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ABSTRACT 

We investigate two major mechanisms which induce depolarization of electron 
beams during beam-beam interaction in linear colliders. These are the classical 
spin precession under the collective field of the oncoming beam, and the spin- 
flip effect from beamstrahlung. Analytic formulas are derived for estimating 
these depolarization effects. As examples, we estimate the depolarization in the 
Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). 
The effects are found to be negligibly small for SLC and not very large for TLC. 

INTRODUCTION 

Polarized beams in linear colliders could be an interesting option for high 
-energy physics experiments. It seems to be easier to prepare longitudinally po- 

larized electron beams in linear colliders than in storage rings. In a linear collider 
there is no need for the complicated spin rotator, which is necessary in a storage 
ring in order to orient the spins to their longitudinal directions and is a serious 
cause of depolarization. On the other hand, polarized positron beams may not 
be easy to achieve in linear colliders. Nevertheless, this is not essential for high 
energy experiments. The depolarization process can in principle occur in the 
damping ring, the linac, and the final focussing system in a linear collider. But 
these can be largely suppressed as long as the machine is carefully designed. In 
the present paper we discuss the depolarization due to beam-beam interaction, 
which is inherent for a linear collider and can not be alleviated. 

-Th ere are two mechanisms of spin depolarization induced by the collective 
electromagnetic field of the oncoming beam, which is transverse to the beam 
trajectory. A longitudinally polarized spinor would precess classically under this 
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field according to. the BMT equation: which can lead to a depolarization. It is 
well-known that the precession angle is ya times the deflection angle, where 7 is 
the particle energy in units of the.rest mass and a = 0.0011596 the-coefficient of 
the anomalous magnetic moment of electron. One can therefore roughly estimate 
the importance of this-effect with given beam parameters. Yet explicit formula 
is still needed for more quantitative evaluations. 

The other mechanism of depolarization is the Sokolov-Ternov effect: i.e., 
.the spin-flip effect, during synchrotron radiation. This process tends to polarize 
spins along the direction of the field. Thus for storage rings the effect tends to 
polarize the beam in the transverse direction, and for linear colliders it tends to 
degrade the longitudinal polarization. In storage rings the polarization length, 
i.e. velocity of light times the polarization time, is of the scale of the solar 
system, and the effect is cumulated through long time of beam storage. On the 
contrary, the depolarization length in a linear collider due to the Sokolov-Ternov 
effect from beamstrahlungf i.e., the radiation from beam-beam interaction, can 
be roughly estimated to be of the order milimeter or less, by applying the scaling 
law available in the classical limit. For quantitative estimations, however, it is 
necessary to apply the full quantum theory. 

_ In this paper, depolarization by classical precession is discussed in the next 
section, and depolarization by spin-flip radiation in the following section. Depo- 
larizations in the SLC and a TLC are estimated at the end of both sections. 

PRECESSION IN THE BEAM-BEAM FIELD 

Let us consider the collision of an electron and a positron bunch each con- 
sisting N particles with energy +ymc 2. Define the coordinate system as follows: 

the electron (positron) comes to a collision along positive (negative) s-axis, whose 
origin is the collision point of the bunch centers. The x - y plane is perpendicular 
to s-axis. Define zr(z2) as the longitudinal coordinate in the electron (positron) 
bunch with the origin fixed at the center of each bunch and positive towards the 
bunch head. The time t is defined such that t = 0 at the instance when the two 
bunch centers collide. Obviously, zr = s - t and z2 = -s - t. The equation of 
motion of an electron with the initial condition (x, y, zr) can be written as 

d2x 4r,N 
yg= -Tn,(-2t - Zl) Fz(x7 y, 

Jq 
, 

and a similar equation for y. Here, nL(z) is the longitudinal distribution function 
normalized in such a way that J nL (z)dz = 1. crZ and or, are the transverse rms 
beam size, r, the classical electron radius and 

x-x 
mx7 ?A = WYJ (x _ X)2 + (y _ y)27b(xm dXdY 
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is the transverse force, where r+(x, y) is the transverse distribution function. For 
a round (a, = or, = 6) Gaussian beam, we have 

x 1 - exp(-r2/2a2) 
F&Y) 7 ; 

rla 
(r2 = x2 + y2) . (3) 

In the high energy region where ya >> 1, the equation of motion of the spin 
.s’, defined in the rest frame, is 

ds’ d2x d2y 
dt=ra --jgZg--j+ XZ , (4) 

regardless of whether the field is electric or magnetic. Here, e’, and I?~ are the 
unit vectors along x and y axes. Since the deflection angle is very small, the 
longitudinal spin component is nearly equal to S,. We assume that- the initial 
polarization is longitudinal (st = 1) and the depolarization is not very large. 
Also, for the moment, we ignore the change of the field due to the pinch effect. 
Then Eq. (4) can be integrated as 

s,(t) = 1 - i(r,)z 
[(g2+ (ig2] ’ 

and from Eq. (1) we have 

t 
dx 4reN F&, Y) 

x= 
-- 

J Y &Tern 
n,(-2t - zl)dt . 

