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ABSTRACT 

Weakly interacting massive particles (WIMPS), with masses 2 0 (GeV), are 

candidates for the dark matter in galactic halos. We discuss the distribution and 

detectability of coherently interacting particles (such as massive Dirac or scalar 

neutrinos, solar cosmions, and some Majorana fermions) that have been captured 

into orbits within the Earth. Coherent WIMPS in the mass range from 8 to 21 

GeV in Earth orbits would give rise to count rates of 0 (l-1000 /kg/eV/day) in 

proposed cryogenic detectors operating at thresholds of 0 (1 eV). Over this mass 
‘_ 

and energy range, these rates are several orders of magnitude larger than those 

for direct detection of the corresponding particles coming from the halo. Since 

they orbit through the Earth’s core, these Earth-bound WIMPS can be used to 

probe the temperature structure of the Earth’s interior. The temperature of the 

Earth’s inner core can be determined to within 300”K, compared with the present 

1000 - 2000°K uncertainty. 
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- 1. Introduction 

If the dark matter in galaxy halos is non-baryonic, as suggested by a variety of 

arguments: it may consist of one of several exotic candidates. Weakly interacting 

massive particles (WIMPS) are cold dark matter candidates in the GeV mass 

range which interact with ordinary matter with cross-sections of 0 (10m3*cm2). 

Experiments are now underway to detect such particles in the Galactic halo2 

and more such experiments are planned? As first discussed by Freese4 and by 

Krauss, Srednicki, and Wilczek: halo WIMPS may be captured in appreciable 

numbers into the Earth. In this paper, we investigate the distribution of WIMPS 

captured into orbits within Earth in order to determine their number density and 

detection rate at the Earth’s surface. 

For our purposes, WIMPS can be divided into two classes: (1) Particles 

with coherent interactions with nuclei, i.e., cross-sections oc N2 where N is ap- 

proximately the atomic number of the scattering nucleus. Particles in this class 

include massive Dirac and scalar neutrinos, and several proposed versions of the 

cosmion, a light (3 GeV 2 mw 5 10 GeV) particle with a cross-section on hy- 

drogen, ap - 10-36cm2, large enough to potentially solve the solar neutrino 

problem.’ (2) Particles with only spin-dependent interactions, i.e., cross-sections 

proportional to nuclear spin. Particles in this class usually include Majorana 

fermions, such as photinos and Majorana neutrinos. However, it has recently 

been pointed out’ that the lightest supersymmetric fermion (LSP) is likely to 

be a combination of the photino, higgsinos and zino; in this case the LSP can 

-have substantial spin-independent (coherent) interactions as well. Thus, the list 

of candidates in class (1) may be quite large. 
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Since the Earth is composed primarily of spinless even-even nuclei, it does 

not interact appreciably with or capture particles of type (2). We shall therefore 

focus on the first class of particles, i.e., coherent WIMPS. Further, as we are 

interested in detecting such particles which are captured within Earth, we will 

not consider those WIMPS that annihilate with one another on a timescale shorter 

than the Earth’s lifetime. [Indeed, because of their annihilation products, some 

of these particles can already be ruled out as halo candidates. 4’7]Thus, we are 

interested in coherent WIMPS which have either a cosmic asymmetry between 

particles and antiparticles (e.g., for Dirac neutrinos) or a suppressed annihilation 

59 cross-section. 

Very light particles captured by the Earth tend to “evaporate”, i.e., get 

kicked to escape velocity by collision with nuclei, before they can accumulate 

in appreciable numbers. 4’g0n the other hand, very massive WIMPS sink to the 

center of the Earth and could not be detected at the surface. As we will show, 

the detection rate peaks for WIMPS with the evaporation mass, mev = 416 GeV, 

where the evaporation and capture rates are equal. (The precise value of mev 

depends on the temperature structure of the Earth; see below.) At this mass, 

the WIMPS are heavy enough that few escape, but still light enough that many 

bubble up to the surface. Thus, we will focus on particles in the mass range 8-21 

GeV, near the evaporation mass, for which the detection rate is appreciable. (The 

mass range is skewed toward the high end from mev because the capture rate rises 

there.) Fortuitously, this covers much of the mass range for which cosmological 

-arguments suggest that coherent WIMPS (with or without an asymmetry) could 

be the dark matter, h2w = 0.1 - 1.0. We note that Dirac and scalar neutrinos of 
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mass m ;S 20 GeV have probably been ruled out as the dark matter in the halo 

by double-beta decay experiments?‘10 

WIMPS captured in the Earth thermalize with the Earth’s core by weak inter- 

action scattering with core nuclei, particularly iron. To first approximation, the 

bound WIMPS relax to an isothermal distribution, with scale height determined 

by the Earth’s gravitational potential. With this simple model, corrections to 

which we discuss at length below, one can calculate the density of WIMPS at 

the Earth’s surface. For WIMP masses near the evaporation mass, mw - me,,, 

we find that the number density at the Earth’s surface of particles in Earth 

orbit is significantly enhanced over the local number density of particles stream- 

ing through the halo. For example, for 12 GeV Dirac neutrinos and a central 

temperature of 5300 “K, the number density of trapped WIMPS at the Earth’s 

-surface is n(R@) = lo2 cm- 3; the corresponding number density of halo WIMPS 

is nh& = ph&,/mW 11 3 x los2 cm -‘. Despite this enhancement, because the 

Earth-bound particles must be moving slowly, with velocities less than the es- 

cape velocity from the Earth, vcec = 11.2 km/set, the detection rate for these 

particles is appreciable only at very low nuclear recoil energies, AE = 0 (eV). As 

the halo WIMPS are moving faster, Vh& - 270 km/set, they can be found with 

a detector operating at a higher energy threshold, AE - hundreds of eV, and 

the first detectors are likely to find the halo WIMPS rather than those in bound 

Earth orbits. On the other hand, the count rates for Earth-bound WIMPS are 

potentially much higher than for halo WIMPS; since the signal is roughly pro- 

portional to the flux, the ratio of Earth-bound to halo detection rates for the 

example above is S@/Sh& N n@ve8C/nha102)h& - 102. It is therefore tempting 
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to imagine designing a detector to look for the Earth-bound WIMPS first. An 

