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ABSTRACT 

This paper examines the evolution of spherical bubbles in a vacuum for all pos- 

sible values of the controlling parameters within the context of the general relativis- 

tic thin-wall approximation. We propose a general classification of the admissible 

solutions and a graphical-numerical algorithm for their explicit construction from 

any given set of initial data. The different sectors in the space of the parameters 

are identified and a map of regions is constructed where single families of solutions 

can exist. 
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1. Introduction 
= 

. The dynamics of relativistic bubbles has been’.investigated by many authors 

with different applications in mind. l-l3 Th e evolution of bubbles in the Minkowski 

vacuum was analyzed long ago in Refs. 2-4 in connection with the bag model 

of hadrons and a classification of the admissible solutions of the bubble equation 

of motion was obtained3. In that approach, gravitational effects on the evolu- 

tion of bubbles in a vacuum were considered later in Ref. 10 within the thin-wall 

approximation and under the assumption of spherical symmetry, thus restrict- 

ing the geometry to be of the Schwartzchild--de Sitter type. Remarkably, it was 

found that the mechanism that generates the vacuum pressure in the bag model of 

strong interactions can also trigger the mechanism of vacuum decay envisaged in 

the inflationary scenario of the early universe. The bubble equation of motion can 

be derived either from Israel’s junction conditions,13 or from an action functional 

modelled on the Einstein-Maxwell system 
10,11,14 . 

m General Relativity. A remark- 

able feature of the action functional formulation is that the interior and exterior 

cosmological constants are introduced in a natural way through the solutions of the 

coupled field equations; 
10 moreover, the dynamics encoded in the aaction functional 

selects positive or at most vanishing cosmological constants and excludes negative 

lo values. This is not the case when bubble-dynamics is discussed in the framework 

of a scalar field theory. In the approach based on General Relativity, the potential 

complexities of vacuum decay a,ssociated with the spontaneous- symmetry breaking 

of the underlying grand-unified theory are reduced, in the thin-wall approxima- 

tion, to the specification of just three effective parameters: the surface tension p, 

assumed a priori to be positive, a.nd the interior and the exterior vacuum energy 
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densities A- and A+. In this overall picture of bubble-dynamics, the missing link 

i i which has eluded us so far, is a well defined algorithm to construct the solutions of 
. 

the equation of motion of the bubble for arbitrary values of the above parameters. 

The objective of this paper is to fill this gap by extending the algorithm of Ref. 3 

along the lines proposed by Blau, Guendelman and Guth’” (BGG) for the special 

case of a bubble of false vacuum in the de Sitter phase separated from an infinite 

region of true vacuum with vanishing energy density. 

To our mind, the extension of the BGG method is not only useful but neces- 

sary. Indeed, the discussion of the special solutions of bubble-dynamics that we 

have found in the literature is somewhat fragmentary and sometimes controversial; 

the only papers that we are aware of where an attempt is made at a systematic 

classification of the solutions are those of Refs. 3,9,12. The BGG paper has the 

virtue that, given their choice of parameters, it offers a simple and rather system- 

atic catalog of the possible solutions. However, the admissible solutions of the 

equation of motion can be classified in a larger parameter space and, depending 

on the specific values of the parameters, the solutions can play a role in different 

physical situations ranging from particle physics l-4,8 
to various aspects of the large 

6,8,15 scale structure of the universe at the present epoch. 

Against this background, it seems desirable to ha.ve an algorithm capable of 

determining all possible types of solutions together with the region in parameter 

space where single families of solutions can exist. Thus, in Section II we develop the 

analogy of the bubble motion with that of a particle in a “‘rl potential. Then, fol- 

lowing the format of the BGG paper,12 we reduce the bubble equation of motion to 

a dimensionless form which lends itself to a straightforward graphical and numer- 
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ical analysis. In Section III we derive all the necessary formulas in our algorithm 

and discuss- some definite examples. 

2. The equation of motion 

In Israel’s approach to bubble-dynamics,13 let C represent the timelike 3- 

dimensional world-track of the bubble which separates the spacetime manifold 

A4 into two distinct 4-dimensional manifolds A4- and A4+, each containing C as 

its boundary. In this approach, the key ingredient in deriving the ra.dial equa- 

tion of motion of the bubble stems from the following continuity condition as one 

approaches C from M- or from M+. Let 

represent the metrics in A4*, so that when approaching C in A4+ or &l- one has 

to demand that 

(ds$ = (d.& = ds; 

where 

ds$ G gijdl”dl’ = -dT2 + R.“(T)(dO” + sin2 Od$“) 

represents the intrinsic metric on C. Alternatively, bubble-dynamics can be for- 

mulated as a gauge ” theory. In this case the equation of motion of the bubble 
_- _T. 

