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ABSTRACT 

We present a new approach to SU~L x Ur radiative corrections at high 

energies. Our approach is based on the infrared summation methods of 

Yennie, Frautschi and Suura, taken together with the Weinberg-‘t Hooft 

renormalization group equation. Specific processes which have been 

realized via explicit Monte Carlo algorithms are e+e- + f f + n(y), 
f = /.L, 7, d, s, u, c, b or t and e+e- -+ e+e- + n(r), where n(r) denotes 

multiple photon emission on an event-by-event basis. Exemplary Monte 

Carlo data are presented. 
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I. INTRODUCTION 

As we and others1 have described elsewhere, the primary objective of SLC, LEP, 

HERA, TLC and CLIC is to probe the limits of the SU~L x Ur x SUg standard model. 

This model appears to have no known contradiction with observation. Accordingly, 

it is indeed appropriate to determine the limits, if any, of its applicability by probing 

deeper into the nature of its forces. One way of probing more deeply in this connection 

is to scatter standard model particles at higher and higher energies. The achievement 

of such higher energies is the raison d’etre of the new accelerators. 

These lepton-lepton and lepton-hadron colliders, then, hope to probe the limits of 

applicability of the standard model to the processes e+e- + X, e*p -+ X’ , etc., at very 

high energies. Such probes will provide information on the precise values of some of 

the as yet approximately known standard model coupling parameters and masses, such 

as sin2 Bw and MzO. Alternatively, one can view the standard model as specified by cy, 

Gp, Mzo, mH, {mr} and AQCD, where mH is the rest mass of the as yet unobserved 

physical Higgs particle and {mr} are the standard model fermion rest masses (for the 

purposes of our discussion, the t-quark should be included as a “known” standard 

model fermion). New physics, such as SUSY, may enlarge this parameter set so that 

high energy lepton-lepton and lepton-hadron colliders may reveal the inadequacy of 

the standard model by producing evidence for super-particles, for example. 

More precisely, one may summarize the nature of the lepton-lepton and lepton- 

hadron probes as follows. At the SLC and LEP, one hopes to effect preci- 

sion measurements in 2” physics1 of such quantities as Mzo, rzo, ALR, . . . ; 

the consequence will be restrictions on the number of light V’S, constraints on 

possible new heavy particles, etc. (For more detailed discussion of such mat- 

ters, see Refs. 1.) Similarly, precision measurements of W+W-pair production 

at TLC and CLIC would allow one to probe the gauge structure of the SU~L x 

U< theory, for example. Precise measurements at HERA of the structure func- 

tions of the proton over a large Q2 range would allow tests of QCD and may 

also reveal “new physics,” for example. What is clear about all such scenarios is 



that they require precision radiative corrections in order to realize their main discovery 

potential in a complete way. 

The question naturally arises as to what, then, is the current state of precision 

SU~L x Ur radiative corrections at high energies. Regarding the SLC-LEP type 

scenario, we note that the level of precision required in the radiative corrections for 

the type of phenomena to be pursued1*2 may be taken to be 5 .3%. We then call 

attention to the recent improvements3 of the original work of Jackson and Scharre4 on 

the total cross section in e+e- + X by Kuraev and Fadin, Berends et al - 2, Nicrosini 

and Trentadue, Cahn, Greco, Altarelli and Martinelli, and Lynn et al. A detailed 

comparison of the results of such analyses is given in Ref. 5, where it is shown that 

the former four are all consistent with one another at the level’of 2 1%. The key 

improvement of these authors over the original work of Jackson and Scharre is the 

inclusion of the higher order renormalization of the Jackson-Scharre kernel substitution 

1 + t(1/x)+ --) txt-l with the attendant omission of the delta function contribution 

to the Jackson-Scharre photon spectrum at x = 0. Here, we use the conventional 

notation x for the bremsstrahlung photon energy in units of one-half of the total e+e- 

energy fi in the center-of-momentumframe, and t = (2a/r)[h(s/m~) - l], where m, _ 

is the electron rest mass and Q is the QED fine structure constant. For the total cross 

section, it appears that these improved naive exponentiation procedures are essentially 

adequate in e+e- + X at SLC and LEP energies. 