additional incentive is that 0(eV) thresholds are also necessary to detect low 

l1 energy (pp and 7Be) solar neutrinos. However, the more difficult technical re- 

quirement of achieving a very low threshold in a reasonably large detector makes 

it unlikely that this course will be followed immediately. For purposes of this 

. paper, we therefore assume that, say, Dirac neutrinos of known mass mw have 

already been discovered, and that their distribution in the neighborhood of the 

Sun (i.e., the local halo density and approximate speed distribution) is already 

known by direct measurement. This assumption is testable: if coherent particles 

in the mass range 8 - 21 GeV compose the halo, they should be detected within 

the next few years by either ionization or cryogenic 2,3,10 detectors. 

Although WIMPS in Earth orbit are not likely to be the first ones detected, 

.one can use them to probe the temperature structure of the Earth. This potential 

geophysical application of WIMPS may be quite useful, since in percentage terms, 

the Earth’s central temperature is known much less accurately than the sun’s. 

Present estimates of the Earth’s central temperature have claimed uncertainties 

of flOOO”K, while the most recent determinations differ from estimates of ten 

years ago by up to 2500°K. The uncertainties arise from several factors. First, 

the Earth’s mantle and outer core are assumed to be in convective equilibrium, 

so that the temperature gradient in those regions is approximately adiabatic. 

(The solid inner core is assumed to be almost isothermal.) Estimates of the adia- 

batic thermal gradient have fluctuated significantly with time. Twenty years ago, 

-typical estimates of the mantle adiabat were dT/dr II l”K/km, giving central 

temperature estimates of l2 T, = 6400°K. More recent estimates of the mantle 
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13 gradient are substantially low*r, so that reviews of ten years ago 14’15 gave val- 

ues as low as T, = 4400”K.These estimates all assume a smooth temperature 

temperature distribution across the core-mantle boundary. A  second uncertainty 

in T, arises from the possible existence of a thermal boundary layer at the base 

of the mantle, a seismically anomalous layer which may support a large (of order 

. 1000°K) jump in temperature (over a range of only 200 km in depth). 

An additional constraint on T, comes from attempts to directly model condi- 

tions in the iron-rich core. The inner core-outer core boundary is thought to mark 

the transition from solid to liquid Fe. Thus measurements of the melting point of 

Fe at a pressure of 330 GPa (the pressure at the inner core outer core boundary) 

would give an estimate of the central temperature. Recently, the melting curve 

of iron was measured l6 to 250 GPa. Extrapolation to higher pressures yields a 

,central temperature estimate of T, = 6900f 1000°K. The large uncertainty arises 

from statistical errors in the melting point data and from the fact that a lighter 

alloying component of the outer core may depress the melting temperature of Fe 

by up to 1000°K. From seismological measurements, the outer core is thought to 

contain 5-12% by weight of such a light element, which is usually assumed to be 

sulfur, oxygen, silicon, or hydrogen. (In addition, a pure Fe outer core, with its 

undepressed melting point, would likely have frozen long ago.‘“) We note that 

this high value of T,, coupled with the lower mantle adiabat, strongly suggests 

the above-mentioned boundary layer at the core-mantle boundary. In any case, 

it is clear that the central temperature of the Earth remains uncertain. 

- How -might W IMPS improve this situation ? Remarkably, if coherent W IMPS 

make up the dark matter in the Milky Way, then their abundance at the surface 
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of the Earth is a highly sensitive indicator of the Earth’s central temperature. 

Before discussing a more detailed model, we pause here to give a heuristic demon- 

stration. While, for the most part, captured WIMPS would remain in the Earth’s 

core, they would occasionally be kicked up to the Earth’s surface, and still less 

frequently, would be given a strong enough kick (by an iron nucleus in the core) 

. to actually escape the Earth’s gravitational field. For a given WIMP mass mw 

there is an “evaporation temperature”, Z’,,, which we estimate below [eqn (2.27) 1 
to be 

Te,, = ml2 - 5300°K, (1.1) 

where mw = 12m12 GeV. Tev is defined to be the temperature of the Earth’s core 

at which the evaporation time (inverse evaporation rate), rev, would be equal to 

an Earth lifetime, re = 4.6 Gyr. 

If the temperature of the Earth’s core is more than a few per cent under T,, 

(i.e., mw > me”), then evaporation will be insignificant. In this case, the number 

of WIMPS collecting in the Earth’s core is independent of the core temperature. 

Consequently, the number density of WIMPS present at the Earth’s surface, n,, 

will be roughly proportional to the Boltzmann suppression factor, 

n, cc exp(-e), (1.2) 

where Tc is the temperature of the Earth’s core, and 41 is the gravitational 

potential difference between the surface of the Earth and its center, 
- 

41 = w%3), (1.3) 
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where - 

It is convenient to express 41 as 

where 

is the potential difference between infinity and the surface of the Earth. (Here 

Ve8c = 11.2 km/s is the escape velocity from the Earth.) Expression (1.2) may 

be written 

n, = K - exp(-15Tev/Tc) , (Tc < Tev) 7 P-7) 

where the coefficient K is discussed below. Thus, for Tc < T,,, the number 

density at the Earth’s surface is an extremely rapidly rising function of the core 

temperature. If the local halo distribution is measured, and if the theoretical 

coefficient K can be determined to within a factor of 2, then a measurement of 

the number density n, would yield the core temperature to within 

, (1.8) 

or AT, N 300°K ( assuming mw is known). 

