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ABSTRACT

We investigate two major mechanisms which induce depolarization of electron
beams during beam-beam interaction in linear colliders. These are the classical
spin precession under the collective field of the oncoming beam, and the spin-
flip effect from beamstrahlung. Analytic formulas are derived for estimating
these depolarization effects. As examples, we estimate the depolarization in the
Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC).
The effects are found to be negligibly small for SLC and not very large for TLC.

INTRODUCTION

Polarized beams in linear colliders could be an interesting option for high
--energy physics experiments. It seems to be easier to prepare longitudinally po-
larized electron beams in linear colliders than in storage rings. In a linear collider
there is no need for the complicated spin rotator, which is necessary in a storage
ring in order to orient the spins to their longitudinal directions and is a serious
cause of depolarization. On the other hand, polarized positron beams may not
be easy to achieve in linear colliders. Nevertheless, this is not essential for high
energy experiments. The depolarization process can in principle occur in the
damping ring, the linac, and the final focussing system in a linear collider. But
these can be largely suppressed as long as the machine is carefully designed. In
the present paper we discuss the depolarization due to beam-beam interaction,
which is inherent for a linear collider and can not be alleviated.

There are two mechanisms of spin depolarization induced by the collective
electromagnetic field of the oncoming beam, which is transverse to the beam
trajectory. A longitudinally polarized spinor would precess classically under this
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field according to the BMT equation,1 which can lead to a depolarization. It is
well-known that the precession angle is ya times the deflection angle, where 7 is
the particle energy in units of the rest mass and a = 0.0011596 the coeflicient of
the anomalous magnetic moment of electron. One can therefore roughly estimate
the importance of this.effect with given beam parameters. Yet explicit formula
is still needed for more quantitative evaluations.

The other mechanism of depolarization is the Sokolov-Ternov effect,2 ie.,
‘the spin-flip effect, during synchrotron radiation. This process tends to polarize
spins along the direction of the field. Thus for storage rings the effect tends to
polarize the beam in the transverse direction, and for linear colliders it tends to
degrade the longitudinal polarization. In storage rings the polarization length,
i.e. velocity of light times the polarization time, is of the scale of the solar
system, and the effect is camulated through long time of beam storage. On the
contrary, the depolarization length in a linear collider due to the Sokolov-Ternov
effect from bearnstrahlung,3 i.e., the radiation from beam-beam interaction, can
be roughly estimated to be of the order milimeter or less, by applying the scaling
law available in the classical limit. For quantitative estimations, however, it is
necessary to apply the full quantum theory.

_ In this paper, depolarization by classical precession is discussed in the next
section, and depolarization by spin-flip radiation in the following section. Depo-
larizations in the SLC and a TLC are estimated at the end of both sections.

PRECESSION IN THE BEAM-BEAM FIELD

Let us consider the collision of an electron and a positron bunch each con-
sisting N particles with energy ymc?. Define the coordinate system as follows:
“the electron (positron) comes to a collision along positive (negative) s-axis, whose
origin is the collision point of the bunch centers. The z —y plane is perpendicular
to s-axis. Define z1(z2) as the longitudinal coordinate in the electron (positron)
bunch with the origin fixed at the center of each bunch and positive towards the
bunch head. The time ¢ is defined such that ¢ = 0 at the instance when the two
bunch centers collide. Obviously, z; = s —t and 23 = —s —t. The equation of
motion of an electron with the initial condition (z,y,21) can be written as

2
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and a similar equation for y. Here, n (z) is the longitudinal distribution function
normalized in such a way that [n,(z)dz = 1. o7 and oy are the transverse rms
beam size, re the classical electron radius and