Therefore, the depolarization at time t is given by 

t 

AP(t) = f 4reN ra 
r&q 

F(x7 Y > 
J 

nL (-2t - zl)dt 

-CO 

where 

F2(x, y) = F&Y) + F&Y> - - 

(5) 

(6) 

I 
2 , (7) 

(8) 
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Let us denote the average over the particle distribution by ( ). Then, the average 
final polarization is 

(AP) = (AP(t = 00)) = 2”;;;‘” (F2) , 

since s-“, n,( -2t - z)dt = l/2. Th e average of F2 has been derived before:4 

(F2) = flog; f2(R) , 

with 
2477 

f(R) = 1+R’ R=% . 
OY 

(11) 

Notice that the derivation was based on round Gaussian bunches while the form 
factor f(R) f or elliptic cylindrical distributions was multiplied a posteri. All the 
following formulas are derived in the same manner. 

A more interesting quantity is the average longitudinal polarization during 
the collision, which is a luminosity weighted average; We denote this average by 
the square bracket [ 1. F or any function of (x, y, s, t), we have 

If1 = 
J dxdydsdt n(x, y, s - t)n(x, Y, --s - t)f (x9 Y, s, t> 

Jdxdydsdt n(x, y, s - t)n(x, y, -s - t) 

= .kWhdz2 4x, y, zl)n(x, y, zz)f (xc, Y, v, -zl;z~) 
~dxdydzldzz n(x, y, zl)n(x, y, a) 3 (12) 

where 

4&Y> 4 = %.(X7 Y)%(Z) - 

The average of AP is now 

where we have used the relation 

r -(z1+z2)/2 

J dada nL(zl>nL(za> I J n,( -2t - zl)dt 

- L -CO 

(13) 

2 

1 =- 
12 

for any longitudinal distribution. The luminosity-weighted average of F2 is 

[F2] = log; f2(R) . (15) 
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Actually, the results do not depend on the longitudinal distribution function. 
The ratio of (AP) and [API is 

[Ap] = 2 l”dg/s) 
3 logC4,3) (4 = 0*2ww (16) 

Notice that the above results can also be expressed in more convenient forms. 
The luminosity, in the absence of disruption, is given by 

L 
0 

= frwN2 
47rC,cry ’ 

where frep is the repetition frequency. A comparison with Eq. (9) gives 

(AP) = 0.3S61;;/L;r2 f2(R) 

(17) 

(18) 
Actually, a more physical scaling law-is to relate (AP) with the average number 
of radiated photons per electron, which can be given by 

n,l= $$& - l)sf(R) 
pxl 

where n,l is the average number of photons calculated by the classical synchrotron 
radiation formula and CY the fine structure constant. Then, we have 

(AP) = 12(32:ta’ log f (&)” nzr = 0.00647 nzl . (20) 
This simple relation suggests a more direct comparison of the depolarization and 
the number of photons. According to the classical radiation theory, the average 

-number of photons per unit time is given by 

dw 5 “Y -=-- 
dt Mb ) (21) 

where p is the instantaneous radius of curvature of the orbit. On the other hand 
the precession angular velocity is 

d4 v -=- , 
dt P 

when the field is perpendicular to the spin. Therefore, we have 

P-4 

Thus, the final depolarization is 

(23) 

(24) 
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Fig. 1. 

where we ignored the difference between (n$) and (nCi)2. By using the relation 
a = a/2a in quantum electrodynamics, we get 

(AP) = &nEl = 0.00608 nzl , 

and 

[API = &nr, . 

(25) 

(26) 
Thus, in order to have negligible beam-beam depolarization, it is necessary that 

n,lS4 . (27) 

If the actual n,l can be obtained by computer simulations or by other means, one 
can estimate the depolarization readily. The inequality in Eq. (27) is generally 
satisfied in several existing designs of linear colliders, although it is only marginal 
in some cases. 

