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I. Introduction 

The CP1 model1 is an attractive starting point to analyze the physics of the 

nonlinear sigma model. The model exhibits solitons, Hopf instantons, and novel 

spin and statistics in 2+1 space-time dimensions with inclusion of the Chern- 

Simons term.2 As numerous authors have now shown, at special values of the 

coefficient for the Chern-Simons term, bose-fermi transmutation ensues. These 

disparate phenomena and their consequences may find their test in the two- 

dimensional anti-ferromagnets from which high-T, superconductors are thought 

to arise.3 This is the motivation for understanding the canonical structure of this 

field theory model. 

Most generally, the model has the following Lagrangian density: 

C = (D/J’)t(DV) - A(.& - 1) + W’XApdyAX , (1) 

where D, = (a, + iA,) and 2 is a complex two-spinor (21, 22). The Lagrangian 

has the symmetry SU(2),+bal x U(l)local. Obtaining the correct canonical struc- 

ture within the Hamiltonian formulation serves two basic purposes. First, the 

physical Hilbert space and the corresponding time evolution operator in the con- 

strained phase space can be obtained. Second, it will serve as the starting point 

for calculation of quantum effects either through a canonical perturbation se- 

ries or through lattice regularized methods, or if permissible, a path integral 

approach. The Hamiltonian structure is not at all trivial. The system has two 

constraint fields, namely the X(Z) field and the time component of the gauge field 

AC,(Z). These lead to a number of primary and secondary constraints. Various 

workers have derived the canonical structure of the nonlinear sigma model4 and 

the CP1 model5 with or without the Hopf term (versus the Chern-Simons term). 

_ Most have quantized either through the traditional method of Dira@ in presence 

of the second class constraints or simply solved for the constraints and started 

with a new effective Lagrangian. These routes usually lead to non-canonical com- 

mutation relations and the physical subspace of Hilbert space is not always lucid. 
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We will exploit the elegance and clarity of the BRST method7 to quantize the 

above field theory and obtain in this way a canonical hamiltonian with canoni- 

cal commutation and anti-commutation relations and a simply defined physical 

Hilbert space. The resulting theory represents exactly the constrained system 

in a particular gauge. The price one pays is the additional degrees of freedom 

like the BRST ghost degrees of freedom introduced in the process (which decou- 

ple) and a nonlinear Hamiltonian. We will follow the work of Nemeschansky, 

Preitschopf and Weinstein (NPW) for the application at hand.8 The outline of 

the paper is roughly as follows: in Sec. II, we present a classical analysis of the 

problem and derive an effective Lagrangian in a particular gauge; in Sec. III, 

we attempt a canonical quantization and elaborate the various-constraints that 

arise; in Sec. IV, we adopt the BRST method and quantize the system in this 

framework; in Sec. V, we analyze the same system after making a map using 

principal SU(2) matrices and derive the path integral action for this theory; in 

Sec.-VI, we summarize and make a few conclusions. 

II. Classical Effective Lagrangrian 

In this section we will eliminate the gauge degrees of freedom entirely, thus 

obtaining a new classical Lagrangian. The equations of motion that result from 

-- (1) are 

(D,D~+~)z=o 

ztz = 1 

where Jp = i(cVpZtZ - Zt~,Z). We can solve the second constraint equation 

using any convenient parametrization of the Z(z) fields. For example, we can 

write 2 = (21 ‘, 22 ‘) where 
- 

(2) 
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Therefore, the X(z) constraint field is unnecessary. The /A = 0 component of 

the third equation of motion is actually a constraint which, when using ZtZ = 1, 

becomes 

Jo A0 = - 2 - OEijdiA’ s (3) 

The theory is U(1) gauge invariant, thus we make the gauge choice A0 = 0. Now 

the remaining gauge degrees of freedom can most generally be expressed as 

where $(z) and d(z) are some scalar functions. Equation (3) now means we can 

solve for $(z, t): 

d2z’D(z - z’) Jo(z’, t) , 

where D(z - s’) solves d2D(z - z’) = 6c2)(z - z’) and is given by 

D(z - z’) = -&Zn(z - z’)~ + const . 