However, in a realistic detector environment, such as that of the Mark II detector 

which will be operating at the SLC, one must consider the relevant detector cuts on 

the various final state phase space parameters. This necessitates an event-by-event 

analysis in which one rigorously includes the actual four-vectors in the production of 

multiple photons which, for example, generate the real infrared singularities, whose 

exponential cancellation6 is responsible for the softening of the infrared singularity 

inthe respective bremsstrahlung spectrum. Accordingly, we (together with Prof. S. 

Jadach) have developed a new approach ‘s2p7 to SU~L x Ur radiative corrections at high 

energies based on the Monte Carlo realization of the classic method of Yennie, Frautschi 

and Suura6 for the summing and exponential cancellation of infrared contributions 
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to physical processes in Abelian gauge theories with massless gauge particles. The 

level of precision ultimately desired in the SLC-LEP type physics scenario will also 

require that the large ultraviolet (UV) logarithms are summed1 (at least partially). 

We do this with the Weinberg-‘t Hooft renormalization group equation.‘j2f8 It is this 

renormalization group improved Yennie-Frautschi-Suura theory which is the basis of 

our new approach to SIJ~L x Ur radiative correction theory at high energies. 

. . 

Similarly, the precise measurement of structure functions at HERA will necessitate 

high precision SU~LX Ur radiative corrections. We call attention to the recent work 

of Kripfganz and M6hring,g wherein it is shown that the order o3 (one-loop) SU2,5 x 

Ur radiative corrections to e + p --) e + X at HERA are sBj-dependent and 2 40% in 

magnitude (this depends on cuts).- Here, XB~ is the famous Bjorken scaling variable 

Q2/2mpu, where -Q2 is the square of the four-momentum transfer q from the incoming 

e- to the p, Y = Q-Pp/mp, and mp is the proton rest mass. Pp is the initial proton four- 

momentum. Thus, high precision on these corrections necessarily involves summing 

the large infrared effects and, again, at least a partial summation of the large UV 

effects. Our renormalization group improved Yennie-Frautschi-Suura theory appears 

ideally suited for this case, also. Indeed, some preliminary work in this direction has 

already begun. lo We hope to report elsewhere on this application of our ideas in the - 

not-too-distant future. 
.-. - 

Evidently, the physics output of the TLC and CLIC will also be greatly facilitated 

by precision SU~L x Ur radiative corrections. The application of the Monte Carlo 

realizations of our new approach to SU2,5 x Ur radiative corrections to such scenarios 

- will be taken-up elsewhere. 

In what follows, we will illustrate our approach to SIJ~L x Ur radiative cor- 

rections in the SLC-LEP type scenario. We shall do this by briefly reviewing the 

renormalization group improved Yennie-Frautschi-Suura theory1s2*7 in the next sec- 

tion. In Sect. III, we describe the actual Monte Carlo realizations of our theory for 

e+e- -+ ff + n(r), f # e and e+e- + e+e- + n(r). In Sect. IV, we present some 

numerical results. Section V contains our summary remarks. 



II. RENORMALIZATION GROUP IMPROVED 

YENNIE-FRAUTSCHI-SUURA THEORY 

In this section, we wish to review briefly the elements of the renormalization group 

improved Yennie-Frautschi-Suura theory. This theory is described in detail in Refs. 1, 

2 and 7. We give this review here in the interest of completeness. 

Specifically, we recall that the typical infrared (IR) singularity of the type il- 

lustrated in Fig. 1 is characterized by contributions of size (2cr/~)[&z(s/m~) - l] 

&2(@/2&,), where &-, is a typical detector resolution-type cutoff on any radiated 

photon energy in Fig. 1. The typical UV contribution from the radiative effects il- 

lustrated in Fig. 1 is of size t = (2o/r) [!n(s/mz) - I]. For fi = Mp, t = .108 

and we see that we need to sum all orders in the large infrared effects and at least 

three loops in the large UV effects, in order to achieve 2 -3% accuracy on the SU~L x 

Ur radiative corrections illustrated in Fig. 1; for the LO cutoff can easily be. such 

that the large infrared effects are of order one in each order of perturbation the- 

ory. -It is for this reason that we have developed the synthesis of the Weinberg- 

‘t Hooft renormalization group and the rigorous infrared summation theory of Yennie, 

Frautschi and Suura (YFS); the former sums the relevant large UV effects and the 

latter sums the large infrared effects. We refer to this synthesis as renormalization 

group improved Yennie-Frautschi-Suura theory. 