radius can be derived from an action functional describing the interaction be- 

tween the bubble and the cosmological gauge field A, a differential 3-form A = 

1/3A,,xdz@ A cEzV A dzX with field strength F = dA invariant under the gauge 

C 
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transformation A --f A + dA. The details of this formulation and its underlying 

physical- basis are fully explained in Ref. 11 and will not be repeated here. The 

outcome of either approach is this: under the assumption of spherical symmetry, 

we can assign the de Sitter (or anti de Sitter) metric with cosmological constant A- 

to M- and the Schwartzchild-de Sitter (or Schwartzchild-anti de Sitter) metric 

with cosmological constant A+ to M+. Here, the “anti” prefix refers to the case of 

negative cosmological constants. If one further prescribes the value of the surface 

tension p on the bubble, then by the mechanism of the junction conditions or by 

the usual variational techniques in the action functional formulation, one is led to 

the equation of motion of the bubble radius which, in geometrical units, takes the 

form 7,10-12,14 

=BR? _ 1 _ E 
R 

(*- -*+I _ 1 + E2 
3k2 1 k2R4 

where, by definition 

B= j& [(A+ - A- - 3k2)” + 12k”A+] 

(2.1) 

(2.2) 

k = 47rp, (2.3) 

and E represents the total energy of the bubble, a first integral of motion, in the 

form 

_- _ _Y. E&(*--*+I +R”k 
6 2 

1 - ;A-R2 + Ei2 (2.4) 
e 

where 0 parametrizes the sign ambiguity related to the rate of change of the polar 

angle in the de Sitter conformal l2 diagram. Equation (2.1) d escribes a rich variety 
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of bubble histories ranging from black-hole and wormhole solutions to bouncing 

solutions and to monotonically expanding or contr:acting solutions. The algorithm 

for their classification starts with the identification of the different regions in pa- 

rameter space according to the sign of A- and A+. This is illustrated in Fig. 10 

where the parameters A+ and A- are expressed in units of 3k2. In the following 

discussion we take k > 0, E > 0 and deduce from the defining Eq. (2.2) that B > 0 

when A+ > 0. When A+ < 0, we must distinguish two cases: i) A+ < 0, A- > 0 

then B > 0, ii) A+ < 0, A- < 0, then B < 0 inside the region of the pa,rameter 

space defined bylG 

A- - 3k2 - (-12k2A-)1’2 < A+ < A- - 3k2 + (-12k2A-)1’2 (2.5) 

which is represented by the interior of the shaded area in Fig. 10. The upper 

right quadrant in Fig. 10 is the parameter subspace corresponding to the action 

10,ll 
functional formulation, while ordinary unified theories correspond to arbitrary 

points in parameter space according to the value of the Higgs potential. 

The parameter space considered in the BGG paper consists of the positive 

axis A- > 0 (A+ = 0). It is interesting that the general formulation allows 

for negative values of A- and A +; these values correspond to an interior anti-de 

Sitter (ADS) pl rase and an exterior Schwartzchild-a,nti de Sitter (SADS) phase 

respectively. 

The boundary of the shaded region in Fig. 10 evidently-corresponds to B = G 

0. In this case the equation of motion is still well defined but degenerates into 

a different equation which is not directly relevant to our discussion. Our main 

concern here is with the full Eq. (2.1) with k > 0, E > 0 and B # 0. 



The next step in our algorithm is based on the simple observation that th<* 

i i equation- of-motion of the bubble can be interpreted as the equation of motion 01’ 
. 

a particle moving in one dimension under the influence of a potential. ‘0111 Thi:; 

property is especially clear if we rewrite the equation of motion in dimensionles+ 

form.12 Introducing the new variables 

z3 xx gR3 and I L2 
T =g- 

where 

L2 E $ [l(A- + A+ + 3k2)2 - 4A-A+l] 1’2, 

one finds that the equation of motion takes the simple form 

2 

= Q - V(z) 

where, by definition 

and 

y = 1 [(A+ - A-) + 3k”] 
3 L2 

Q = - 4k2 
c2~)213 ~813 < O* - 

In addition, we introduce the auxiliary quantity 

y = 1 [(A+ - A-) - 3k?] 

3 L2 

(2.6) 

(2.7) 

(2.8) 

(2.10) 

(2.11) e 

(2.12) 
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i , z  

a n d  q u o te  th e  sim p le re la t ions 
. 

