric constraint L$, 2 GzriticaI = B(1) with the 

equal sign corresponding to the infinite volume case. The introduction of gravity 

allows stars to form with G2 < Gzritical because B( 1) is fixed by the Q-ball surface 

common to all Q-Stars with a given potential 6. 

-2 W = j3(l)e2Udurfacc 
(38) 

As-M + Mblack hole, (the Q-star becomes a black hole at some critical mass 

Black hole ) e2u durface + 0 andG2 + 0 
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The complex field has effective time-dependence within the interior 

* tD = f$2 exp [i 
2 

(39) 

B = cj2e-2u does not go to zero as M + Mblack hole since B(1) is fixed by 

.the surface region of the Q-Star. An observer far away from the Q-Star sees a 

slowing of the frequency of the field as the Q-Star accretes mass until it stops 

altogether when M = Mb&k hole 

Since 6%/dQ = 6 we have the evolution of M vs Q depicted in Fig. 3. for 

particles 4 with free particle mass do. This is a generic feature of this sort of Q- 

ball which, when Einstein gravity becomes important, becomes, as Q is increased, 

a Q-Star. 

Two Examples 

L! A) We start with the simple example of one complex field !D with +(p + 00) = 

0 unbroken symmetry. Choose the non-renormalizable potential in Fig. 4. 

f . 
c = ii&J2 + i$ 

(The existence of a reflection point at @  =. 1 is unrelated to the structure of 

Q-Stars; we have chosen the coefficients in c in eq. (35) so that we will have 

nice, simple numbers in our result). 

Within the surface we have from eq. (22) 

I  

A(x = l)$ = - 6(‘euffa~ - ‘) = &[(J2 - 1)2 _ B(l)] 
64 

(36) 

- - 

and ~eurfoce + v -. 6 = 0. In the interior region 6@ - 6)/6& = 0 so the 
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4 field is related to the time metric by 

?=1+& 

g = B(1+ 4Z) 
2 

The boundary condition on B(1) is gotten from [E - c]Z=r = 0. 

B(1) = ; 

.- - . 
i 

Further A(O)=1 so eqs. (18) are completely defined for 05 x 5 .l 

A-1+x2 =- 7(1 + 3B + 4B39 

A - 1 - x& !!!! s2x2 = 
B dx 

--g- (-1 + 3B + 2B39 

(37) 

(38) 

(39) 

The interior solutions of course match up beautifully at p” = p”s- (also the point 

x = 1) with the surface region’ Q-ball solution to eq. (36) with its two boundary --- 
conditions 3 IPs- = 0, J2 (P&s-) = 1 

-- - 
3/8, the discontinuity in dA/dx is just 

2 IPS+ = 2 

+ @o = g. Since 2zj (x = 1) = 

1z=l + $ (40) 

The metric solutions and their derivatives are then Schwarzchild at p” = ps+. 

We have solved eq. (39) numerically using the computer program COLSYS 

[8] and have plotted in Fig. 1 the solution for this example when S = 1.9,G = 

336, % = 13.1~~~ and Q = 32.3~~~ with the surface region magnified. Some 

results for other solutions with the potential g in eq. (35) are given in Table 1. 
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B) We next examine the case of one complex field @  and one real scalar CT where 

the true vacuum breaks spontaneously the discrete symmetry Q --) - o. A gener- 
. 

alized version of these solitons and discussion of their properties is in preparation 

[S]. First rescale Z = a/4,and choose the potential 

The presence of the p (repulsive) term is crucial to the existence of the Q- 

Star; without it we cannot satisfykqs. (24, 25) so that the solitons examined by 

_ Freidberg, Lee and Sirlin [4] h ave no associated Q-Stars. Within the surface we 

have constant metrics, F8,,raCe + v + c = 0 and 

6(6 - @eur.face) = 3 1 9 + J2 
6 -B(l) I - 

A(l)$ = g 
(44 

= z [ p + X(ir2 - 1) ] 
--. 