For a process such as e+e- -+ X, where (as we have illustrated in Fig. 2) X 

may be X’ + n(q) f or some state X’, we first recall from Ref. 2 that the respective 

differential cross section may be represented by the classic YFS result (the kinematics 

is summarized in Fig. 2) 

da -= exp{2cr(ReB + g)} & 1 d4y exp{i& + PE - Pxl) + D) 
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where (here, rn+ is our photon mass infrared regulator) 

2 B=-2 ‘J 
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9 ,$ [exp{-iyk} - 8 (&= - k)l (4) 

(note that Kmax may be taken to be the maximum energy of an undetectable photon 

but also that Eq. (1) does not depend on K max), and the residual cross section & 

for the emission of n real photons is free of both real and virtual infrared divergences 

and is defined in Refs. 1, 2 and 6. Explicit formulae for B and 5 may be found in 
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Refs. 1, 2 and 6, for example. The result (1) th en exhibits the famous cancellation of 

infrared divergences to all orders in cr; for (from Refs. 1, 2 and 6) it may be checked 

that Re B + g is free of infrared divergences. 

As we have observed already in the Introduction, the result (1) does not address the 

probable large UV logarithms which may occur in da. To handle these effects, we have 

used the Weinberg-‘t Hooft renormalization group’ to obtain the respective renormal- 

ization group improved form of Eq. (1). In Refs. 1 and 2, we have found that the respec- 

tive improvement of Eq. (1) may be represented by making the following replacements 

in (1): 

B + B[Pi(l), miR(x)l 

5 -+ 2 
K 

Pi(l), m&), F 1 
Pn + Pn = X2bM(n) Pn [pi(I), k,j, mix, Q(X), /L] $ [ 1 

-2n (5) 
D + D pi(l), mi~(x>, a(x), F 1 7 

where kj = Xk,j, pi(X) E (Afi/2, dm &), ,+ is the direction of motion 

of particle i, rni = physical rest mass of particle i, X = &/2mP and fi = 2mcL, 

for example, DMc(n) is the engineering dimension of the connected amplitude MC”) for 

the production of n real photons with the final state X’, miR(X) is the running mass 

parameter of particle i and o(X) = ek(X)/4 z, where eR(X) is the respective running 

electric charge of a positron so that it satisfies8 (Xd/dX) eR(X) = P[eR(x)], where P(eR) 

is the respective coefficient function which expresses the response of eR to changes in 

the normalization scale CL. [We show in Eq. (5) only the improvement effects due to 

QED for the purposes of our illustration; for the complete SIJ~L x Ur theory, analogous 

improvements due to the SU~L coupling CJWR should also be taken into account. This 

will be discussed elsewhere.] 



For definiteness, we remind the reader that the respective Green functions of a 

renormalizable field theory satisfy the equation 

k$ + P(gR) d - 
a 

%R 7emR dmR 
--7r r=o, 1 (6) 

in the Weinberg-‘t Hooft formulation of the renormalization group, where we imagine 

that there are but one coupling gR and one mass parameter mR for simplicity; the 

coefficient functions p, 7e and 7~ are computable in renormalized perturbation theory, 

so that they may be considered as known in our SU~L x Ui case. Note also that 

mR(X) satisfies XdmR(X)/dX = -{l + 7@[gR(X)]}mR(X) here, so that the running 

masses miR (A) in Eq. (5) also reflect the response of the mass -parameters of our 

theory to changes in the normalization scale. In this way, we avoid any problems with 

mass singularities in taking the UV limit of our SU~L x Ur theory. We have, indeed, 

arrived at a rigorous procedure for summing the large IR and UV effects to all orders 

in the respective couplings in S’U~L x Ur processes at high energies such as those 

typical of SLC and LEP. 