In the use of the above expressions, the following considerations should be 
taken: 

First, when the ratio [ of the critical energy of radiation to the initial beam 
energy is large, i.e., when beamstrahlung is in the so-called quantum regime, n,l 
is not equal to the actual average number of photons n7. The latter has to be 
cai&lated using the quantum theory. The two quantities are related by ny = 
n,lUo([), where Ua(<), to b e e ne in the next section, is a slowly decreasing d fi d 
function of t and Un(0) = 1 ( see Fig. 1). Therefore, if one uses ny instead of 
ncl, Eqs. (25) and (26) will give an under estimation of depolarization. Since, 
however, the variation of Uo is very slow, the difference is only by a factor 0.7 
even for e -0.5. 
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Second, we have treated the precession angular frequency dqS/dt as if it is a 
positive definite scalar quantity, but it is actually a vector. Our integration which 
led to Eq. (22) was 

t d& m = J p 7 (2s) 

.which is not equal to I&t)]. In this sense, therefore, Eq. (25) gives an over- 
estimation of the depolarization, and it is correct only if (a) the orbit is confined 
in a plane and (b) d+/dt is positive ( or negative) definite. Actually, condition (a) 
is generally satisfied. As for (b), when the disruption parameter, defined as 

D 2re No, 
=,y = YG,y(G + oy) ’ 

(29) 

is of the order unity, a particle can in general cross the axis within the oncoming 
bunch and be bent backwards, causing a change of sign in d$/dt. For D >> 1, 
particles will oscillate about the axis by the strong focusing force of the oncoming 
beam, and d$/dt will change sign frequently. In that situation the problem has 
to-be treated vectorially, and becomes rather intricate. 

Third, for very flat beams, i.e., Q, >> gy, we expect D, >> D, and D, << 1. 

Computer simulations on the rms deflecting angles using the code ABEL5 show 
that, for Gaussian beams, 

ej,rms = i!Ti 
Dj 

2az [l + (DJ2)5]1’” ’ 
(j = 5,~) 

where the overall coefficient corresponds to the analytic expression for small dis- 
ruptions. In practice, the denominator in the above equation can be removed for 
j = x since typically D, < 1. 

The final depolarization is then given by 

(W = &42[&-ms2 + ey,rms2] , (31) 

whkh approximately agrees with Eq. (9) when both D,, D, << 1. The small 
discrepancy-is due to the form factor f(R) for flat beams. In the case where D, >> 
1, we have &-ms B- ey,zms, thus the contribution from the vertical dimension 
can be ignored. Furthermore, for flat beams the relation between [API and-(AP) 
in Eq. (16) always holds as long as D, < 1, regardless of the value of D,. But 
when both D, and D, are large, the relation has to be modified. 
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As examples, we consider the newly built Stanford Linear Collider (SLC) 
and the design studies for a TeV linear collider (TLC) by Palmer! The SLC is 
designed to have beam energy at 50 GeV, N = 5 x lOlo particles per bunch,with 
bunch size oZ = cry = 1.6pm, and Q, = 1 mm, at the interaction point. This 
corresponds to a disruption parameter D, = D, = 0.67. Thus the formulas 
derived in this section is directly applicable. 

Since the local deflecting field is not constant during collision, it is in principle 
very complicated to carry out any calculation that involves the beam-beam field. 
It has been observed, however, that an effective beamstrahlung parameter3can be 
introduced in terms of the initial beam parameters only, to represent the entire 
beam as if all particles are seeing a constant effective field: 

(32) 

where by definition Y = yB/.& = 2[/3 (B, = m2c3/eh - 4.4 x 1013 gauss), 
and f(R) is defined in Eq. (10). N o ice that the coefficient 5/12 in the above t 
expression is some what arbitrary. With the above parameters for SLC, we find 
TO = 0.0014, or to = 0.0021. One can easily find that n,l is of order unity in this 
case, and the depolarization is negligible according to Eq. (25) and Eq. (26). 

_ As for the TLC, the beam energy is 0.5 TeV, and in one version of the studies 
N = 8x10”, oZ = 190 nm, gy = 1 nm, and 0, = 26pm. This corresponds to D, = 
0.033 and D, = 6.27. Plugging numbers into Eq. (30) give e,,,,, = 0.13 x 10s3 > 
e y,rms = 0.047 x 10s3. Therefore the depolarization through precession is actually 
dominated by the horizontal disruption in this case. Since D, << 1, the formulas 
in this section are again applicable. The effective beamstrahlung parameter for 
a TLC with the above beam parameters turns out to be ‘IO = 1.54, or to = 2.3. 
Computer simulation further shows that the average number of photons radiated 
per electron is ny = 1.33. From Fig. 1 and with the estimated to, we find n,l to 
be around 2. Thus we expect that (AP) N 0.024 and [API N 0.007, which are 
also reasonably small. 