; (1)
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is the transverse force, where n,(z,y) is the transverse distribution function. For
a round (o, = 0y = o) Gaussian beam, we have
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In the high energy region where ya > 1, the equation of motion of the spin
.8, defined in the rest frame, is
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regardless of whether the field is electric or magnetic. Here, €, and €, are the
unit vectors along r and y axes. Since the deflection angle is very small, the
longitudinal spin component is nearly equal to §,. We assume that. the initial
polarization is longitudinal (s, = 1) and the depolarization is not very large.
Also, for the moment, we ignore the change of the field due to the pinch effect.
Then Eq. (4) can be integrated as

w=1-300 | (5) ¢ (3) ] - o

and from Eq. (1) we have

t
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Therefore, the depolarization at time ¢ is given by

t
1 4r. N
AP(t) = 5 |7e mF(z,y) / n, (=2t — z1)dt , (7)
where
F*(z,y) = FX(z,y) + F(z,y) . (8)



Let us denote the average over the particle distribution by ( ). Then, the average
final polarization is

) ar 2 '
(AP) = (AP(t = o0)) = 228 oy ©)
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since [0 n, (—2t — z)dt = 1/2. The average of F? has been derived before:*
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(F?) = §log§f2(R) ) (10)
with
2\/R Oz
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Notice that the derivation was based on round Gaussian bunches while the form
factor f(R) for elliptic cylindrical distributions was multiplied a posteri. All the
following formulas are derived in the same manner.

A more interesting quantity is the average longitudinal polarization during
the collision, which is a luminosity weighted average: We denote this average by
the square bracket [ ]. For any function of (z,y,s,t), we have

’ [f] — fdxddedtn(xv Y,s — t)n(z7 Y,—8 — t)f(:z:,y,s,t)
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where
n(s,4,2) = np (2, ), () - (13)

The average of AP is now

2 (cweN)2 2
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where we have used the relation
~(zn1+22)/2 2
/dZ1d22 n,(z1)n,(22) / n, (=2t —z1)dt| = 11_2

for any longitudinal distribution. The luminosity-weighted average of F? is

[F] = log ¢ f*(R) . (15)



Actually, the results do not depend on the longitudinal distribution function.
The ratio of (AP) and [AP] is

2

ap) - 2 1o80/8)
3 log(4/3)
Notice that the above results can also be expressed in more convenient forms.
The luminosity, in the absence of disruption, is given by

(AP) = 0273(AP) . (16)
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where fr¢p is the repetition frequency. A comparison with Eq. (9) gives
Lo/ f
(AP) = 0.386 =527 f*(R) . (18)

Actually, a more physical scaling law is to relate (AP) with the average number
of radiated photons per electron, which can be given by

57 areN
ng = —Y=(v2 -1 R) , 19
where n; is the average number of photons calculated by the classical synchrotron
radiation formula and a the fine structure constant. Then, we have

12(3 +2v2)
257
This simple relation suggests a more direct comparison of the depolarization and
the number of photons. According to the classical radiation theory, the average

_number of photons per unit time is given by

4 ra\2
(AP) = log (;) n? = 0.00647n% . (20)
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where p is the instantaneous radius of curvature of the orbit. On the other hand
the precession angular velocity is

dd) _ne
when the field is perpendicular to the spin. Therefore, we have
23 a
—_ . ¢(t) = "'ncl(t) . (23)
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Thus, the final depolarization is

(AP) = <§¢2(t = oo)> = (g)"’nz, , (24)
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where we ignored the difference between (nzl) and (ny)%. By using the relation
a = a/27 in quantum electrodynamics, we get

(AP) = %nf, = 0.00608 n2, (25)
and
1

Thus,vin order to have negligible beam-beam depolarization, it is necessary that
o ng sS4 . (27)

If the actual n, can be obtained by computer simulations or by other means, one
can estimate the depolarization readily. The inequality in Eq. (27) is generally
satisfied in several existing designs of linear colliders, although it is only marginal
in some cases.

In the use of the above expressions, the following considerations should be
taken:

First, when the ratio £ of the critical energy of radiation to the initial beam
energy is large, i.e., when beamstrahlung is in the so-called quantum regime, n
is not equal to the actual average number of photons n.,. The latter has to be
calculated using the quantum theory. The two quantities are related by n, =
nqUp(€), where Up(£), to be defined in the next section, is a slowly decreasing
function of ¢ and Up(0) = 1 (see Fig. 1). Therefore, if one uses n. instead of
nq, Egs. (25) and (26) will give an under estimation of depolarization. Since,
however, the variation of Uy is very slow, the difference is only by a factor 0.7
even for £ ~0.5.