We shall now turn to the Monte Carlo realizations of our procedure. This is the 

subject of the next section. 

III. MONTE CARLO REALIZATIONS OF RENORMALIZATION 

GROUP-IMPROVED YENNIE-FRAUTSCHI-SUURA THEORY 

The general recipe for applying (l)-(S) t o a standard one-photon Monte Carlo 

- event generator, such as the well-known MMGl event generatorll for e+e- --+ 

,x+,!A-(~), is described in detail in Refs. 1, 2 and 7. Recently, using this recipe, Jadach 

and the author12 have succeeded in constructing event generators which realize (l)-(S) 

by the Monte Carlo method on an event-by-event basis so that, for the first time in 

SU~LX Ur radiative correction simulations, the physical four-vectors of the multiple 

photon final states are produced among the list of the final state particle four-vectors. 

In this section we wish to discuss these multiple photon Monte Carlo event generators. 
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Specifically, -the first Monte Carlo realization of our approach to SUz,5 x Ur radia- 

tive correction theory has been achieved for the 7~ pair type production in e+e- + X, 

for example, at SLC and LEP energies. The extension to ff, f = ~1, u, d, s, c, b and t 

is immediate, so that we will concentrate here on 77 production for definiteness. 

The recipe in Refs. 1, 2 and 7 is effected as follows for e+e- + 7~ + n(7). One 

rewrites (1) in the form12 

da(s) = 2 -$ / dr~+2(P;ql,q2,kl,...,kn) fiS”(h) 
n=O ' k;> Km.,, [ 1 .!=l 

bn(ql,q2;kl,---,kn) 

where 

b+l,g2,h,. . . , kn) = exp{2cr(ReB + E)} n PI (Rql, Rq2, kj) 
Po(Rql, Rqa) + c 

j=l 1 S(kj) * (8) 

(7) 

.Here, the following definitions have been used: P = pe + p,-, where ~~(~1 is the four- 

momentum of the incoming e-(e+) so that q1c2) is the four-momentum of the outgoing 

+), 

and Rqi are the respective reduced four-momental which are such that j$ are evalu- 

ated at the appropriate infrared point for the multiparticle state with four-momenta 

(ql,q2,kl,---,kn); i.e., the R operation allows q1 + q2 + xi ki = P to be transformed 

into Rql + Rq2 = P for the ,& terms included in (7), f or example, and it is implicit in 

the YFS theory; we discuss it more explicitly in Ref. 12. 

The expression (7) is now primed for Monte Carlo methods. Specifically, focus 

sing on the famous Bonneau-Martin13 type problem for 77 pair production, we use 

the recipe in Refs. 1, 2 and 7 to extract the respective @o and ,$I. We write12j14 the 
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Bonneau-Martin cross section [here, Gsx(z,,) = (o/r) { (3/2).h(s/m~) - 2 + x2/3} + 

(2o./7r) { &(s/mz) - l} 43~ zo and 24/2 = Km,,] as 

ug&) = UB(S) [1+ &Tx(+-&~o)] 

+ j ff /dn7[ /dfhg,(x,cos&) $$ (s’,cosh) (1o) 
20 

J daB 
+ dR2 g2(x, cos 8 ) - 

’ df12 (s'ms82) , 1 
where superscript B denotes the Born approximation and where the final fermion 

directions dQ, i = 1,2, correspond to two choices of the z-axis in the rest frame of the 

final fermions (rcms): for i = 1, it points in the direction of the first beam and for 

i. = 2, .it points opposite to the direction of the second beam. The gi are defined as 

follows: 

gi(x, cos (9,) = 5 (1 - ; xQ2 j& - q 1 +;7z)2 ($ + $1 ’ 
[ 

(11) 

61 = l-costi, 4 1-4mzls, 62 =l+cos8,~1-4m~/s . 

(Here, x0 provides the usual separation between hard and soft real photons and s’ = 

- (1 - x)s.) It can be shown that Eqs. (10) and (11) do indeed represent the Bonneau- 

Martin formula for 77 production. 