The obvious generalization of the interior matter solutions with more than one 
-- - 

field 

f5(F - 6) /6& =o i=l,,,n K-0 

allows us to eliminate all the di with respect to I!? in the interior. For this example 
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in the interior while at the boundary with the surface region 

B(l) = p/2 ’ 

2C(l) = x 
(45) 

which match perfectly the boundary condition in eq. (42) for the soliton surface 

solution d&/dp” (Fs-) = 0; J2 (F-) = X lj2. The discontinuity in the space 

metric derivative is 

$s+ = glPs- + x2 (46) 

so that the metrics and their derivatives match perfectly the Schwarzchild metric 

calculated with the mass M in eq. (31) or (32). The metric in the interior of the 

- Q-Star satisfies 

A-l+ x2 = - F(3B2 + A) 

A - 1 - x & !% = s2x2 
(46) 

. -. B dx 
4 (B2 - A) 

We have solved eq. (46) numerically. A Q-Star solution with the potential eq. 
--. 

(41) is plotted in Fig. 5 with S = 2.985, G = .4277, % = 16.9em3,and Q = 

34.3es3, X = l/9. Some results for other Q-Star solutions with this potential are -- - 
given in Table 2. Note that the lower limit for w” for this type of Q-ball without 

gravity would have been Zcritical = X1j4 II -577 for X = l/9 

Conclusions 

The generic behavior of Q-balls of the sort discussed in this paper which 

then evolve ,as Q is increased, into Q-Stars is depicted in Figures 2, 3 and 6. 

For very small Q, the Q-ball rolls (with the ‘friction’ term d$ / dp”from vi2 = 

d2/dpy! + ;d/dp” it starts above the circled point ) on the dotted hill in Fig. 2 

%nd- the dotted wave form on Fig. 6 results. If the free particle mass of the 4 

field is taken to be 1 (in units of do), this corresponds to the i3 < 1 case. For 
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larger Q, but small enough so that gravity is negligible, we have 1 > w” > Gcritical. 

Near Cjcritical this almost corresponds to the situation of the solid lines in Fig. 2 

and has the waveform of dashes in Fig. 6. For Q sufficiently large that gravity 

is important we have i;i < Gcritical. The Q-star surface now does correspond 

to the solid lines in Fig. 2 and the waveform is given by the solid lines in Fig. 

6. Thus, Q-Stars are the natural continuation of this certain class of Q-ball, 

depicted in Fig. 2, 3 and 6 when Q- m$/ 4: is large enough so that gravity 

becomes important. 

We now discuss Q-Star stability. Since 6z/6Q = Z < 1 (this follows by 

considering only finite energy solutions) all Q-stars lying on the solid line in Fig. 

3 below the dashed line $? = Q are stable against break up and dispersion into 

free particles. (We have taken the free-particle mass here to be do). Further, 

their radius p - mPlf r$z >> d;l is large, so they are stable against Hawking 

- radiation [7]. 

The real danger to boson Q-star stability lies in the possible decay of @  

. . ‘to other particles. If @  + bosons were an available channel we would expect 
-. 

exponential decay in time and the lifetime of the Q-Star would be essentially the 

single Cp lifetime. If on the other hand @  + two fermions are the only @  decay - 

channels, the situation is quite different and the Q-Star lifetime is proportional --. 

to Q1i3. Cohen, Coleman, Georgi and Manohar [9] have shown that if @  + &,l~ is 
-- - 

the only decay channel, large Q-balls ‘evaporate’; their decay rate is proportional 

to the Q-ball surface area QI. They place an upper bound 

dQ 3 
dt< 

Wcritical 

192K2 cr (47) 

which is independent of the @T@J coupling. Let us estimate the Q-Star lifetime. 

Neglecting gravity, we have Q - volume (Chandrasekar limit) so 
- - 

Q N $ (;)“/’ B’/‘(l) &iS8 (48) 
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Integrating eqs. (47, 48) we get an approximate boson Q-Star lifetime 

7 > 10s7sec( 3004GeV )2 [Q1/3E Bt;l)] (49) 
0 

where we have replaced Gjcritical + B’/“(l) in eq. (47). The factor in eq. (49) 

in square brackets is O(1) ( see Tables 1,2) so boson Q-Stars may be very long- 

lived relative to unstable elementary particles but short-lived with respect to the 

lifetime of the universe. This estimate of the boson Q-Star lifetime should still 

be reasonably accurate when gravity is included because the ‘evaporation’ occurs 

at the surface where gravitational effects are minimal. 