The covariant (Noether) current is given by J,!foether = i(DpZtZ - 2tDp.Z). By 

taking the derivative of the third equation of motion, we find dpJroether = 0. 

This implies, since 2t.Z = 1, 

aiAi = -; c3,Jp , 

where i = 1,2 and ,U = 0, 1,2. This implies a solution for 4(z, t): 

(7) 

d2z’D(s - cc’)& J+‘, t) . 

Putting all this together, we can re-express the Lagrangian in terms of the con- 

strained Z(z) fields in the A0 = 0 gauge: 

L eff = (a/,,Z)t(apZ) - Ai Ji - AiAi - BEijAiAj ) (9) 
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where again~i = 1,2 and the dot implies a time derivative. For the boundary 

condition at spatial and temporal infinity Ai = 0, the last term can be written 

as -~(c~~cJ@ - c?~$J$). Alt ernatively, the third equation of motion implies 

A,Jp ApA”& = - ~ - 
2 

vW’~A~~~A~ , (10) 

which implies for the effective action 

L eff = (a,z)t(a4) - ~J,A~ . (11) 

Now substituting the expressions for A~,c#J(x),~~,(z) from Eqs. (4), (5) and (8), 

we have completely eliminated the gauge degrees of freedom. The effective La- 

grangian is admittedly difficult to quantize because of the various non-local in- 

teractions but not impossible. The fact that we could eliminate both Al and 

A2 was unexpected and it depends crucially on using fields Z(Z) constrained. to 

modulus one. It would be desirable to quantize the theory without recourse to 

any classical equations of motion. In the next section, instead of eliminating any 

degrees of freedom, we will elaborate the complexity of the various constraints 

hidden in the above approach which side-stepped them. 

- 
III. Canonical Quantization and Constraints 

In outlining the traditional method of quantization, we will derive the canon- 

ical momenta for all the fields and hence the Hamiltonian. In this process, we will 

find some primary constraints. Requiring the time variation of these constraints, 

i.e., the commutator with the Hamiltonian, to vanish will introduce secondary 

constraints and so on. The Lagrangian density in Eq. (1) implies for the canonical 

field momenta: 
- 

HI, = (DoZ)t HAI = eA2 l-IA0 = 0 

&t = (DoZ) HA2 = -8Al l-lx=0 . 
(12) 
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The two~equations in the last column are typical primary constraints. The 

middle two equations imply A1 (5) and AZ(~) are conjugate to each other. This 

is obvious had we added a total time derivative 8&(AlA2) to the Lagrangian 

density. This eliminates time derivatives of A2 giving II& = 28A2 and l-IA2 = 0. 

AZ(~) can now be eliminated entirely in favor of I-IA1 and the constraint l-IA, = 0 

is exactly zero for all times. For simplicity, we will use A(x) for Al(x) and II,(Z) 

for II,&(z). Therefore, we rewrite the Lagrangian density in terms of the new 

variables: 

where the Hamiltonian density is 

x = %& -I- (&z)t(&z) + AJ1 + &1TnJz + (AA + $IIAIIA)Z~Z 

- Ao(iHI,Z - iZt&t + &HA - 28&A) + &%+z - 1) . 
(14 

_ We -note that the Hamiltonian has no III term as one would expect for usual 

dynamical gauge fields. The Hamiltonian equations of motion are derived using 

the canonical equal-time commutation relations 

[z(z),lTz(~‘)l = [Zt(~),bt(~‘)] = [X(Z),~TX(Z’)] = [Ao(z),~A~(z’)] 

= [A(x),ll~(x’)] = ib2(x - x’) 
(15) 

and the operator relation for time evolution d = i[H, O] where H = $ d2xX(x). 