- On the other hand, if the temperature of the core is a few percent above Tev 

(i.e., mw < me”), evaporation will be highly significant. The evaporation rate 
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(and thus the depletion of the-population of WIMPS inside the Earth) is inversely 

proportional to the Boltzmann factor at infinity, 

1' 
- oc exp mw(40 + 41) - 
rev 1 kT, - (1.9) 

The fraction reaching the surface is still given by equation (1.2), so that in this 

temperature range, the number density at the surface of the Earth is proportional 

to 

n, CC exp(mw&/kTJ - exp(lf%&), (Tc > Tev), (1.10) 

a very rapidly falling function of T,. Thus, again, a determination of this number 

density to within a factor of 2 gives the central temperature to within a few per 

cent. 

Finally, if the core temperature is in the immediate neighborhood of the 

evaporation temperature, then the number density at the surface is only weakly 

dependent on T,. However, the peak of the function n,(T,) about the point TC = 

T,, is itself very narrow, so that, in this case also, the central temperature could 

be determined to within a comparatively small range, 5 800°K. The qualitative 

behavior of n8 is shown in Figure 1 below, a plot of the WIMP detection rate as 

a function of central temperature. 

The above argument shows how sensitive the density of WIMPS at the Earth’s 

surface is to its central temperature. However, in order to make use of these 

arguments to actually measure the Earth’s central temperature, one must know 

--the theoretical dependence of this density on various measurable quantities as well 

as on the unknown central temperature. In particular, the theoretical uncertainty 
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must be kept to within a factor of 2.. The remainder of this paper is devoted to an 

analytic approximation of our proposed experiment, and to a description of the 

numerical methods necessary for reducing the theoretical uncertainty to within 

the prescribed limits. 

In Section II, we describe our proposed experiment for detecting WIMPS 

bound in the Earth using a low threshold detector at the surface. We give a simple 

analytic discussion of the distribution of WIMPS in the Earth, and an estimate 

of the detection rate for a given halo density of WIMPS in the neighborhood of 

the Sun. This simplified analysis confirms the above qualitative treatment and 

yields the mass range for which WIMPS are detectable and, therefore, useful as 

a probe of the Earth’s core temperature. However, the analysis is founded on 

the assumption that the Earth is in free space, and this assumption introduces a 

_ number of errors. 

The most important of these errors is that WIMPS which “evaporate” with 

low velocities do not, in fact, entirely escape from the Earth’s neighborhood. 

Instead, they go into solar orbit and have a substantial probability of being 

recaptured. In Section III we give an analytic treatment of this effect and show 

that recapture can be understood as raising the eflective gravitational potential 

of the Earth, 40, and hence the effective evaporation temperature. 

Our conclusions follow in Section IV. In the Appendix, we discuss several 

additional sources of uncertainty in the Earth-bound WIMP distribution, coming 

from incomplete knowledge of the solar-bound and Galactic halo populations. We 

-also outline the numerical methods which are required both to take these effects 

into account and to improve on the accuracy of our analytic calculations. To carry 
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out these numerical calculations would require substantial amounts of computer 

time, so we have restricted ourselves to demonstrating that these calculations are 

practical. 

2. Detection of Earth-bound WIMPS 

To detect captured WIMPS at the Earth’s surface, one must employ a detector 

which is sensitive to O(l0 GeV)-mass particles travelling with speeds w < v,,,. 

Thus the detector must have sensitivity to nuclei recoiling with energies of 0 (eV) 

due to elastic scattering with incident WIMPS. We will assume that the detector 

registers a signal if a WIMP transfers at least kinetic energy E to a nucleus. In 

our numerical calculations, we will use a fiducial threshold energy of c = 1 eV. 

The mass and WIMP scattering cross-section of the nuclei in the detector will be 

-designated A4 and u. For WIMPS, it is convenient to write the cross-section as 

u = 5.2 x 10m4’g mwM Q2 cm2 
(GeV)2 ’ (2.1) 

where 

and Q2 is a dimensionless parameter which depends 
17 identities. 

The signal rate from such a detector is 

on the nucleus and WIMP 

S = V~I dwf(Rg&%(w), J P-3) 

-where f(R@, w) is the speed distribution of the WIMPS at the Earth’s surface [the 

number density at Re with speed in the range (w, w + dw)], Vd is the volume of 
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the detector, and nz,(w) is therate per-unit time that a WIMP traveling through 

the detector at speed w transfers energy of at least E to a nucleus. The scattering 

rate can be shown to be 17 

f-L(w) = Jg(wz- &), (24 

where g(mw,M) is given by equation (2.2), and Nd is the total number of nuclei 

in the detector. 

In principle f(w) should be determined by solving the Boltzmann collision 

equation: and we discuss this in the Appendix. In this section, we adopt simple 

analytic models both of the structure of the Earth and of the resulting distribu- 

tion of WIMPS in the Earth. We assume the Earth is composed of two regions, 

a core and a mantle. Like the Earth’s actual core, our model core has a mass, 

+M,, and radius, R,, given by 

MC = 0.32Me , R, = 0.55&3, (2.5) 

where the Earth’s mass and radius are Me = 5.98 x 1O27 gm and Re = 6.38 x lo3 

km; the composition of the core is taken to be 85% iron and nickel. By equation 

(2.5), the core has an average density of pc N 11 gm/cm3. Corresponding to 

this, the potential difference between the edge of the core and the center, +c, is 

approximately given by [see equation (l.S)] 

- Unlike the actual Earth core, our model core is of uniform density and is at a 

uniform temperature, T,. T, will be taken to be an “average” of the temperatures 
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of the various regions of the actual core. This averaging process will be discussed 

below. The mantle will be assumed to have the same density distribution as 

the actual mantle, but will be assumed to be composed of materials entirely 

transparent to WIMPS. This renders the temperature of the mantle irrelevant, 

and implies that all bound WIMP orbits pass through the core. As we discuss 

at the end of this section, this model yields results which are accurate to half 

an order of magnitude (within the framework that the Earth is in free space). 

It is therefore useful for a semi-quantitative discussion, but not for an actual 

measurement of the temperature of the core. 