Second, we have treated the precession angular frequency d@/dt as if it is a
positive definite scalar quantity, but it is actually a vector. Our integration which

led to Eq. (22) was
t

o= [

which is not equal to |$(t)| In this sense, therefore, Eq. (25) gives an over-
estimation of the depolarization, and it is correct only if (a) the orbit is confined
in a plane and (b) d¢/dt is positive (or negative) definite. Actually, condition (a)
is generally satisfied. As for (b), when the disruption parameter, defined as

2 4
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is of the order unity, a particle can in general cross the axis within the oncoming
bunch and be bent backwards, causing a change of sign in d¢/dt. For D > 1,
particles will oscillate about the axis by the strong focusing force of the oncoming
beam, and d¢/dt will change sign frequently. In that situation the problem has
to.be treated vectorially, and becomes rather intricate.

Third, for very flat beams, i.e., o, >> oy, we expect Dy > D, and D; < 1.

Computer simulations on the rms deflecting angles using the code ABEL’ show
~ that, for Gaussian beams,

0. _ _1_21_ Dj
o J,rms 20, [1 T (Dj/2)5]1/6

U ==2y) (30)

where the overall coefficient corresponds to the analytic expression for small dis-
ruptions. In practice, the denominator in the above equation can be removed for
J = z since typically D, < 1.

The final depolarization is then given by

1
(AP) = 5(v) Barms® + Byrme] (31)

which approximately agrees with Eq. (9) when both D,,D; <« 1. The small
discrepancy is due to the form factor f(R) for flat beams. In the case where D, >
1, we have 0; yms > 0y rms, thus the contribution from the vertical dimension
can be ignored. Furthermore, for flat beams the relation between [AP] and (AP)
in Eq. (16) always holds as long as D, < 1, regardless of the value of D,. But
when both D; and D, are large, the relation has to be modified.



As examples, we consider the newly built Stanford Linear Collider (SLC)
and the design studies for a TeV linear collider (TLC) by Palmer. The SLC is
designed to have beam energy at 50 GeV, N = 5 x 1010 particles per bunch,with
bunch size 0, = 0y = 1.6pm, and 6, = 1 mm, at the interaction point. This
corresponds to a disruption parameter D, = Dy = 0.67. Thus the formulas
derived in this section is directly applicable.

Since the local deflecting field is not constant during collision, it is in principle
.very complicated to carry out any calculation that involves the beam-beam field.
It has been observed, however, that an effective beamstrahlung para,meterscan be
introduced in terms of the initial beam parameters only, to represent the entire
beam as if all particles are seeing a constant effective field:
5 AriN
TO - ﬁ_ad—z\/ﬁd_j f(R) ’ (32)
where by definition T = vB/B, = 2¢/3 (B. = m?c3/eh ~ 4.4 x 10'3 gauss),
and f(R) is defined in Eq. (10). Notice that the coefficient 5/12 in the above
expression is some what arbitrary. With the above parameters for SLC, we find
To = 0.0014, or £, = 0.0021. One can easily find that n. is of order unity in this
case, and the depolarization is negligible according to Eq. (25) and Eq. (26).

~ As for the TLC, the beam energy is 0.5 TeV, and in one version of the studies
N = 8x10°, 0, = 190 nm, 0, = 1 nm, and 0, = 26pm. This corresponds to D, =
0.033 and D, = 6.27. Plugging numbers into Eq. (30) give 0 yms = 0.13x1073 >
0y.rms = 0.047 X 10~3. Therefore the depolarization through precession is actually
dominated by the horizontal disruption in this case. Since D, < 1, the formulas
in this section are again applicable. The effective beamstrahlung parameter for
a TLC with the above beam parameters turns out to be To = 1.54, or £y = 2.3.
 Computer simulation further shows that the average number of photons radiated
per electron is ny = 1.33. From Fig. 1 and with the estimated £, we find ny to
be around 2. Thus we expect that (AP) ~ 0.024 and [AP] ~ 0.007, which are
also reasonably small.