It is easily confirmed that the Lagrange equations of motion found in Sec. II 

are exactly reproduced. As required, the A(x) equation of motion is the Al(x) 

equation of motion and the II,(x) equation of motion is the AZ(X) equation of 
. 

motion. The two trivial equations of motion X = 0 and A0 = 0 are correct for 

the Lagrange multipliers. Requiring II& = 0 gives 

- in,2 - id&t + dl& - 28&A = 0 . (16) 

With the expressions for the canonical momenta, this secondary constraint is 

exactly the A0 equation of motion. In fact, this secondary constraint is the 
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generator fork time independent gauge transformations. Gauge-invariant physical 

states should be annihilated by this constraint operator. Physical states will be 

simultaneous eigenstates of the Hamiltonian and the constraint only if the two 

commute. Indeed, after some algebra, one confirms [H, Cr] = 0 where Cr denotes 

the lefthand side of Eq. (16). Demanding Ilx = 0 implies the constraint C2 = 

ZtZ - 1 = 0 exactly as before. This constraint, however, is not the generator of 

any obvious symmetry. Indeed, the commutator is not zero but rather i[H, C,] = 

II,2 + ZtII,t. Requiring the time variation of the right-hand side to vanish then 

leads to a tertiary constraint. This new constraint also fails to commute with the 

Hamiltonian and a quartenary constraint ensues. For the CP1 model without 

the Chern-Simons term, this method was carried through to the end and among 

the constraints thus generated there are first and second class constraints thus 

necessitating the use of Dirac brackets. ’ The resulting commutation relations 

are no longer canonical. We have not pursued this method to the end. From 

_ the -above, it is clear that the C2 constraint is the complication. In the next 

section we reformulate the problem in terms of new field variables, abandoning 

the (21 , 22) variables and using radial field coordinates instead. In the context 

of work done within the BRST formalism, we will then identify the part of the 

kinetic Hamiltonian that fails to commute with this constraint and treat it in a 

new way. 

IV. BRST Quantization 

The key insight underlying the use of the BRST method applied to con- 

strained systems as discussed in the NPW paper is to identify the C2 constraint 

as applying to only the radial degree of freedom in field space. This identifica- 

tion allows one to suitably truncate the non-commuting piece from the kinetic 

part of the Hamiltonian and form a new Hamiltonian density U ‘. From X ‘, 

-one constructs the “canonical Lagrangian” density 1:’ and after doing so, one 

identifies the symmetry of the new Lagrangian for which X(x) plays a role simi- 

lar to the role played by the Ao(x) field under time dependent transformations. 

This new symmetry is then elevated to a BRST symmetry and an appropriate 
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gauge-fixing ~term ~BRST is added. Finally, one is instructed to calculate the 

canonical BRST-fixed Hamil.tonian XBRST which by construction will commute 

with the BRST and anti-BRST charge of the theory. Moreover, since the BRST 

charge has the constraints explicitly, states annihilated by the BRST charge are 

eigenstates of the constraints. Therefore, schematically our progression will be 

as follows: 

We begin by decomposing the Lagrangian density in (1) in terms of 21 = 

CY~ + ic~g and 22 = CY~ + ioq as follows: 

L: = (L$q)(Pq) + A,A~(qq) 

“ 
+ 2Ap(alPa2 - a2iYQq + c~~~~cq - cqd’%~~) (17) 

- X(qcq - 1) + &p,xAh3uAX . 

While we are still at the Lagrangian level, we will change our field coordinates. 

The four bosonic field coordinates cri(s) describe R4 and the product o:icri is just 

the radius squared. Thus, constraint C2 implies the phase space is restricted to 

the hypersphere R = oj~vi = 1. There remain three angular degrees of freedom. 