SPIN-FLIP RADIATION 
As is well-known, the electron (positron) beam in storage rings tend to polar- 

ize anti-parallel (parallel) to the guiding magnetic field by the spin-flip radiation, 
which is called the Sokolov-Ternov effect. The spin-flip transition rate of an un- 
polarized electron, i.e., the average of the up-down and the down-up transition 
ra@s, is given by 

54 kreY5 
w, = - 

16 p3 ’ (33) 
where X, is the Compton wavelength of electron. The polarization time ranges 
from several minutes to several hours for storage rings. For linear colliders the 

8 



characteristic time is much shorter because of the generally strong beam-beam 
field and the high beam energy. In the case of TLC, the above expression gives 
the polarization time of the order of picoseconds, which is not negligible when 
compared with the bunch length. ‘Because the beam-beam field is perpendicular 
to the particle orbit and because we are interested in the longitudinal polarization, 
the Sokolov-Ternov effect leads to a depolarization in this case. 

The above expression, again, is not directly applicable to the TeV linear 
colliders if the beamstrahlung is in the quantum regime. When the critical energy 
uc of the synchrotron radiation spectrum is comparable to or larger than the beam 
energy ymc2, we have to employ the quantum theory of radiation. Define the 
parameter [ as 

3 XeY2 (=2Lc=-- . 
ymc2 2 p (34) 

In fact, the expression (33) corresponds to the first non-trivial order in the ex- 
pansion in terms of t: 

. . 
WT = 1 dn,r 2 

--t , 6 dt 
where dn,l/dt, defined in Eq. (21), is the rate of (spin non-flip) radiation by the 
classical theory. 

The spectrum formula of radiation in the full quantum theory was first derived 
also by Sokolov and Ternov.7 When the field is perpendicular to the orbit and 
the electron is polarized longitudinally, the spectrum of photons is given by 

1 . (36) 

-Here, y is a dimensionless variable related to the photon energy u as 

U/UC 
‘=1-u/E ’ 

(E = ymc2) (37) 

- C and [’ are the helicities of the initial and final electron (= &l), and the functions 
F nf and Ff, corresponding to the spin non-flip and flip radiation respectively, are 
given by 

- 
and 

F _ 3 1+ty+$t2y2 co 
nf - g J (1 +tYj3 y 

1(5/3(5) dJ: 7 (3s) 

b/3 (4 dx 7 
Y 

(39) 
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K’s being the modified Bessel functions. By integrating these expressions over 
the photon energy by using the relation K113 = -2KJ,3 - KS/s, we get the total 
number of photons and spin-flip photons per unit time: 

dn, -= 
dt (40) 

-and 

with 

dnf dw 
- = -gf(S) 7 dt (41) 

co 

Uo(t) = J (Fnf +Ff) 4-/ = $ 1 1 (42) 
0 0 

and 

03 

u-co = J 
03 

f Ffdy== 
107r < J [ dy TtY 1 t2y2 log@ + <y) - - - - 

l+tY 2(1+tY)2 1 &/3(Y) - 

0 0 

(43) 
(Caution: the integrands of these formulae of Uo and Uf do not give the spectrum 
since we have used partial integration.) The function UO is normalized such that 

Jo(O) = 1. It is a very slowly decreasing function of t, not far from unity in the 
region for linear colliders in the near future. The functions Uf and Uf/Uo are 
plotted in Fig. 1. Explicit and approximate expressions of these functions are 
given in Appendix A. The symptotic form of Uf for small 6 gives the spin-flip 
transition rate 

7 dy2 -- 
wL = 54 dt ’ (t a 1) (44) 

which differs from Eq. (35) by a factor 7/9 b ecause this is the transition rate of 
longitudinal spin. As [ becomes larger, the spin-flip rate increases to a broad 
maximum around [ = 4 and then decreases as logt/t. The ratio of the spin- 
flip rate to the total photon emission rate reaches a maximum of 0.0200 around 
( = 11. 