SPIN-FLIP RADIATION

As is well-known, the electron (positron) beam in storage rings tend to polar-
ize anti-parallel (parallel) to the guiding magnetic field by the spin-flip radiation,
which is called the Sokolov-Ternov effect. The spin-flip transition rate of an un-
polarized electron, i.e., the average of the up-down and the down-up transition
rates, is given by

_ 5v/3 Aere’

Wr = 16 p3 ’ . (33)

where A, is the Compton wavelength of electron. The polarization time ranges
from several minutes to several hours for storage rings. For linear colliders the



characteristic time is much shorter because of the generally strong beam-beam
field and the high beam energy. In the case of TLC, the above expression gives
the polarization time of the order of picoseconds, which is not negligible when
compared with the bunch length. Because the beam-beam field is perpendicular
to the particle orbit and because we are interested in the longitudinal polarization,
the Sokolov-Ternov effect leads to a depolarization in this case.

The above expression, again, is not directly applicable to the TeV linear
colliders if the beamstrahlung is in the quantum regime. When the critical energy
“u, of the synchrotron radiation spectrum is comparable to or larger than the beam
energy ymc?, we have to employ the quantum theory of radiation. Define the
parameter £ as

Ue §Ae72

= = 4
In fact, the expression (33) corresponds to the first non-trivial order in the ex-
pansion in terms of ¢:

1 dncl 2
=__< 35

where dn./dt, defined in Eq. (21), is the rate of (spin non-flip) radiation by the
classical theory.

Wy

The spectrum formula of radiation in the full quantum theory was first derived
also by Sokolov and Ternov. When the field is perpendicular to the orbit and

the electron is polarized longitudinally, the spectrum of photons is given by

d’ny _dng [14(( 1-(¢
= F,
qidy [ 5 gt 17 ] (36)
""Here, y is a dimensionless variable related to the photon energy u as
. ufue _ 9

¢ and (' are the helicities of the initial and final electron (= *1), and the functions
F,s and Fy, corresponding to the spin non-flip and flip radiation respectively, are
given by

3 1+¢&y+36%°

Fag [Fsp@da (38)

T 5r (1+&y)
Yy
and
3 3% .
Yy



K’s being the modified Bessel functions. By integrating these expressions over
the photon energy by using the relation K3 = —2K2/3 — K3, we get the total
number of photons and spin-flip photons per unit time:

dn _dncl
Iy _ g (10)
-and
dnf _ dncz
Ty =Py (41)
with
_ _3 [, Kopv) 1 ey
06)= [FurFpar =2 [a 8 2 e 5]
0 0
and
: o 3 2,2
U6 = [ Frav=7-1 [ g1+ ) - B - 5l K)
S0 0

(43)
(Caution: the integrands of these formulae of Uy and Uy do not give the spectrum
since we have used partial integration.) The function Uy is normalized such that
_Up(0) = 1. It is a very slowly decreasing function of ¢, not far from unity in the
region for linear colliders in the near future. The functions Uy and Us/Up are
plotted in Fig. 1. Explicit and approximate expressions of these functions are
given in Appendix A. The symptotic form of Uy for small £ gives the spin-flip
transition rate

w 7 dng .o
LT 54 dt

&, (Ex) (44)

which differs from Eq. (35) by a factor 7/9 because this is the transition rate of
longitudinal spin. As ¢ becomes larger, the spin-flip rate increases to a broad
maximum around ¢ = 4 and then decreases as log /€. The ratio of the spin-

flip rate to the total photon emission rate reaches a maximum of 0.0200 around
£ =11 |

In order to get the depolarization, we have to integrate wy over the time
and average it over the transverse distribution. Again, as in the case of classical
precession, the calculation can be approximately performed if one replaces { by

10



the effective &g of the entire beam, then

e o]

(AP) = 2< / det> ~ 2ncIUf(€0) ~ 2n7Uf(£0)/U0(€0)- . (45)

—00

For very small &, the asymptotic forms of Uy and Up gives

(AP)=27—7n-,€§ , o (k1) (46)

and the inequality Uy /Uy < 0.02 gives
(AP) <0.04n, . (47)

As can be seen from Fig. 1, the maximum of Uy /Up is actually very broad, thus
the above relation is true for a very large range of £: 2 < & < 100. As for
the relation between [AP] and (AP), Eq. (16) is still approximately valid in this
case.