- To capture this completely, we recast the Lagrangian density in radial coordinates 

making the usual transformations: 

a1 = Rcos8 (~3 = RsinOsin4cos$ 

cllg = RsinOcosd ~4 = RsinOsin4sin$ . 
(18) 

The inverse transformations relate the radial and angular variables to the alphas. 

The new nonlinear Lagrangian density becomes 

L = (a&PR) + R2[ (3,bW‘LB) + sin2 8{ (3,4)(#‘+) + sin2 $(a,$@$)}] 
- 

+ 2k2Ap(cos @‘L8 - i sin 20 sin d#‘$ + sin2 8 sin2 &P$J) 

+ A,ApR2 + ~E~~~A’W’A~ - X(R2 - 1) , 

(19) 
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where we have used k as the coefficient of the Chern-Simons term instead of 8. 

The Lagrangian in the old coordinates was invariant with respect to a U( 1) gauge 

symmetry which is now realized as follows for a gauge function q(s) 

6e=cosdq 6~=-cottkinf$7j S$=Q 

6R = 0 6A, = -d,q 6X=0 . 

For functions q(z) which vanish at infinity, the Lagrangian is invariant as before 

under the above transformat ion. 

The Hamiltonian formalism is more complex in these new coordinates. The 

new canonical momenta are 

HR = 2h II+ = 2R2 (sin2 8 sin2 &+6 + f+Ao) 

l-IO = 2R2(i + feAo) II+ = 2R2(sin2 &,8 + f4Ao) 
(21) 

, 

where we have defined fe = cos 4, f4 = -3 sin 28 sin 4, and f+ = sin2 8 sin2 4. 

_ Again in adopting the canonical procedure, we find the two primary constraints 

=A0 = IIA = 0. In writing the Hamiltonian density, we will as in Sec. III add 

a total time derivative to eliminate AZ(Z) in favor of n&(z). The resulting 

Hamiltonian density is 

- ~=+2+$(n02+&&2+~~~2])) 
- Ao(cos $& - cot 0 sin @I, + II+ + &nA - 2ka2A) 

+ K (a$, &e, A, HA, - - -) + X(R2 - 1) , 

(22) 

where A and nA denote the two gauge degrees of freedom and K is short for 

(DiZ)t(DiZ) in radial coordinates with i = 1,2. The transformations of the 

canonical momenta are read off from their operator definitions and they are 

and, as before, 6A = 4,~ and 6nA = -2k&v. In fact, all of the transformations 

could be read off by using the “Gauss’s Law” constraint multiplying A0 in the 
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equation for J which we called Cr in Sec. III and is written explicitly below. The 

variation of an operator 0 would then be SO(z) = ;[Jd2~‘r](~‘)Cr(~‘) ,0(z)]. 

In computing the commutator, we impose the canonical equal-time commutation 

relations for the radial and angular variables 

[R(z),n~(a:')]= [fl(4J&')] = [+(~),$(~')I 

= [?J(z),II~(5')] = ib2(s - z') . 

Given the transformation rules in Eqs. (20) and (23), we find that 6U = iCr. 

Therefore, as long as physical states are annihilated by the constraint Cl, this 

variation is unimportant. 

‘. 

The vanishing of the two primary constraints (IIA, II,,) for all time implies 

the two secondary constraints Cr = 0 and C2 - R2 - 1 = 0. The vanishing 

of the secondary constraint Cr for all time requires the commutator of Cr with 

the Hamiltonian to cancel. After arduous manipulations and the use of the fact 

that the Hamiltonian is normal ordered (as is the constraint), it is confirmed 

that [H, Cl] = 0. The cancellations are more evident using a more symmetric 

expression for the Cr constraint as 

- 
Cl = cos q5&1 - i cot fl(sin &I, + I$ sinr$) + I$, + &I-IA - 2k&A . (24 

Constraint C2 fails to commute with the Hamiltonian in presence of the IIR2 

piece. Hence we have isolated the specific kinetic piece that the constraint fails 

to commute with. In Sec. III, this is what led to a tower of constraints. 