L 4  =  4k2)B j  (2 .1 3  

y2  -  1  =  
-4k2A-  4 k 2 A +  

3 L 4  
; p-p=- -  

3 L 4  
(2 .1 4 )  

wh ich  w e  h a v e  fo u n d  u s e fu l  in  th e  course  o f o u r  analysis.  Fo r  instance,  E q . (2 .1 3 )  

is a t th e  or ig in  o f th e  s ignature  te r m  in  th e  p o te n tia l  V(z),  wh i le  th e  re la t ionships 

(2 .1 4 )  c a n  b e  u s e d  to  classify al l  poss ib le  b a c k g r o u n d  g e o m e tries accord ing  to  th e  

va lues  o f Y  a .n d  Y . In d e e d , w e  h a v e  th r e e  typ e s  o f in ter ior  b u b b l e  g e o m e tries: 

a )  a n t i -de S itte r  ( A D S ) , fo r  wh ich  A -  <  0  a n d  Y 2  >  1 , b )  M inkowski  (M) , 

fo r  wh ich  A -  =  0  a n d  Y 2  =  1 , c) d e  S itte r  (DS) , fo r  wh ich  A -  >  0 ,Y ” <  1 . 

E a c h  o f th e s e  g e o m e tries c a n  b e  m a tch e d  to  th r e e  k inds o f exter ior  g e o m e tries: 

C Y )  S c h w a r tzschi ld-ant i  d e  S itte r  ( S A D S ) , fo r  wh ich  A +  <  0  a n d  Y 2  >  1 , /3 )  

S c h w a r tzschi ld (S),  fo r  wh ich  A +  =  0  a n d  Y 2  >  1 , y) S c h w a r tzschi ld-de S itte r  

( S D S ) , fo r  wh ich  A +  >  0  a n d  Y 2  <  1 . Thus , w e  h a v e  in  pr inc ip le  n i n e  poss ib le  

scenar ios  fo r  th e  b u b b l e  evolut ion.  H o w e v e r , th e  e ffect ive c o n trol p a r a m e te r  is th e  

d imens ion less  var iab le  Y  d e fin e d  in  (2 .1 0 ) ; f u r  tl i e rmore , th e  e n e r g y  E  a p p e a r s  on ly  

in  th e  var iab le  Q . T h e r e fo r e  Q , wh ich  is n e g a tive  by  d e fini t ion, character izes th e  

di f ferent so lut ions o f bubb le -dynamics  in  th e  d imens ion less  fo r m u l a tio n . 

W e  wil l  d iscuss first th e  case  B  >  0 . T h e  i m p o r ta n t qual i tat ive fe a .tu res  o f 

th e  solut ions c a n  b e  in fer red f rom Fig. 1  a n d  a r e  d isp layed  in  Fig. 2 . F igu re  1  

r e p r e s e n ts th e  g r a p h  o f th e  p o te n tia l  e n e r g y  fu n c tio n  V(Z)  fo r  var ious  p r e a ,ss igned 

va lues  o f Y . T h e  p o te n tia l  h a s  a  s ing le  m a x i m u m  w h o s e  locat ion Z M  d e p e n d s  o n  

c 
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Y as follows, 

i 

. 
& = ; [ (8 + Y2p2 q Y] (2.15) 

and the corresponding value of the potential is calculated to be 

v‘&f E V(z& = --7 (& - 1). 
4 

(2.16) 

For completeness, we also quote the expression of the critical energy for which 

Q(E,,) = V(zn,l): using Eqs. (2.11) and (2.16), this condition gives 

EcT 
1 4k2 

4* = - - 3&! L4 (& _ 1) 312 . 
(2.17) 

While Eq. (2.16) 
12 

is identical to that quoted in the BGG paper, the novel feature 

here is the “overshooting” of the potential curve over the zero threshold. In this 

connection we note that 0 < zM. 5 1 and VM > 0 when Y 5 -1 and 120 bu6bZe 

trajectory can exist in the region where V(z) > 0. 

For any given value of Y, the shape of the potential curve indicates that there 

are at most three basic types of solutions; for later reference we shall list them a.s 

17 
follows, 

i) type I or “bounded” solutions for which there exists a maximum radius S 

implicitly defined by Q = V(S), 

ii) type II or “bounce” solutions for which there exists a minimum radius Z 

defined by Q = V(2) and 

iii) type III or “monotonic” solutions for which the energy of the bubble exceeds 

the critical value defined by Q(Ecr) = VM. 