WIMPS interacting with such an isothermal core will assume a distribution 

in the core region which is likewise isothermal (Maxwell-Boltzmann), 

fisO(r, w,8)(4m’dr)dwdcosbJ 

rNw 
4m2dr 

v, exp[-“~~~‘)] .-$($$-)‘w2dwexp(-~~~2)~, 

P-7) 

where NW is the total number of WIMPS in the Earth, 4(r) is the gravitational 

potential difference between r and the center [eqn.( 1.4)], and V, is a normalization 

constant which will be evaluated below. In eqn.(2.7), we have ignored the cut-off 

of the velocity distribution of Earth-bound WIMPS at the local escape velocity 

from the Earth. This simplification is justified in practice: in all cases where 

the detection rate is appreciable, the contribution to the rate from the part of 

the distribution (2.7) with v > veec is negligible (see Fig.2 below). One caveat 

. should, however, be emphasized: if the detector threshold is set so high (say, 

-above 10 eV) that only WIMPS with v > ve,, could be detected, then there will 

be no enhancement in the rate above that of the halo. 
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In the mantle and above the Earth’s surface, the WIMPS will assume a mod- 

ified isothermal distribution, 

f(r, w, 0) = fiso(r, w, e), t < R, 

f(r,w,e) = fiso( r,w,f3).B{R,2[w2+2$(r) -2&j -r2w2sin28}, r > R,. 
P-8) 

Here, the Heavyside O-function is unity if the orbit intersects the core and vanishes 

otherwise; it arises by angular momentum conservation from our assumption 

above that all bound WIMP orbits pass through the core. The normalization 

constant V, [which enters through eqn.(2.7)], the “effective” volume of the Earth, 

may be evaluated by the condition 

NW s /dr4rr2 Jdw /dcosB f(r,w,8). 
0 0 0 

(2.9) 

‘-In all the cases we will be considering, the bulk of the distribution will actually 

be in the core, so that 

00 

V, N dr4rr2 exp 
.l 4rGmwp, 2 

-5 * 3kT, r ) = ( 2;zp,) $3 (2-1o) 
0 

where pc is the average density of the core discussed above. Thus, V, is approxi- 

mately the volume contained within a radius equal to the WIMP scale height. 

The speed distribution at the surface of the Earth is then found by integrating 

equation (2.8) over all angles, 

f(%, w> = fix&~, w), w < wo 

- f(R@,w) = fiso(Re,w) . { I- [I - R,2(W2 ;;;: - 2m.)] ‘}, w > wo 

(2.11) 
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where 41 is given by eqn.(l.3), and-fiiO and wo are defined by 

fiso(Re,w)dw - $ 
C 

exp(:g) .a(~)~w2dwexp(-mz~~‘), 

(2.12) 

w; _ 2R%h - 4c) 
R&-R,2 ’ 

(2.13) 

In our model, wo = 5.2 km/set. For reference, we note that 

(2.14) 

It is amusing to note that the distribution (2.11) is qualitatively similar to that 

for anisotropic star clusters; ‘* in that case, a core region has a sufficiently high 

density of stars to thermalize, with an outer region which depends almost entirely 

on stars orbiting from the core for its population. 
‘_ 

.Because f (Re , w) is so complicated, equation (2.3) for the detection rate 

cannot be evaluated analytically. However, it may be formally rewritten, 

s = @d 
/ 

W’ieo(Re,w)ne(w), (2.15) 

where fiSO is defined by equation (2.12) and r] is a correction factor relating the 

true detection rate to that for an isothermal distribution, 

.f dwf(%dLb) 
’ = j- dwfiso(Re, +-L(w) - 

(2.16) 

Equation (2.15) is easily evaluated using equations (2.4) and (2.12), 

(2.17) 
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where 

(2.18) 

In our example (M = 26.1 GeV for 28Si), 

Tl = ml2 - ‘77600°K; 
tz 

- 1.13500°K 
es - Q12 

(2.19) 

where 912 is the value of g for Si, normalized to its value at mw = 12 GeV (i.e., 

g(12,26.1) = 0.863 and g(mw,26.1) = 0.863gr2). 

In general, the correction factor v must be evaluated numerically. However, 

one may easily obtain the following analytic relations for it: 

, (2.20) 

if mm,2 
2kT, >” %i ’ i& 

(2.21) 

From expression (2.14)) it is clear that, in most cases of interest, the limit in 

equation (2.21) is reasonably well satisfied, so that q is typically in the range 

0.5 2 q 5 0.9. (2.22) 

- The .number of WIMPS in the Earth, NW, is determined by competition 

between capture and -evaporation. [Recall that we are assuming that there is 
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either a cosmic asymmetry of-WIMPS or a suppressed annihilation cross-section, 

so that there is no annihilation in the Earth’s core.] In this section, we are 

treating the Earth as though it were in free space. In this approximation, the 

capture rate, C, is virtually constant over the lifetime of the Earth, and may be 

calculated exactly if the mass and halo distribution of the WIMPS are known, 

and if the composition of the Earth is known. For now, we assume the mass and 

halo distribution of the WIMPS are known; later, we will discuss the effects of 

uncertainties in these two quantities. Uncertainties in the Earth’s composition 

give rise to errors of at most - 10% in the capture rate. 

Although the total number of WIMPS captured by the Earth is simply CT@, 

some of these WIMPS evaporate. In the approximation that the Earth is in 

free space, the evaporation rate can be calculated using the Boltzmann collision 

+equation, as was done for the Sun by Gould.g This calculation may be carried 

out with arbitrary accuracy. Here we use an analytic approximation’ which, 

incidentally, is based on essentially the same core model as we used above. In 

this approximation, the evaporation time rev (inverse evaporation rate), is given 

VC 
7 - 

ev - N,a(Fe) Tl) ““dTo + Td/TC], (2.23) 

where 

kT0 - wdo, (2.24) 

40 is defined by eqn. (1.6), a(F e is the scattering cross-section of the WIMP ) 
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with iron, and NC is the number of iron nuclei in the core. To is found to be 

To = ml2 - 97000°K. (2.25) 