From Eqs. (10) and (ll), one arrives at the following expressions for PO and 01 :12 

Po(Q1,42) = daB 
dc@'; a, 42) 

(1 + 2ReFl- 2ReaB) 

2 daB =-- 
p’ dR 
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where ,8’ = (1 2 4rn7/s)li2, drz = d7; lDZo and 

/%(qm,k) 
g(k) 

where 

go@, cos 07) = g5[&-~(j$+$)] 

is up to a normalization constant equal to the initial state restriction of g(k). In the 

last two terms in (13), we have effected the respective R procedure as it is explained 

in detail in Ref. 12. We note that, using entirely analogous procedures, we have also 

constructed the leading logarithmic approximation to pz. 

- The actual Monte Carlo algorithm proceeds as follows. We generate events ac- 

cording to our formula (7) with a simplified bn function, b’,, and algorithm No. 2 in 

Ref. 7 (the latter algorithm is also described in detail in Ref. 2). Here, 

1 
bk(ql,q2,kl,--- ,kn) = - 27rrp’ uB ((!I1 + 42)2) * (15) 

The real distribution is then recovered using the standard rejection method with weight 

b’ w=z. 
bn 

It is in this way that Jadach and the author have realized (7) on an event-by-event 

basis for e+e- + rr + n(7) and, more recently,15 in the luminosity monitor region 

in e+e- + e+e- + n(7) at SLC and LEP energies. The two respective FORTRAN 

programs are YFS FORTRAN and BHLUMI FORTRAN; they are available from 

Jadach and the author upon request and they will be described in detail elsewhere. 

We will now present some results which we have derived from our Monte Carlo 

realizations of Eq. (7). Th is is the subject of the next section. 
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IV. NUMERICAL RESULTS 

In this section, we wish to illustrate the type of results which we have obtained 

from our Monte Carlo realizations of Eq. (7) at SLC and LEP energies. We begin with 

the rT--pair type of process. 

Specifically, as we have indicated, we have currently a realization of Eq. (7) for 

rT-pair production in which all initial state multiple photon emission effects are taken 

into account. It is then of interest to compare our YFS procedure to the various 

other approaches3j5 to initial and final state radiative effects in e+e- annihilation into 

rT--pairs. We do this comparison in Fig. 1, where we show the respective Born cross 

section, the cross section from the Bonneau-Martin formula, and the na’ive exponenti- 

ation ansatz of Jackson and Scharre, and the more modern realization of Jackson and 

Scharre’s ideas as represented by the Kuraev-Fadin formula in the caption in Fig. 3. 

A detailed comparison of the modern realizations of the Jackson-Scharre ideas may 

he found in Ref. 5. (We may now explicitly note the principal improvements over the 

original work of Jackson and Scharre by a Kuraev-Fadin type formula: namely, in the 

original work, the approximation is made that the higher order corrections represented 

by the 6~ in the caption in Fig,. 3 only affect the cross section at x = 0 whereas, in 

the Kuraev-Fadin type formula, the entire Jackson-Scharre kernel txt-’ is renormal- 

ized by 6~. See Refs. 3 for more discussion of this point. Related work by Cahn and 

Greco in Refs. 3 may also be of interest here.) The results of the YFS FORTRAN 

Monte Carlo are represented by the dots. They are obtained from samples of lo4 

events so that the statistical error is the size of the dot. We show at each energy two 

possible upper limits on the energy of the soft photon Eyft. There is no limit on the 

energy of the most energetic photon but all other ones must stay below Eyft, where 

E7 -‘Oft = 0.1 GeV corresponds to the lower cross section. We note that the result of the 

Monte Carlo is close to that of the Kuraev-Fadin formula and that the dependence of 

the Monte Carlo result on ,!?yrt is a weak one. This dependence, however, is essential. 

The crosses in Fig. 3 show the effects of renormalization group improvement, via 

Eq. (S), of the cross section represented by the round dots in Fig. 3. We see that these 

effects are significant if one wants high precision Monte Carlo simulations-precision 
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of the type relevant for the SLC-LEP objectives. 