10 



Evidently, no monotonic solutions can exist when Y < -1 and the two positive 

i = - roots of.-the equation v(z) = 0 are 

g = -y - (y2 - l)'P; *; = -y + (y2 - 1p2 (2.18) 

with zl < 22; of course, when Y = -1, ~1 = ~2 = ZM = $1. Note that in the plane 

of V(z) versus z represented in Fig. 1, the possible bubble trujectories correspond 

td straight horizontal lines with constant (negative) Q. 

An alternative representation of the three types of solutions is displayed in 

Fig. 2. Here the trajectories are associated with the flow of a vector field in 

the (z, i)-plane; the phase portrait of this vector field is a plot of the equation 

of motion itself for different values of Q at fixed Y and VM < 0. Trajectories 

A and B are of type I with Q < I/M, trajectories G and H are of type II with 

Q < VM and trajectories C, D, E and F are of type III with Q > VM, C and 

F representing the asymptotic trajectories of monotonic type corresponding to 

Q = 0. The two pairs of curves (1,L) and (M,N) are limiting trajectories with 

Q = VM, the critical point R corresponding to z~. These trajectories mark the 

kmsition from bounded to monotonic solutions and from bouuce to monotonic 

solutions respectively: trajectories I and M take an infinite proper time to reach the 

equilibrium point at R. Moreover, a trajectory initialized at rest at the equilibrium 

point, in principle remains there forever. Thus, strictly speaking, trajectories L and 

N can never be seen. However, the static bubble configura.tion of radius z = znd is 
_- _P. 

unstable in the sense that an arbitrarily small perturbation will cause the bubble 

to either contract to zero radius along trajectory L or to expand indefinitely along 

trajectory N. 

c 
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When B < 0, the shape of the potential is affected by the signature term in the 

- defining.Eq, (2.9) and one would expect a local minimum in V(z) and a new class of 

solutions representing oscillating bubbles. However, these new solutions correspond 

to negative energy bubbles and must be excluded from our classification. In order 

to substantiate this statement we first observe that when B < 0, the two roots of 

the equation V(z) = 0 are 

z; = Y - (Y2 + 1)1/2 < 0; Z2” = Y + (Y2 + 1)1’2 > 0 (2.19) 

so that the potential curve intersects the positive z-axis at the single point ~2. Next, 

the two roots of the equation V’(z) = 0 are 

& II - ; [-Y f (Y2 - 8)‘/] . (2.20) 

Evidently, if Y2 < 8 then V’( ) z never vanishes in the physical region z > 0 and 

V(z) represents a function increasing monotonically from ---co to +co. Thus, for 

Y3 < 8 one finds only type I or bounded solutions. For Y2 > 8 and I’ < 0 the 

maximizing Eq. (2.20) g ives a, maximum and a. minimum in the physical region 

z > 0. However, the value of the potential corresponding to the two extrema is 

calculated to be 

v&f E V(.zM) = ‘(& + 1) > 0 
Z$1* 

. (2.21) 

The above results are summarized in Fig. 3. Thus, when B < 0 a local minimum of _- _P. 
V(Z) exists but it lies above the z-axis a.nd corresponds to negative energy solutions 

which we have excluded from our present discussion. 

C 
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3. The algorithm 

The results of the previous section show that ‘we can broadly classify the so- 

lutions of Eq. (2.8) according to their type, i.e. bounded, bounce or monotonic 

solutions and according to the background geometry. As an example, DS-SDS-I 

means a bounded de Sitter bubble in a Schwartzschild-de Sitter spacetime. Ac- 

tually, this information is not enough to give a full characterization of the bubble 

dynamics. For instance, at this stage one cannot distinguish between solutions 

evolving into black holes or wormholes. An extra varia.ble is required to describe 

the evolution of the bubble in relation to the cosmological horizons. 

Accordingly, we define a new “landmark” in our classification as the value of 

the coordinate z where the curve representing the de Sitter (or Schwartzschild-de 

Sitter) horizon is tangent to the potential curve V(z). Following the format used 

by Blau, Guendelman and Guth,1.2 first we have to determine the horizon curves 

in terms of our dimensionless variables defined in Eqs. (2.6 - 2.12). The de Sitter 

spacetime exhibits a cosmological event horizon only if IL > 0, which implies 

IYI < 1. In terms of the z-coordinate the de Sitter horizon radius takes the form: 

ZDS = (L2/2E)1/3(3/A-)1/2. Then, taking into account the first of eyua.tions 

(2.14), it is easy to derive the de Sitter horizon equation 

Q = (I/' - I)z~~ E v(ZDS) + $1 + Y&)? . (3.1) 

To find the analogous equation for the Schwartzschild-de Sitter horizon is slightly 

more involved since, in principle, one could find two, one or no horizons 18 
according 

to the value of the ratio A+/9E2. The horizons are defined as the roots of the 

13 



algebraic equation 

3. , mce 

alid 

2E l-..-.-- A+, :. 