The constraint C2 thus leads us to write a new Hamiltonian density U’ = 

x - $R. 2 This leaves the gauge-invariance properties of the Hamiltonian un- 

altered since the variations of both the fields R(s) and IIR(z) is zero. The 

-new Hamiltonian trivially satisfies [H’, C,] = O! The equations of motion given 

by d = i[H’,O] 
. 

are unchanged except now we have R = 0 whereas before 

it Was k = HR. This independence of h and 11~ is crucial to construct- 

ing a new gauge symmetry among these variables. More precisely, the new 
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Hamiltonian~ is given by H’ = $ d2x go0 where OpV is the canonical energy- 

momentum tensor and Goo, = 0” - $II&. We note that among the OpV’s, 

only the (00) component is shifted. The conserved charges Pi = s d2xOoi 

and j@ = s d2x (xiOoj - xj@Oi) are unchanged. However, the conserved 

charges M”j become &$Oi = s d2x (x”Ooi - xiooo) . The barred and unbarred 

quantities realize the usual Poincare group in 2+1 space-time dimensions with 

the exception of two commutators. Using the canonical commutation relations 

quoted above, the two anomalous commutators are [i@“i, H ‘1 = i(Pj -Pi) where 

Pi = s d2x @OR = s d2x l”I~diR and [M”i,~Ok] = i(Mjk - A$‘) where 

jjf$ = j- &x (xi@o,k - ~~02). These anomalous pieces in the charge algebra of 

the space-time group ISO(2,l) will vanish when sandwiched between any states 

in the physical subspace of the full Hilbert space. If we can diagonalize the new 

Hamiltonian and the constraint C2, then the expectation value for physical states 

(*100,31!P) is zero since 02 F=! c3iR. If this holds for time t = to then it will be 

- true for all time, since [Oz, H ‘1 = 0. Therefore, in the physical subspace, we 

recover Lorentz invariance. Using this new Hamiltonian, we delineate how we 

can indeed exactly define the physical subspace. 

With the new Hamiltonian density, we derive the Lagrangian density via the 

reverse canonical procedure: 
- 

where x stands for the fields R, 8,$, $, A and Ao. The X field has been purposely 

left out in order that the resulting Lagrangian have a new gauge symmetry. The 

resulting Lagrangian density is 

- 

It is easy to check using the transformation rules for the fields and their canoni- 

tally conjugate momenta that Z’ has the U(1) gauge invariance as before. Now 

we are in a position to unravel the additional symmetry of this new Lagrangian. 
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The fields R, rfR and X were invariant with respect to the usual gauged U(1). 

Concentrating on these fields, only, the Lagrangian density has the form ffRh - 

X(R2 - 1). The ph ase space should be constrained to the same hypersphere 

whether the constraint reads R2 = 1 or R = 1 since the latter certainly implies 

the former. From now on, we will by fiat write the constraint as X(R - 1) which 

is equivalent to starting from a CP1 defined with a constraint X(m - 1) in 

the original Lagrangian. The point of treating the constraint in this way lies in 

a new gauge invariance embedded in URk - A( R - 1) given by 

6R=O 6&=p 6X=-b , (26) 

under which Sf? = $[p(R - l)]. S ince it is a total time derivative, it will not 

affect the physics. The above variations reveal again the independence of i and 

Now we have two symmetries and we can use the BRST method to arrive at 

the gauge fixed Lagrangian. The resulting Lagrangian will give the final Hamil- 

tonian and the invariance properties of the BRST gauge fixed Lagrangian will be 

expressed as the commutation of the BRST charge with the Hamiltonian. This 

in turn, will mean all kets annihilated by the BRST charge will automatically 
- 

obey the constraint and the gauge fixing condition. The BRST gauge symmetry 

is realized by elevating the gauge parameter functions to anti-commuting “ghost” 

fields that close in such a way that twice the variation of any quantity is zero. 