The evaporation time may be evaluated, 

rev 1 
- N arz(Fe) e 

-26 

rc3 
ew[(To + Tl)/TJ, (2.26) 

where ala is a(Fe) normalized to its value at mw = 12 GeV. The evaporation 

temperature may be evaluated from the above expression by setting the right 

hand side equal to unity (rev = re) , 

T 
eu 

1! To + Tl 
33 

11 ml2 - 5300°K. (2.27) 

(Thus the evaporation mass is mev = 12(TC/53000K) GeV.) In the above equa- 

tion, we have ignored an additional very slight higher order dependence of T,, 

on the mass. The important energies in the problem may now be expressed in 

terms of the evaporation temperature 

TO e 18.3 Te,; Tl E 14.7 Te,; (2.28) 

The number of WIMPS in the Earth obeys the differential equation 

dNw c-Nw -= 
dt 9 

rev 

so that after an Earth lifetime, 
- 

NW = Crev[l - exp(-~e/~ev)]s (2.30) 

(2.29) 
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This equation has the limiting forms _ 

NW =Crev, for rev < re (Tc > Tev) 

=Cre, for rev >> re (T, < Te,). 
(2.31) 

Because rev depends exponentially on T, [see eq. (2.23)], the transition from 

one limiting region to the other takes place over a comparatively small range of 

temperatures. 

Below the evaporation temperature (T, < T,,), equation (2.17) may be eval- 

uated using equations (2.10) and (2.31) 

S(c) = --$p?~@%~ (2) (T)‘exp(-“:‘) , (Tc < Te,). 

(2.32) 

‘-Above the evaporation temperature, equation (2.17) may be evaluated using 

equations (2.23) and (2.31), 

Nd Q Tc 
‘(‘) = “xo(Fe) (To + Tl) exp ’ (Tc > Teu)- (2.33) 

For illustration, we will consider Dirac neutrinos with mass mw = 12mi2 

GeV. In this case, the cross section parameter Q [eqn. (2.1)] is given by 

Q-NN-(l- 4sin2 &,)ZN = NN - -122N, (2.34) 

-where NN and ZN are respectively the number of neutrons and protons in the 

target nucleus. In our calculations we will take the detector to be made of 28Si. 
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We now pause to estimate how large a detector could be built. Presently 

envisioned detectors of halo particles consist of a few kg of active material, with 

thresholds of a few hundred eV. In principle, detectors of smaller mass can be 

operated at lower thresholds. For example, for bolometric (phonon) detectors 

operating at temperature T, thermal fluctuations give rise to an uncertainty in the 

. energy of 6E = E(kT2Cp)1/2, where C, is the heat capacity, and e N 2 has been 

achieved in doped semiconductor thermistors with Si lg detectors. Since the heat 

capacity scales as C, o( Mde@/8g)3, we have 6E - rT5/2Mi/f, where Mdet is 

the detector mass and 80 is its Debye temperature. Thus, very low noise energy 

can be achieved at low operating temperatures, assuming thermistors of sufficient 

sensitivity can be developed. For example, for a Si detector (00 = 636”K), the 

thermal noise limit is 

6Esi = 1 eV 
($$‘2 (15:K)5’2’ 

(2.35) 

Since commercial dilution refrigerators routinely operate at temperatures down 

to 10 - 15 mK, one could in principle monitor a single 10 gm block of Si with 

a threshold of 0(eV). An array with 20 electronics channels, each monitoring a 

single 10 gm segment, is a plausible experimental design, so that a detector with 

a total mass of 200 grams could be implemented. In our numerical work below, 

the fiducial detector will be taken to have a total mass of 100 grams. 
- 

For Dirac neutrinos and a 100 gm silicon detector with a 1 eV fiducial thresh- 
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old, the rates in equations (2.32) an-d (-2.33) become 

ss; 

32 
= 100 day qC17u12T., Teu gm - Tc exp 14 . 7+2.5(c/l ev) ’ ml2sl2 1 Tc 1 

and 

ssi = 
33. 012 Tc 

100 gm - day v-Cl7 ala z exp K 
18 3-2.5(dl ev) 

’ ml2gl2 

(Tc > Teu), 

- 

(2.36) 

- 15.8 
I 

, 

(2.37) 

where Cl7 is the capture rate in units of 1017s-l and 412 is the silicon-WIMP 

cross section normalized to its value at 12 GeV. If the Earth is treated as being 

in free space, then for Dirac neutrinos of mass 8, 12, and 15 GeV, Cl7 is respec- 

tively 209210.1, 0.4, and 5.6. (The capture rate is discussed in more detail in the 

following sections, and in refs.20,21.) 

These detection rates as a function of central temperature are shown in Figure 

1 for Dirac neutrinos of 8,12, and 15 GeV, and a threshold of c = 1 eV. (In the 

figure, we have set r] = 1, so these rates should be corrected downward by up 

to a factor of 2.) For the case of 12 GeV neutrinos, we have also plotted twice 

the expected signal; we use this below to estimate the effect of a factor two 

uncertainty in the capture rate. From equations (2.36) and (2.37) we note the 

steep dependence of the detection rate on the threshold energy E. This is reflected 

in Fig.1, which also shows the detection rate for mw = 15 GeV, assuming a 

threshold of E = 4 eV. 

Figure 1 shows how the central temperature of the Earth can be estimated 
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from the WIMP detection rate at the -surface. For example, suppose mw = 12 

GeV, and a rate of 5’ = 1 per day is found in a detector with a 1 eV threshold. 

Then, from Fig.1, T, lies in either of the two bands 4400 - 4600°K or 6400 - 

6800°K. To eliminate this degeneracy in TC for a given signal rate, we can use the 

spectrum of the signal; this yields extra information in addition to that contained 

in the energy-integrated rate. For the Si detector, the nuclear recoil spectrum is 

dS -- = 
dE 100 gm - eV - day 

(2.38) 

This is shown in Figure 2 for the two values of TC which correspond to S = 1, 

T, = 4600°K and 6400°K. Suppose the data is taken in bins of width 1 eV. If the 

experiment runs for a year, the three or four lowest energy bins will each have at 

-least .a few counts, while the lowest two bins will typically have tens to hundreds 

of counts. We can thus fit the slope and intercept of the log of the spectrum with 

three or four data points of decreasing weight. In particular, there are ample 

statistics to decide between fits of the spectrum with the two alternative values 

of T,. This method can be used in general as long as the alternative Z’, values 

are well separated, i.e., as long as the signal does not lie very close to the peak 

of the theoretical curve of Fig.1. An additional advantage of this method is that 

the log of the spectrum depends principally on Z’, and only logarithmically on 

the capture rate and corrections to the isothermal model. 