RSDS QR: 
SDS f 0 . 

y2-1=--qk2- A+ 
3L4 ’ 

Eq. (3.2) can be written in dimensionless form as 

Q = (v2 - 1)&S - 2(r - i+ 
ZSDS 

= v(zSDS) + kc1 + 7’z;DS)2 ’ 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The advantage of this formulation, which is an extension of the BGG analysis12 

for -1 5 Y < 1 with A+ = 0, stems from our earlier observation that in the V - z 

plane of figure 1 the bubble trajectories are represented by straight horizontal lines 

corresponding to a fixed value of Q. Evidently, in the same V - z plane and for a 

preassigned value of the energy, the corresponding values of the horizon radii are 

determined by the intersections, if any, between the bubble trajectory with fixed 

Q and the horizon curve (3.5). Th e analytical basis of our graphical method is as 

_- _P. follows: for A+ > 0, or Y2 < 1 there is a single maximum in the horizon curve at 

z (3.6) 

P 
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where Q takes on the value 

&(+a) = -$ (i) 
213 : 

(A+)“3 (3.7) 

or, in terms of E, via Eq. (2.11) 

1 -= 
3E If- A+ (3.8) 

which is just the condition for having a single horizon in the SDS 
18 

metric. For 

3E < 6 there are two intersections in the region z > 0 corresponding to two 

physical horizons; they coalesce when Eq. (3.8) holds, and no horizon occurs in 

the physical region if 3E > 6. 

On the other hand, for A+ < 0, or Y2 > 1, there is a single horizon at ro = 

[-3E/A++~E2/A~-l/A~]1~3+[-3E/A+-~E2/A~-l/A~]’~3, and in fact the 

horizon curve is monotonically increasing for z > 0; there is no stationary point in 

the physical region. Hence, for any assigned value of E there is a single intersection 

with the curve (3.5) providing the correct value of the horizon coordinate. 

So, all the complexity pertaining to the global structure of the SDS spacetime 

is encoded into the simple Eq. (3.5). 

Now we can determine the points where the horizons are tangent to V(z). In 

the de Sitter case the contact point is 

3 1 
ZDS = --, 

Y 
-l<Y<O 

z- _P. 
while the Schwartzchild-de Sitter horizon is tangent to V(z) at 

3 1 
ZSDS = -X7, -15 Y < 0. 

Y 

(3.9) 

(3.10) 

c 
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The corresponding values of the potential V(z) are 

i 

. Y2 - 1 
VDS = v(zDS> = ya/3 (3.11) 

and 

bDS = v(zSDS) = - 
> 

?2/3 . 
(3.12) 

In the above interpretation, the bounded ( or bounce) trajectory of a bubble fol 

which the maximum (or minimum) attainable radius is precisely ZSDS (or ZDS) 

acquire a special status: for this to happen, the energy of the bubble must be 

exactly tuned so that either Q = V(zsDs) or Q = V(ZDS). These conditions give 

or 

E 
4k3 F 

SDS=-? 
.L ?T/‘-2YY$l 1 312 

4k3 Y 
EDS = -4 L (1 - Y2)3/2 . 

(3.13) 

(3.14) 

Having identified the new landmarks (3.9) and (3.10), the above discussion requires 

some qualifications. Note first that zDs and zsDs are defined for Y < 0 and y < 0. 

In addition, we note that when Y 5 -1 then the value V(zDs) of the potential 

v(z) at zDs is 2 0. This property reflects the fact that Eq. (-3.1) has no physical c 
_- _Y. 

meaning for Y 5 -1 since A- < 0 and the interior “horizon” is undefined for anti- 

de Sitter space. When Y 5 -1, the mathematical curve (3.1) is still tangent to the 

potential curve but the tangent point is in the unphysical region where V(z) 2 0. 

16 



Another property of ZSDS and ZDS is based on the proven equivalence between 

i 

. 
the equation of motion (2.1) and Israel’s equation in the form 

PDS - PSDS = kfi (3.15) 

where 

A- l 112 
pDs = IS 1 - -R2 + i2 

3 
(3.16) 

and 

A+ 2 213 
l/2 

1-3R -x+R2 1 . (3.17) 

Inspection of the form of PDS and @SDS indicates that they vanish at the point 

where the horizon curves are tangent to the potential-energy curve V(z). Indeed, 

in terms of our dimensionless variables Y, z and Q, we find 

/jDs =I Q I-1/2 ’ ‘,li” 

and 

1 + F;23 
PSDS =I Q I-“’ z2 . 