For SLC, & = 0.0021 and ny ~ 1, as we discussed earlier. So (AP) ~
1.1 x 107% <« 1. On the other hand, { = 2.3 > 1 in the case of TLC, so
Eq. (46) does not apply and we need to use Eq. (45) directly. From Fig. 1 we
see that Us(éo = 2.3)/Up(§o = 2.3) ~ 0.015. Since ny = 1.33, Eq. (45) gives
(AP) ~ 0.04, which is about twice as large as the contribution from the classical
spin precession. Putting the two effects together, we estimate the depolarization

in TLC to be (AP) ~ 0.064.
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APPENDIX A

In this appendix we shall give some formulae concerning the functions Up and
Uy defined by Egs. (42) and (43). For completeness we shall also give formulae
for the function U; defined by

9v/3 oody'[ y y 2y’
(

i

U = 1= K , 48
0= 50 ¥ sivar T Trar T Trgy et o 09
‘which is related to the radiation power as

P =PqU(§) , (49)
where P, is the radiation power given by the classical formula:
2 remcdyt
Pcl = § P2 (50)

One can easily get the asymptotic form for 13 -0 by expanding the integrands
of (42), (43) and (48) into power series of ¢ and by using the formula

/w"K,,(x)dm:Q"'lI‘ (‘““;“)r("_;“) (R — v +1> 0)

(51)

Thus, we find
Uol€) = 57 D (80" + 30 +10)0 (2D (Z+D)ar . o

=0

Ui(€) = %@ > (n+1)(n® +2n +8)T (-;3 + ;) r (g + %) (=2" , (53)
n=0

- e (1) (D)o o

n=2
These expansions do not converge for any finite £. They are merely asymptotic
expansions, but still useful for very small ¢, say £ < 0.03. The first few terms are

_ 16, 1, un, .
- _qo 35, 84, 8855, .
T, 3 1001 .
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In order to get the expansion at { = oo, we replace 1/(1 + £y)™ in the
integrands using

] ] c+io§ s
X
= e d -1 <0 , 58
1+2z2 - 21 / sin s y ( <¢ ) (58)
C—100

‘and its derivatives with respect to z, integrate over y using Eq. (51) and close the
integration contour along the left hemicircle in the complex s-plane. The results
are

3n+30)6n —n
0 452 6 ) (25) /3 ’ (59)

s o nnz €
() = = 3 20 280 peymisr (o)

(n/3 + 1)( n/3+2)6n+3 n/3
o g T(E+DNETD ] - ©

where v, is Euler’s constant (=0.57721...) and

— 2
en = —(— 1)"—2cos-%1’- . (62)

Actually, ¢, = 0 for n = 2 and 4 (mod 6). These formulae converge for any
positive £ but, of course, cannot be used for very small £ because of loss of digits.
The first few terms are

Up = 1.15830¢ 7173 —0.86603¢ 1 +1.94870¢ %3 —2.880006 2 +O(£77/3) , (63)
Up = 0.95535¢64/3-2.25000¢ 2 +7.73495¢ 8/ —12.8605¢6 % +O(£719/3) | (64)

Uy = 0.173205log £ /€ — 0.52516¢ " + 1.94870¢%/% — 2.700006 2 + O(6~/3)
(65)
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The maximum of Uy and Uy /U, are

Us=0010505 , at =414 ; , (66)

Us/Up = 0.019980 at £=1135 . (67)
The functions Uy, Uy and Uy are plotted in Fig. 1 together with Uy /Uy.

The following approximate formulae are useful for practical purposes. (€ is
the maximum relative error in the range 0 < ¢ < 00.)

1 —0.59797¢ + 1.06082¢5/°
N 1+ 0.92176¢2 ’

1+ 18.91145¢ 2
“hie) {1 + 19.58981¢ + 19.4873455/3} ¢ (69)

Uo(¢)

e =0.0064 ; (68)
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