Turning next to the luminosity monitor regime for e+e- + e+e- + ny, we have in 

mind the MINISAM type scenario, where 15.2 mrad 5 O,,(E) 5 25 mrad, 16.2 mrad 

5 8,,(e) 5 24.5 mrad for the usual center of momentum scattering angles e,,(f), 

f = e, E. We presume full azimuthal sensitivity, we require the acollinearity to be 

less than loo, and we require that the sum of Ed and E6 exceeds .6 of fi in the c.m. 

system. Here, E; is the energy of f in the respective final state. We show in Fig. 4 

the YFS Monte Carlo type results generated by BHLUMI FORTRAN on the basis of 

Eq. (7) as the round dots in the figure. For comparison, we also show the analogous 

results generated by the conventional Berends-Kleiss” type of one real photon Monte 

Carlo. We see that near the Z”, in order to achieve the highest precision in the 

MINISAM cross section, multiple photon effects should be taken into account. Again, 

L the statistical error is the size of the dot. 

We feel, therefore, that the way to realistic event-by-event multiphoton radiative 

corrections at high energies is now open. The results in this section support the idea 

that such an approach to radiative corrections is appropriate for high precision checks 

of the SIJ~L x Ui standard electroweak theory. 

V. CONCLUSIONS 

What we have shown in this discussion is that renormalization group improved 

Yennie-Frautschi-Suura theory provides a rigorous method of achieving 5 1% radia- 

tive corrections in the SU~L x Ui theory of electroweak interactions at high energies. 

We have illustrated this with Monte Carlo data which realize, on an event-by-event 

basis, the effects of multiple photon emission as prescribed by the YFS theory. 

Indeed, we have shown that the way to subtle checks of the Sups x Ur theory is 

open. Our event generators for e+e- --+ ff + n(7), f # e, and e+e- --+ e+e- + n(y) 
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allow one to study in detail P_L effects, the effects of detector cuts on AFB and ALR, 

the ff energy, and further effects. Such phenomena will be taken up elsewhere. 

We are very much encouraged by what we have found. We look forward with 

enthusiasm to the application of our approach to SU~L x Ur radiative corrections to 

actual high energy interactions at SLC, LEP, HERA, TLC, CLIC and elsewhere. This 

is not far off. 
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FIGURE CAPTIONS 

1. Radiative corrections to ewe- --+ X. 

(a) Virtual infrared divergence 

(b) Real infrared divergence. 

2. Multiple photon emission in e+e- -+ X, X = X’ + n(7). 

3. Two solid curves represent the Born and Bonneau-Martin cross sections. The 

dotted curve is according to Jackson-Scharre and the dashed curve is from the 

Kuraev-Fadin result.= Three types of points come from our Monte Carlo, lo4 

events, statistical error below the size of the dots. Round and square dots rep- 

resent the Monte Carlo result for ,&, + 01 + &, and triangle points represent the 

&, + & result. The most energetic photon is allowed everywhere in the phase 

space, and the other photons are confined within a sphere E, < l?yrt. Two 

values for the Eqrt cutoff are used: 2 GeV and 0.1 GeV. The crosses show the 

.effect of renormalization group improvement on the round dots. 

.aThe Kuraev-Fadin result is defined as follows: 

OKF = 
/ 

dxaB [s(l - x)] [cxAx~~-~ (l+&)+aA (-I+;)] , 
0 

4. Luminosity monitor results for fi - MzO: the dots represent our multiple 
- 

photon Monte Carlo result for 00 + pr; the crosses represent the one-photon 

Monte Carlo result of Berends and Kleiss. l6 The statistical error is the size of 

the dot. The monitor configuration is that of the MINISAM of the MARK II at 

the SLC: 16.2 mrad 5 6,,(e) < 24.5 mrad, 15.2 mrad < 6,,(E) 5 25 mrad, where 

18 



6,,(f) is the respective c.m. scattering angle of f, f = e, E; EL + EL > .6 fi in 

the c.m. system, and acollinearity < loo, where E; is the final state energy of 

f, f = e, 8. 
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