(3.18) 

(3.19) 

Since PSDS and PDS are monotonic functions of z, the switch in sign occurs at 

1 
&)s = -7 (for ,&SDS) and 

1 

Y 
*is = -- 

Y 
(for @OS). (3.20) 

It is understood that Eq. (3.20) hold under the same assumptions leading to (3.9) 

C 

and (3.10). 



The physical role of the new landmarks can be better understood with reference 

i =- to a specific example. Figure 4 describes de Sitter bubbles in a Schwartzschild-de 
. 

Sitter background, with Y = -0.2182, y = -0.6547. Some typical trajecto- 

ries are labelled according to the BGG paper notation 
12 

and the corresponding 

conformal diagrams are drawn according to the rules discussed by 
19 Walker. 

A) This is a small mass type I solution. All along the trajectory both PSDS 

and /?DS are positive, so that the polar angle in SDS spacetime is alwa.ys 

increasing while it decreases in the interior of DS space. Such a, behavior 

is described by the Penrose diagrams in Fig. 5. These configurations are 

generalizations of the black hole solutions of Refs. 7,8. 

C) This is a type II bounce solution. The minimum radius is larger than 2~)s 

and ZSDS. The bubble crosses both the DS and SDS horizons but evolves 

always outside the black hole SDS horizon. Both PSDS and PDS are negative 

indicating that the SDS polar angle is decreasing while the DS polar angle 

increasing. See Fig. 6. 

0) This is again a type II solution, but now the rninimum radius is smaller 

than ZDS and still larger than ZSDS. So, /IDS changes its sign along this 

trajectory before the DS horizon is crossed. For the external observers the 

Penrose diagram is the same as in the case C), while for the internal observers 

the bubble crosses the sector III of the DS Penrose diagram rather than the 
C 

<- sector I. See Fig. 7. _Y. 

The following cases do not fit into the BGG classification. 

F) This is a type III monotonic solution. It differs from the BGG E-bubble 

18 



because PSDS changes sign after the trajectory has crossed the cosmological 

A .-SDS horizon,, so that the bubble goes th;rough the region I instead of the 

. 
region III of the SDS Penrose diagram. A static observer in I is then doomed 

to crash against the expanding bubble wall. See Fig. 8. The only way-out is 

to fall through the cosmological event horizon before the bubble arrival. 

G) This is a limiting type III solution, in the sense that the mass E* of the 

bubble is fine-tuned to satisfy Q(E*) = Q(zm). In this case the two horizons 

of the SDS metric degenerate into a single null surface of radius ? = l/a. 

The corresponding Penrose diagram is in Fig. 9. Everything goes like in F). 

11) This is a type III solution with Q > Q(E*). The exterior geometry has 

no horizons. The corresponding conformal diagram consists of a horizontal 

infinite strip like the right hand side of Figure 9 with the horizon lines excised? 

bounded from below by the 7’ = o singularity and from above by “script” I+. 

The actual diagram, which we do not reproduce here, can be found in Fig. 

3-C of the first paper quoted in Ref. 6. As far as the internal observer is 

concerned the bubble evolution is the same as in G). 

The above examples are far from exha,usting all possible physical configurations 

of the system. A detailed analysis of the other cases is postponed to a future paper. 

Rather, the central question to be addressed now is how to determine the admissible 

solutions for a given set of values of the parameters A+/3k2 and A-/3k2. This 

brings us to Fig. 10 which is a map of the parameter space with all the landmarks 
>- _P. 

which are relevant to our discussion. The shaded area and its boundary were 

discussed at the beginning of the paper; we simply add here that, in order to give 

a meaning to the solutions with L2 = 0, one must refer to the equation of motion 
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in its original form (2.1). The-meaning of the other landmarks on the map is as 

follows: the parallel lines QX and RW are defined by the equations Y = 0 and 

I/ = 0 respectively; Q(-1,0) and R(0, -1) are branching points where Y and r/ 

are respectively undefined; on the vertical axis, p = +1 below point R and i’ = -1 

above R; on the horizontal axis, Y = +l to the right of Q; to the left of Q, Y = -1 

and therefore zl = ZM = ZDS = z2 = l,V(zl) = V(ZM) = V(ZDS) = V(z2) = 0, 

the interior de Sitter horizon is undefined and the SDS horizon is tangent to V(z) 

at zsDs = L2/(L2 + k2) < 1. Thus, when Y = -1, ZSDS < zd4 = ZDS and 

v(zSDS) = - (3.21) 