It is easy to read off the equation of state relating the energy density s 

to the (isotropic) pressure P. Since E = W + U and P = W - U, we 

find immediately for the two-scalar field ( renomalizable potential) example B 
.- - 

4 above E: = 3 ,P + X 4,. This simple result is by no means generic; example A 

(non-renormalizable potential) has an equation E(P) which is complicated and 

-unilluminating. Nevertheless because of eqs. (23,24) P = 0 at the surface of all 
-. 

Q Stars as it should be. 

One can imagine adding a conformal coupling Lcon~o,.ma~ - R+2, with R the --. 
Ricci scalar, to the Q-Star Lagrangian but this changes nothing to lowest order 

in6 = -- - (8~~+;)1/2 since R - c2 4: for time-independent metrics. Thus the 

Q-Star is unaffected by the addition of Lconformal. 

We will- explore the formation, hydrodynamics and decay of Q-Stars [lo- 

ll] as well as extend the Q-Star idea to other sorts of field theories [12-171 in 

later publications. The main points are that the energy densities E - c$:, radii 

p -rn,l/c$z and masses M ~rn$/cf$ remain relatively low and that the surface 

region is a certain sort of non topological soliton or Q-ball. 

To summarize, we have constructed a new class of non-topological soliton - 
?tars appearing in field theories with non-linear matter interactions coupled to 

Einstein gravity. We have named these ‘Q-Stars’. 
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- Figure Captions 

1. Q-Star example A: matter field 8 and metrics e2U and em2s with surface 

region’ magnified. 

2. Q-balls with cj& > i;;c2ritical (dashes) and Q-star surface (solid) 

3. Mass vs. charge for Q-balls and Q-stars. The free-particle boson mass is 

taken to be one. Thus, all solitons lying below the dashed line G = Q are 

stable against break up to free particles. The point 6%/6Q = G,ritical is 

the Q-ball limit without gravity. The point 6=/6Q = 0 is the onset of 

black holes. 

4. Potential and surface of Q Star in example A 

5. Q-Star of example B: Matter fields 5, & and metrics e2u and ed2’. 

.- - 6. Field strength &for Q-balls evolving into Q-Stars with increasing Q: Q very 

small (dots), large but gravity unimportant (dashes), larger with gravity 

important (solid). 
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EL (c-l) iz(c3) - Q(E-~) iz 
0.100 0.002 0.003 0.499 
0.250 0.024 0.049 0.499 
0.500 0.196 0.397 0.492 
1.400 4.515 9.837 0.431 
1.620 7.212 16.31 0.401 
1.700 8.479 19.52 0.388 
1.800 10.39 24.59 0.367 
1.910 13.52 33.54 0.330 

FO 

0.375 
0.375 
0.379 
0.423 
0.457 
0.479 
0.521 
0.661 

Table 1 

Q-Stars in example A: Radius, mass, charge, frequency and central energy density 

co = [F + ~1;~~ resealed with +o. Units of %, Q are cm3 = [87rG43]-“/” - 

- 1O48 for fjO - 300 GeV. Units of ps- are e-l. 

- ik(+ Z(c3) 
OJOO 0.001 
0.250 0.007 
0.500 0.058 
1.000 0.470 -- - 
2.000 3.940 
2.660 10.10 
2.930 14.97 
2.985 16.90 

QW3> G 
0.001 0.577 
0.013 0.577 
0.101 0.575 
0.823 0.566 
7.174 0.530 
19.37 0.482 
29.87 0.444 
34.29 0.428 

FO 

0.111 
0.111 
0.112 
0.114 
0.128 
0.160 
0.210 
0.251 

Table 2 

Q-Stars in example B: X = l/9. Radius, mass, charge, frequency and central 

En&gy density scaled with units as in Table 1. 

--- 
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