Incidentally, we can now justify our earlier claim that neglecting the escape 

--velocity cut-off yields a negligible overestimate of the integrated signal. For a 

12 GeV WIMP travelling at the Earth’s escape velocity, the maximum energy 
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transfer to a Si nucleus is E,-,, = gmwwz/2 = 7.2 eV. With a cut-off, the signal 

due to bound WIMPS should drop smoothly to zero at E,,,, but Figure 2 shows 

that even the untruncated distribution gives an unmeasurably low count rate at 

such ‘high’ energy. 

So far in our discussion, we have assumed that the Earth capture rate and 

WIMP mass are precisely known. In the next section, we discuss uncertainties 

in and corrections to the capture rate Cr7; here we briefly study the effect of 

uncertainty in mw. From equations (2.32) - (2.37), we see that, aside from the 

mass dependence of the capture rate and cross-section, the WIMP mass enters 

predominantly through the ratio T,,/Z’,. Crudely, then, a change in central 

temperature 6T, can be compensated by a change in WIMP mass, (6T,/T,) N 

(6m12/m12), or 6T, N 450”K(Jmw/GeV). (I nc usion 1 of the capture rate and 

‘-cross-section dependence will reduce slightly the coefficient in the last equality.) 

Thus, the WIMP mass must be determined to an accuracy of a GeV or better 

in order to determine Tc to the accuracy discussed in the Introduction. This can 

be achieved by detecting WIMPS from the halo: l7 the nuclear recoil spectrum 

from halo WIMPS depends sensitively on mw, a 1 GeV change in mw leading 

to a 10 - 20% change in detection rate at energies o(keV). (Note that a change 

in the halo density shifts the energy-integrated rate, but does not affect the 

spectrum.) For coherent WIMPS, with detection rates of several per day from 

the halo, the rate can be determined to within a few percent with a year of 

data. Further information on the mass can be obtained by using several different 

-detector. elements. We conclude that the WIMP mass can be determined with 

sufficient accuracy for our purposes. 
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Using equations (2.36) and (2.37),- one may estimate the approximate mass 

range over which Dirac neutrinos could be detected (and serve as a probe of 

the Earth’s temperature). We assume the experiment can be carried out if the 

expected signal is at least 25 events per year in the 100 gm detector. Much 

below this rate, there would probably be mounting problems with backgrounds 

. (see below), and the experiment would have to be carried out over too long a 

period to obtain reasonable statistics. We examine two ‘extreme’ values for the 

core temperature, T, = 4000°K and 6500°K. (Recall that, in our model, Tc 

is an average over part of the core and so is somewhat lower than the central 

temperature.) 

At T, = 4000”K, the counting rate is above 25/(100 gm-yr) for neutrino 

masses in the range 8 GeV 2 mw J$ 15 GeV. At Tc = 6500”K, the same rate is 

-reached for 10 GeV 2 mw 2 21 GeV. Thus, the core temperature can either be 

measured or restricted by non-trivial limits if the Galactic halo comprises coher- 

ent WIMPS in the mass range 8 to 21 GeV. As mentioned in the Introduction, 

halo Dirac or scalar neutrinos in this mass range should be detectable in the 

near future with improved Ge or Si detectors, or with other proposed cryogenic 

detectors. 

In the mass range discussed above, the detection rate for Earth-bound WIMPS 

is of order 10-l to 0 (102) p er 100 gm per day, with all of the events clustered 

in a bandwidth of a few eV. We should compare these rates with expected back- 

grounds, which come from several sources. First, although WIMPS from the halo 

-typically deposit 0 (keV) in the detector, they will occasionally deposit only a 

small fraction of their kinetic energy. Using the results of ref. 18, since halo 

25 



WIMPS have velocity with respect to the Earth of at least 42 km/set (the escape 

velocity from t-he sun at the Earth’s position), one can show that the halo recoil 

energy spectrum is approximately flat below E = 100 eV. In this energy range, 

the detection rate of halo WIMPS is =S 10s3 eV-l (100 gm)-l day-l, far below 

the rate for Earth-bound WIMPS. Since the bandwidth for halo WIMPS is much 

larger than that for their Earth-bound counterparts, however, it is crucial that 

the detector have reasonable energy resolution in order to distinguish the two. 

Fortunately, we can expect this of bolometric detectors.3 

Another source of background is detector radioactivity. Presently operating 

ultra-pure Ge detectors have achieved background rates of order O.li/keV/kg/day 

at recoil energies E N 10 keV. The dominant contribution is believed to come 

from Compton scattering, which has a flat spectrum. If the background rate at 

,energies 0 (eV) is of the same order, i.e., 5 x lo-’ per eV per 100 gm per day, 

it is utterly negligible compared to the rate for Earth-bound WIMPS. In fact, 

we can tolerate a rise of almost three orders of magnitude in background before 

running into difficulty; in addition, such a ‘dirty’ detector might be less expensive 

to implement. On the other hand, it would certainly be naive to trust our 

extrapolation of present background levels down to such low energies. Therefore, 

if a WIMP signal were suspected, other methods of background rejection, such 

as the use of different detector materials, would be called for. 

The final source of background comes from solar neutrinos. In a Si detector 

with a 1 eV threshold, solar neutrinos are expected to have an energy-integrated 

-rate 11 of order 10M3 per 100 gm per day. Again, this is well below the rates 

for WIMPS. Thus, if Earth-bound WIMPS exist in the mass range above (so 
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that their count rates are statistic-ally significant), there is likely to be little 

competition from background sources, unless radioactive backgrounds grow very 

steeply at low energy. 