The set of points where VSDS = V(ZSDS) = 0 consists of the line AB in the region 

where Y < -1 knd 

Y2-2YY+1=0 (3.22) 

or 

A- -= Sk2 -I’ so that zSDS = zl. (3.23) 

As noted earlier, no monotonic solutions can exist for Y < -1. Finally, the set of 

points in parameter space where ZsDS = ZM consists of the line RY where 

A- A+ 
-=3x+. 3k2 - 

(3.24) 

Thus, to the right of the line BY, zM < ZSD; the value of Y can be positive or 

negative but > -1 so that V(zsDs) < V(zM) < 0 and monotonic solutions can 

ExGt. The de Sitter horizon and the SDS-horizon are both well defined in this 

region. 
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The algorithm to determine the set of admissible solutions proceeds along the 

= following steps, 

1) a point (A+/3k2, A-/3k2) is assigned in any given region of parameter 

space; 

2) L’,Y,? are calculated using Eqs. (2.7), (2.10) and (2.12); 

3) ZM, ZDS and ZSDS are calculated using Eqs. (2.15), (3.9) and (3.10); 

4) VM, VDS and VSDS are calculated using Eqs. (2.16), (3.11) and (3.12); 

5) the horizon curves and the potential energy curve V(z) are plotted using 

Eqs. (3.1), (3.5) and (2.9). 

The above procedure automatically selects a possible solution for any allowed 

value of the bubble energy E or Q. Figure 4 shows an explicit application of the 

algorithm (step 1 + 5). Once a value of Q is selected, the location of the trajectories 

relative to the horizon curves and V(z) gives all the necessary information to 

reconstruct the detailed evolution of the bubble. 

In conclusion, the algorithm proposed in this paper shows that the history of 

a. spherical bubble in a vacuum can be analyzed algebraically in terms of the po- 

tential V(z) and the horizon curves. There are many applications of the various 

families of solutions. For instance, the study of localized inflation in the early uni- 
12 

verse discussed in the BGG paper, focuses mostly on monotonically expanding 

solutions; in the general formulation we find that these solutions are not always 
I _=. 

permitted and we have specified the domain in parameter space where such so- 

lutions are excluded. In connection with the confinement mechanism in the bag 

334 model, where the bag constant plays the role of a cosmological constant in the 

C 
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hadronic vacuum, the interest is mostly on bounded, or “black hole” solutions. 

= - 
Finally; it would appear that “baby-universe” &olutions, once included in the 

euclidean path integral of quantum gravity, may bridge the gap between micro- 

physics and the large scale structure of the universe, thus offering a possible solu- 

tion to the long standing problem of the zero value of the cosmological constant.r5 

In this connection, we note that the action functional formulationlr of bubble- 

dynamics is the natural framework to extend our results to euclidean space; this 

extension is necessary if one is interested, for instance, in the classification of the 

bubble euclidean trajectories either in connection with tunneling processes in false 

vacuum decay 5 or in connection with the problem of the cosmological constant. 

These interesting problems will have to be the subject of a separate investigation. 

4. Acknowledgments 

One of the authors (A.A.) wishes to thank the Associated Western Universities, 

Incorporated, for the award of a Faculty Research Participantship at the Stanford 

Linear Accelerator Center during the summer of 1988 and 1989. Two of us (A.A. 

and M.P.) would also like to thank the President, the Dean of the College of Science 

and the Physics Chair at California State Polytechnic University, Pomona, for their 

support in the form of reassigned time, a travel grant and a research grant under 

the CSU Research, Scholarship and Creative Activity Program. Finally, Antonio 

Aurilia would like to thank the staff, the faculty and the students in the Theory 
_- _b. 

Group at SLAC for their assistance and for the hospitality extended to him during 

the summer of 1988; special thanks go to Kent Hornbostel for plotting some of the 

graphs. 