Specifically, the BRST transformation corresponding to the p parameter becomes 

6nR = I22 6x = 42 612~ = 0 6~~ = b2 6b2 =0 , (27) 

where c2 and ~2 are the ghost and anti-ghost fields with subscript two correspond- - 
ing to the two in C2- The variation of all other fields is zero under this BRST 

symmetry. The second BRST transformation corresponds to the 7~ parameter 
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se=cosdcl 6IIe = -cl csc2e sin4 II4 

64 = - cot e sin 4 cl 6114 = cr (sin $Ile + cot 8 cos c#$) 

s+ = Cl 6A. = -ci 

6A = -&cl 6& = -2ka2c1 
(28) 

6Cl = 0 

6bl = 0 

6~ = bl 

and all other variations vanishing. We see that the two symmetries are orthogonal 

to each other, that is, each acts on a different set of field from the Lagrangian. 

In order to gauge fix the new symmetry, we add to L:’ the following 6Cr: 

)I . (29) 
Now we have the freedom to gauge fix the usual U(1) gauge symmetry for which 

we will choose d,Ap = 0 which in our variables corresponds to A0 - &A - 

& ~32 I-IA = 0. The appropriate gauge fixing term in the BRST language is 

- A, - &A - $ d2 nA + f bl )I . (30) 

Using the BRST transformations given above and writing the gauge condition 

for the A(x) field as G(x), these two terms can be expanded and summed giving 

6LBRST = -hG(x) - ;b12 + &il - diEl&cl 

+ -bz(i - nR) - ; b22 + i2i2 - n52c2 
(31) 

, 

- 

where we have added a total time derivative for the ghost fields and performed 

a partial integration for the last term. This makes the total Lagrangian .Ccp = 

L'+~.CBRST. 
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Given this new Lagrangian, we form again the canonical momenta and the 

Hamiltonian. The new canonical momenta resulting from the BRST term are 

n,j = -b2,nAo = -bl, III,; = di, TIEi = iri. The first two equations imply we can 

eliminate the b(x) degrees of freedom in favor of the relative II(x) degrees of 

freedom. Therefore, we can rewrite &LBRST 

with XBRST given by 

(33) 

where we have used time derivatives instead of canonical momenta for the ghost 

fields to make the symmetries more familiar. Combining these terms with the 

expression relating lZ ’ and X ’ in Eq. (24)) we read off the final Hamiltonian 

Xcp = X’ + ~UBRST. 

The construction of the BRST and anti-BRST charge operators is straight- 

forward. We require of the BRST charge when acting on a field @(xc) to produce 

- the same variation as given in Eqs. (27) and (28) using [Q, a] for bosonic degrees 

.of freedom and {&,a} f or f ermionic degrees of freedom. The anti-BRST charge - 
on the other hand should yield a variation with the parameter --E instead of c. 

The two BRST charges and the anti-BRST charges are given by 

- 

Q1 = -i s d2x[-41 + &n&] 

&1 =i 
J 

d2x[ -q Cl + i&4,,] 

Q2 = -i 
s 

d2x[c2(R - 1) + i21fA] 

&2 =i J d2x[c2(R - 1) + i21-Ix] . 

With the canonical commutation relations [X(x),II~(x’)] = [R(x),IIR(x’)] = 

[Ao(x),IIA~(x’)] = i62(x-x’) and th e anticommutationrelations {ci(x), &(x’)} = 
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-{Ei(x),t;(x’)} =.iP(x - x’), it can easily verified that the correct transforma- 

tions are reproduced and the relations [Qi, Hcp] = [Qi, Hcp] = 0 are satisfied. 