How reasonable is the simplified core model used in this section? The ap- 

proximation that the core has uniform density is a very good one: The density 

of the actual core assumes values in the comparatively narrow range of 10 to 13 

gm cmw3, and the entire calculation depends only weakly on variations in this 

density. The assumption that WIMPS interact only with the core is likewise very 

good, for the mantle is, on average, only about 40% as dense as the core. More 

importantly, the mantle is only - 9% iron by mass, while almost -half the mantle 

is composed of oxygen. Since the iron-WIMP cross-section (per unit mass) is 

- 10 times greater than the oxygen-WIMP cross-section, the mantle has only a 

,-tiny fraction of the cross-section per unit volume of the core. Nevertheless, if the 

WIMPS spent a considerable fraction of their time in the mantle, one would have 

to take account of their interactions with the material there, even though the 

scattering rate is low. Since, however, in all the cases we consider, the WIMPS 

spend most of their time in the core, one is justified in ignoring the effect of the 

mantle. 

The one assumption of our simple model which is bound to introduce sig- 

nificant errors is that the Earth’s core (and therefore the WIMP population) 

has a uniform temperature. A perusal of core models13-16 shows that the tem- 

perature gradient from the Earth’s center to the outer core-mantle boundary 

-is typically O(2000) “K (excluding b oundary layer effects). Thus, even though 

WIMPS spend most of their time in the core, they still sample regions of varying 
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temperature. To quantify this effect, one must study the WIMP distribution in 

more detail, by numerically solving the Boltzmann collision equation for Earth 

models with realistic density and temperature profiles. Using the methods devel- 
12-16 oped by Gould: we have done this for several temperature models. We find 

that the correction factor 7 is typically a factor of 2-4 lower than the value given 

by expression (2.22), and the evaporation time rev is a factor of - 2 greater than 

the value given by equation (2.23). Th us, the isothermal core model gives a good 

semi-quantitative picture of the dependence of the WIMP detection rate on the 

Earth’s central temperature, but it could not serve as a basis for measuring the 

central temperature. Numerical methods would still have to be used. 

Since the Earth’s core is not isothermal, the quantity we called “T,” above 

must represent some weighted average of the temperature over the core. The nu- 

-me&al Boltzmann solution yields the average kinetic energy of the WIMPS, and 

this. serves to define the averaging process. We emphasize that it is this average 

temperature of the WIMP distribution which is measured by our experiment. 

How do we extract the true central temperature of the Earth from this quantity? 

The average WIMP temperature (kinetic energy) is given roughly by 

T, N rdr4m2T(r)nw (r)/ Tdr4m2nw(r) , 
0 0 

(2.39) 

where T(r) is the actual temperature of the core as a function of radius, and 

-zzw(r) is the WIMP number density. Near the center, by continuity, T(r) falls 

quadratically with increasing r, while nw(r) drops approximately exponentially 
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with r2. Then equation (2.39) predicts 

Tc = T(Ro), (2.40) 

where the WIMP scale height is 

(2.41) 

For light WIMPS and a hot core, i.e., T,, < T,, Ro would lie substantially 

out in the outer core. In this case, extraction of the central temperature would 

depend on the model used for the Earth’s core temperature profile. However, 

since such WIMPS are substantially below the evaporation mass, the detection 

rate would be negligible. On the other hand, for T, 5 T,,, Ro corresponds to 

‘_ a region within the inner core or very near the inner core-outer core boundary. 

Since the inner core is nearly isothermal, supporting an adiabatic rise of at most 

300 “K from boundary to center, the average WIMP temperature would give a 

reliable estimate of the Earth’s central temperature. Thus, in all cases where 

the detection rate is measurable, WIMPS will provide useful information on the 

Earth’s core. 
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3. Refined-Analysis of the Experiment 

A number of refinements must be made to the above calculation before it 

could be used to analyze an actual experiment. These may broadly be grouped 

into two categories. First, numerical methods must be used to improve on the 

analytic approximations made; we discuss these in the Appendix. Second, phys- 

ical processes which were not taken into account in the above treatment must 

be included. In this section we give a general discussion of the physical pro- 

cesses which we have so far ignored and give an analytic treatment of the most 

important one. 

The processes we have neglected all arise from the fact that the Earth is 

not in free space but is moving deep within the gravitational potential well of 

the Sun. This leads to several changes in both WIMP capture and evaporation. 
‘_ 

Capture is affected in three distinct ways. 

1.) First, direct capture, i.e., capture of WIMPS from unbound solar orbits 

through the halo, is appreciably reduced for WIMP masses below 12 GeV. This 

reduction arises because the halo WIMP distribution in the neighborhood of 

the Earth has a paucity of low velocity orbits: unbound WIMPS have velocities 

greater than the escape velocity from the Sun at the position of the Earth, about 

42 km/set (in the frame of the Sun). The reduction factor has been evaluated 

analytically with excellent precision in ref. 21. For Dirac neutrinos of mass 8 

and 12 GeV, the reduced direct capture rates are approximately Cl7 = 0.01 and 

0.22. - 

2.) The second change is that an entirely new process, indirect capture:’ 
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appears. A WIMP may weakly interact with the Earth and, while not losing 

enough energy- to be captured into the Earth’s core, may be deflected into bound 

solar orbit. In this case, it is. said to be “orbit captured”. An orbit-captured 

WIMP may again weakly interact with the Earth and so be indirectly captured by 

it. For our purposes, indirect capture is significant for WIMPS with mass below 12 

. GeV. Again, for Dirac neutrinos of mass 8 and 12 GeV, the combined direct and 

indirect capture rates 21 are Cl7 N 0.02 and 0.4. These numbers are approximate, 

because indirect capture gives rise to two types of calculational difficulties. First, 

the analytic and numerical methods for calculating indirect capture are only 

partially developed; this problem will be attacked in the Appendix. Second, the 

indirect capture rate Cind(t) grows over the Earth’s lifetime, thus changing the 

evaluation of the differential equation (2.29) for l&(t). This problem can be 

.-solved by numerical integration of (2.29). 