C 

22 



REFERENCES 
* i - 

. 1. P.A.M. Dirac, Proc. Roy. Sot. (London) 268;, 57 (1962); P. A. Collins and 

R. W. Tucker, Nucl. Phys. 112B, 150 (1976) 

2. A. Aurilia and D. Christodoulou, Journ. Math. Phys. 112B, 1692 (1976) 

3. A. Aurilia and D. Christodoulou, Phys. Lett. 78B, 589 (1978) 

4. A. Aurilia, Phys. Lett. m, 203 (1979) 

5. S. Coleman, Phys. Rev. m, 2929 (1977); S. Coleman, and F. De Luccia, 

Phys. Rev. m, 3305 (1980); S. Parke, Phys. Lett. 121B, 313 (1983); 

W. A. Hiscock, Phys. Rev. U, 1161 (1987) 

6. K. Ma,eda, H. Sato, M. Sa,sa,ki and H. Kodama, Phys. Lett. 108B, 98 (1982); 

K. Maeda , M. S asa i k and H. Sato, Prog. Theor. Phys. 69, 89 (1983); 

K. Maeda and H. Sato, Proi. Theor. Phys. 70, 772, 1276 (1983) 

7. V. A. Berezin, V. A. Kuzmin and I. I. Tkachev, Phys. Lett. 120B, 91 (1983) 

8. J. Ipser and P. Sikivie, Phys. Rev. m, 712 (1984); J. Ipser, Phys. Rev. 

m, 2452 (1984); Ya. B. Z e Id ovich and M. Yu. Khlopov, Phys. Let,t. m, 

239 (1978) 

9. 1~. Lake and R. Wevrick, Can. Journ. Phys. 64, 165 (1986) 

_ . _r. 

10. A. Aurilia, G. Denardo, F. Legovini and E. Spallucci, Phys. Lett 147B; 258 

(1984); Nucl. Phys. 252B, 523 (1985) 

11. A. Aurilia, R. S. Kissack, R. Mann and E. Spallucci, Phys. Rev. D35 2961 

c 

(1987) 



12. S. K. Blau, E. I. Guendelman and A. H. Guth, Phys. Rev. m, 1747 (1987) 

i 
13. W. Israel, Nuovo Cimento m, 1 (1966); 4&, 463 (1967); see also J. E. 

Chase, Nuovo Cimento m, 136 (1970); S. O’Brien and J. L. Synge, Comm. 

Dublin Inst. Adv. Stud., A, No. 9, 1 (1952). 

14. The bubble equation of motion reported in Ref. 10 has an incorrect sign. 

The equation of motion was correctly written in Ref. 11 and is reported here 

as Eq. (2.1). 

15. S. Coleman, Nucl. Phys., 310B, 643 (1988): T. Banks, Nucl. Phys., 309B, 

493 (1988); see also, I. Klebanov, L. Susskind and T. Banks, “Wormholes 

and cosmological constant”, SLAC-PUB-4705, August 1988. 

16. We are indebted to the referee for alerting us to the possibility that B can 

be negative. 

17. For the corresponding classification in the Minkowski vacuum, see Ref. 3. 

18. K. Lake and R. C. Roeder, Phys. Rev. m, 3513 (1977). 

19. M. Walker, J. Math. Phys. 11, 2280 (1970). 

24 



Figure 1. A graph of the potential energy function V(z) for integer values of Y. 

When I .-Y I< 1 the vacuum energy densities are positive. 

Figure 2. The phase portrait of the vector field representing the radial equation of 

motion. 

Figure 3. A graph of the potential energy function V(z), in the case B < 0, for 

different values of Y. Notice that the local minimum of the function V(z) is always 

a.bove the z-axis, so oscillating bubbles are classically forbidden because they would 

have negative mass-energy. 

Figure 4. An example of the numerical-graphical method to determine the admis- 

sible solutions for a given point (A+/3k” = 3, A-/3k” = 5) in the parameter space 

of Fig. 10. The corresponding values of Y and p are Y = -0.02182, Y = -0.6547. 

Figure 5. Penrose diagram for a type I bounded solution. (Here and in the following 

the dashed areas have to be removed and the two diagrams matched along the 

trajectory). The bubble expands up to the maximum radius 2, and then collapses 

into a SDS black hole. 

Figure 6. Penrose diagram for a type II bounce solution. 

Figure 7. This is again the Penrose diagram for a bouncing solution, but now PDS 

cha.nges sign before the DS horizon curve is reached. The trajectory crosses region 

III of the DS manifold rather than region I as in the previous case. 

Figure 8. Penrose diagram for a type III unbounded trajectory. The world line 

of any static observer in region I of the SDS manifold is crossed by the bubble 

5 

trajectory. 
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Figure 9. This is the extreme SDS case exhibiting a single degenerate horizon. The 

bubble is again described by a monotonic type III solution. 

Figure 10. The complete map of parameter space with all the “la.ndmarks” which 

a,re necessary in the classification of the possible solutions. The interior of the 

shaded region corresponds to B < 0; on the boundary of this region L’ = 0 a,nd 

the values of Y, and ? are undefined. Any other region on the map is characterized 

by a definite value of Y and p. 
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