The single non-canonical anticommutation relation between the anti-ghost and 

its momenta means with the minus sign, states with any number of anti-ghosts 

will have negative norm. Since the ghosts do not interact with the physical fields, 

our physical states will always remain in the positive norm subspace in the Hilbert 

space of states. A further discussion of this is found in the NPW paper. Finally, 

we write down the final quantum Hamiltonian for our constrained system: 

JkP = -& 

+ (&R&R) + R2[(aieaie) t sin2 e{(ai$)(ai4) + sin2 ~(&ll;&+)}] 

+ 2R2Ai 
( 

cos qE$d - i sin 28 sin qZ+$ + sin2 t3 sin” @ in 
> 

+ AiAiR2 
(35) 

- Ao(cos qb& - cot 0 sin+I$ + II+ + &l-IA - 2k&A) + X(R - 1) 

- + ilil + i& + E2c2 + diEld$l 

&A+ & a2 HA + f nAo2 , 

where A2 (x) in the third line is by definition & I-IA. The equations Qi]Xl!) = 

Q$P) = 0 d e fi ne the physical states as the BRST invariant states. Such states 

exactly satisfy Cr ]\k) = C2]@) = IIA]~) = I-IA,, [Xl?) = 0. When these opera- 

tor equations are substituted into Xcp we arrive at the Hamiltonian acting on 

the physical states of the theory. This completes the quantization of the CPr 

model with Chern-Simons term. In a previous paper, the author found models 

isomorphic to this model without the nefarious constraint R = 1. It has an im- 

plicit systematic expansion that exactly realizes the constraint similar to chiral 

Lagrangians. The BRST quantization of this model does not require the intro- 

-duction of IIR ever in the Lagrangian as a separate degree of freedom and hence 

the BRST fixed Lagrangian can be directly used in the path integral formulation 

of the theory. We turn our attention now to this easier problem. -- 
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V. .BRST Gauge Fixing of the SU(2) Model 

The CP1 model can be viewed as a theory of four real scalar fields constrained 

to a modulus of one with a gauge invariant interaction. The addition of the 

Chern-Simons term gives the two spatial gauge degrees of freedom dynamics like 

a kinetic term would. Unlike the usual FpI/FpV term, the Chern-Simons term 

constrains the A2 field to be the canonically conjugate momentum of the Al field. 

This non-trivial observation makes this model worthy of study. One expectslo 

higher loop effects to contribute the usual kinetic piece to the effective action and 

thus change the dynamics. It would be valuable though to fully understand the 

lowest order theory in order to systematically derive all of the higher dimensional 

operators in the effective action i The notion of four scalar fields constrained is 

reminiscent of pion theory in the limit of large m,, viz chiral Lagrangians. In 

fact, this analogy can be made exact by writing the four component fields cri by 

defining a matrix U(x) as 

u = a1 + i CYi vi , (36) 

where the v’s are the usual Pauli 2 x 2 matrices. The constraint ajo! = 1 

translates to UtU = 1, i.e., the special unitary matrices. Note that det(U) = a&. 

- ‘Parametrizing U as U = c+~(“)‘~, we have replaced the four Q’S by three 8 degrees 

of freedom. Hence, if we stay in the Hilbert space of B’s, we are exactly at the 

constraint. 

The resulting Lagrangian density in the U(x) formalism using an equivalent 

map as that in Eq. (36) isll 

L = ; Tr[(D,u)t(DW)] + kF’XApdvAX , (37) 

- 

with D,U = (a, + iApv,)U. From now on, we are instructed to think of U(x) 

in terms of an expansion in e(z) which means that the above Lagrangian density 

has an infinite number of interactions. What is the analog of fT, the expansion 
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parameter for chiral Lagrangians? In the CP1 model, if the Z(x) are dimension- 

less, there will appear a dimension-full parameter in front of the lowest order 

action. This parameter will serve as fir. 