In order to get the depolarization, we have to integrate WL over the time 
and average it over the transverse distribution. Again, as in the case of classical 
precession, the calculation can be approximately performed if one replaces [ by 
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the effective (0 of the entire beam, then 

For very small (0, the asymptotic forms of Uf and Uo gives 

(46) 

and the inequality Uf/Uo < 0.02 gives 

(AP) < 0.0471, . (47) 

As can be seen from Fig. 1, the maximum of Uf/Uo is actually very broad, thus 
the above relation is true for a very large range of (0: 2 s (0 2 100. As for 
the relation between [API and (AP), Eq. (16) is still approximately valid in this 
case. 

For SLC, (0 = 0.0021 and n-, N 1, as we discussed earlier. So (AP) N 
1.1 x low6 << 1. On the other hand, (0 = 2.3 > 1 in the case of TLC, so 
Eq. (46) does not apply and we need to use Eq. (45) directly. From Fig. 1 we 
see that Uf(& = 2.3)/Uo(&~ = 2.3) - 0.015. Since ny = 1.33, Eq. (45) gives 
(AP) - 0.04, h h w ic is about twice as large as the contribution from the classical 
spin precession. Putting the two effects together, we estimate the depolarization 
in TLC to be (AP) - 0.064. 
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In this appendix we shall give some formulae concerning the functions Uo and 
defined by Eqs. (42) and (43), For completeness we shall also give formulae 
the function VI defined by 

which is related to the radiation power as 

APPENDIX A / 

p = PC1 UlK> , (49) 

where PC1 is the radiation power given by the classical formula: 

p 
Cl 

= 2wnc3~4 
3 p2 a 

(50) 
One can easily get the asymptotic form for t + 0 by expanding the integrands 
of (42), (43) and (48) into power series of t and by using the formula 

00 

J zPK,(z)ds = 2w? (p+;+l)r(y+l) (?I+-%+1>0) . 
0- 

Thus, we find 
(51) 

Uo(t) = & 7J3n2 + 3n + .lO)lY (5 + S) I (5 + S) (-20” 7 (52) 
n=O 

wo = g fJn + 1)(n2 + 2n + 8)I (5 + 5) r (i + i) (-2[)n , (53) 
n=O 

O” n(n -1) we) = & c 
n=2 n+l 

r(i+f)r(i+$-2[)n . (54) 

These expansions do not converge for any finite [. They are merely asymptotic 
expansions, but still useful for very small <, say t < 0.03. The first few terms are 

- 

(55) 
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In order to get the expansion at [ = 00, we replace l/(1 + [y)” in the 
integrands using 

c+iw 
1 1 XS -=-- 

1+x- 2i J sin rs 
ds (-1 < c < 0) , 

c--i03 

.and its derivatives with respect to x, integrate over y using Eq. (51) and close the 
integration contour along the left hemicircle in the complex s-plane. The results 
are 

uo(‘) = 2 2 r(z$L)r(2$5) 
O” (n2 - 3n + 30)~~ (2t)-43 

, 

(2p3-’ , 

(59) 

(60) 

O” (n/3 + l)(d3 + 2)En+3 (2t)-n/3 1 7 (61) 
n=2 

where yE is Euler’s constant (=0.57721...) and 

2nn 
En = -(-l)n - 2 COS - 

3 - (62) 

Actually, en = 0 for n = 2 and 4 (mod 6). These formulae converge for any 
positive t but, of course, cannot be used for very small [ because of loss of digits. 

- The first few terms are 

U. = 1.15830[- 1/3-0.86603t-1+1.94870[- 5/3 -2.88000[-2 +0(<-7’3) , (63) 

Ul = 0.95535t- 4/3 -2.25000[-2+7.73495(- 8/3-12.8605[-3 +O((-10'3) , (64) 

v,= 0.173%X log (/c$ - 0.525166-l + 1.94870[-5/3 - 2.70000t-2 + o(<-7/3) . 

(65) 
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The maximum of Uf and Uf/Uo are 

Uf = 0.010505 , at < = 4.14 ; (66) 

Uf/UO = 0.019980 ) at [=11.35 . (67) 

The functions Uo, Ul and Uf are plotted in Fig. 1 together with Uf/Uo. 

The following approximate formulae are useful for practical purposes. (c is 
the maximum relative error in the range 0 2 t < 00.) 

UOK) = 
1 - 0.597975 + 1.06082[5/3 

1 + 0.92176t2 , ~=0.0064 ; (68) 

W‘t) = 

1 + 18.911455 2 

1 + 19.589Slt + 19.48734J5j3 ’ 
E = 0.014 -. (69) 
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