In quantizing the model, we will encounter the usual “Gauss’s” law (sec- 

ondary) constraint which we called Cr in previous sections. It commuted with 

the Hamiltonian and presented no further constraints. The origin of this was 

the lack of a canonical conjugate field momentum for Ao. The constraint must 

generate the following gauge variations: 

6U = iqv,U 
(38) 

SA, = -a,q . 

If the Hamiltonian formalism is carried through in the framework of Uii’s as the 

above variations exhibit, the resulting progression will be similar to the exercise 

with the o’s (ai - Ukl) and a constraint on the modulus of the Uij will have to be 

added. Therefore, one must instead expand the U fields in terms of the 8 fields 

and then proceed. This expansion can be truncated to the most significant lowest 

order terms and then quantized. Having described this, we will use the BRST 

method to gauge fix the action and define the path integral for an alternative 

.formulation of the perturbation theory for this model. 
- 

The Feynman path integral with the above Lagrangian will be divergent 

in view of the U(1) gauge invariance of the theory. We need to add an ap- 

propriate gauge fixing piece. The BRST gauge fixing procedure introduces an 

anti-commuting ghost and anti-ghost field and one additional bose field, the b(x) 

field. Integration over this last field will introduce the appropriate symmetry 

breaking term to define the path integral properly. An alternative route is the 

Fadeev-Popov procedure. For the gauge 3,Ap = 0, the appropriate BRST term 

-was given in a previous section: 

61~~s~ = -b(d,A’) - i b2 + apEa’lC 9 (39) 
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where we have performed partial integrations for the ghost fields. The BRST 

transformations for the ghost fields were given in Eq. (28). The others are given 

in Eq. (38), th US 6U = icv,U to lowest order in 6 becomes 68, = ic, 68, = ic& 

and 68, = -ice,. The path integral over the b(x) is just a Gaussian integral 

giving (const)e+ capA’j2. This is exactly the gauge fixing piece that one gets from 

the Fadeev-Popov procedure. We see that the ghosts do not interact with the 

matter fields and so they can be thrown out as one does in QED for the path 

integral. Thus, BRST gauge fixing introduces the usual gauge fixing piece and 

the final Lagrangian is 

L = ; Tr[(D/Jl)t(DW)] + ; (arAp) + kP’XA&,AX , (40) 

.: where by U we mean U(O,). Th e integrations for the Feynman amplitude have 

to be done over 8i and A,. It has been shown using the path integral method 

that the bose degrees of freedom have fermi-like propagators and vice versa in 

the low momentum regime. It would be interesting to show with equal rigor the 

transmutations for the solitons12 of this model. 

- VI. Conclusions and Remarks 

In the framework of classical Lagrangian analysis, it was shown how all the 

gauge degrees of freedom could be written in terms of the CP1 fields with vari- 

ous non-local interactions. Quantizing the theory traditionally meant a horren- 

dous set of constraints which leads to non-canonical commutation relations and 

a physical Hilbert space that is difficult to grasp. At the cost of using a nonlin- 

ear Lagrangian and introducing new propogating degrees of freedom within the 

-framework of BRST as elaborated in the NPW paper, we were able to quantize 

the theory and come-to terms with the set of physical states. Besides the larger 

number of degrees of freedom for our model, the entire quantization-is similar to 

the problem of the rotor in the NPW paper. The BRST method was applied then 

18 



to a model isomorphic to the CP1 model to obtain a path-integral action without 

a modulus constraint and with the gauge fixed. Presumably, since the ghosts do 

not interact with the gauge fields, no spin statistics transmutation should occur 

for them. It is also not clear how to show rigorously that the soliton excitations 

will be transmuted. The model studied has a curious kinetic piece for the gauge 

fields making the two spatial gauge degrees of freedom canonical conjugates of 

each other. It would be amusing to compute the lowest order corrections to the 

propagator for the gauge degree of freedom. Although the CPN model in two di- 

mensions has been extensively studied, this model in 2 + 1 space-time dimensions 

and particularly with the Chern-Simons term has only recently received genuine 

interest. 
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