3.) The third change in the capture rate arises from the presence of still other 

WIMPS in bound solar orbits. These particles may have been present from the 

time of formation of the solar system, or they may have been captured by the 

solar system through three-body gravitational interactions. 21’22This change also 

poses two distinct difficulties. First, again, the analytic and numerical methods 

for calculating the bound distribution are poorly developed. Second, three-body 

gravitational interactions tend to erase traces of the original bound WIMP dis- 

tribution. This means that one must take special care to show that the Earth 

did not capture a huge number of WIMPS early in its history from a distribution 

-which is. no longer present. We also address these difficulties in the Appendix, 

where we argue for an “equilibrium” density of solar bound WIMPS. 
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Including all three corrections, we can give our best estimates for the WIMP 

capture rate. The effect of the equilibrium distribution (3) is to remove the 

suppression of the direct capture rate (1) noted above, i.e., the direct capture 

rates would be just that for the Earth in free space, Cl7 = 0.1 and 0.4 for 8 

and 12 GeV neutrinos. Including indirect capture (2), although it is somewhat 

uncertain, yields only a small change in the total rate for 8 GeV neutrinos, while 

increasing the 12 GeV rate by a factor of two. 

WIMP evaporation is affected by the sun’s gravitational potential as well. 

Recall that, in evaporating, a WIMP attains sufficient speed to escape the Earth’s 

gravity and never return. If the Earth were in free space, “escaping the Earth’s 

gravity” would imply “never returning”. However, since the Earth is in bound 

solar orbit, virtually all the WIMPS which escape the Earth’s gravity also go 

-into bound solar orbit and so have some finite probability of returning. In this 

section we give an analytic treatment of this effect by modifying the definition 

of evaporation. In the Appendix, we indicate the numerical methods necessary 

for making a more precise analysis of this effect. 

For this discussion, we adopt the assumption that once WIMPS “escape” the 

Earth and go into solar orbit, they retain their initial energy, angular momentum, 

and angle of inclination until they again suffer a close gravitational encounter with 

the Earth. This implies that WIMPS which leave the Earth with initial escape 

velocity u (with respect to the Earth) and then again collide with the Earth, will 

do so at the same speed u. Further, it implies that the WIMPS of speed u will 

-distribute themselves so that their observed flux at the Earth is isotropic. Under 

this assumption, WIMPS which leave the Earth at speed u weakly interact with 
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the Earth at an inverse rate,21 

Here 

(34 

R = 1.5 x 1013 cm is the mean Earth-sun 

4.7ai,, km/set, (3.2) 

distance (one astronomical unit), 

we N 30 km s-l is the velocity of the Earth about the Sun, and v&c N 1.5(2&) = 

(14 km/sec)2 is the average square of the escape velocity from the Earth’s interior. 

Also, QE is the weak cross section of the Earth, i.e., bE = xi Nisi, where N; is 

the number of nuclei of type i in the Earth, and o; is the WIMP cross-section on 

a nucleus of type i; 0~12 is the same quantity normalized to its value for 12 GeV 

-Dirac neutrinos. ‘;r is a function of u which is very nearly unity in the range we 

21 will consider, so it may be dropped. 

The speed v,, given by equation (3.2), is essentially the speed at which an 

escaping WIMP will be recaptured in half an Earth lifetime, i.e., as many WIMPS 

of speed v* are recaptured into, as “escape” from the Earth’s core. WIMPS 

escaping with speed u >> w * may be said to truly escape, in the sense that 

they are unlikely to again enter the Earth’s core. On the other hand, WIMPS 

“escaping” with speed u < v, may be regarded as part of the Earth’s reservoir 

of WIMPS: they form a constant fraction of all the WIMPS trapped by the 

Earth and therefore represent an increase in the total number of Earth-bound 

-particles. As an approximation, we will assume that all WIMPS with velocity 

u > 21, escape, while all WIMPS with velocity u < 21, remain part of the Earth’s 
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reservoir. This approximation does -introduce some errors, but since rwe&(u) is 

such a rapidly rising function of u, and since (as we demonstrate explicitly below) 

the final results are insensitive. to the choice of v*, these errors are small. 

From the analysis above, we may regard the Earth as having an eflectiue 

gravitational potential f&.ff, 

4o-QPeff =40+$2; 42 G 2. (3.3) 

Only WIMPS which escape from this effective potential truly escape. The re- 

maining WIMPS contribute to the Earth’s reservoir, and so the effective volume 

of the Earth must be recomputed, V, + I&. We can then substitute &ff and 

VI& for ~$0 and V, in the expressions of section 2 and obtain a revised estimate 

for the detection rate. 

By a change of variables in equation (2.7), equation (2.10) for the effective 

volume may be rewritten 

Jxnax (E) 
dE exp(-mwE/kT,) 

/ 
dJ2T (E, J), (3.4) 

0 

where E(= 40 + ~$r+ u2/2) and J are the energy and angular momentum per unit 

mass, and T(E, J) is the orbit period.23 If equation (3.4) is integrated over all 

energies less than “escape” energy, we recover the previous evaluation given by 

equation. (2.10). However, we should now also integrate over all energies greater 

than “escape” energy provided that the WIMPS are ultimately recaptured, that 
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is, u < v*. Thus 

KR=V~+~T~(~)’ 1 dE(J,,(E)119(u)exp(-mwu2/2kT;tTo+T1), 
u=o 

(3.5) 

where f(u) is the average of T(E, J) over all angular momenta J. 

To evaluate equation (3.5), we need to relate the average period ‘if(u) to the 

interaction period Tweak(u) of equation (3.1), and we also require a convenient 

expression for Jmaz (E). To do this, we again adopt the Earth model of section 

2: WIMPS in this energy range (40 + 41 < E < &ff + 41) will be assumed to be 

generated by an isothermal core of radius R,. The escape velocity from R, will 

be designated v,, 

V2 
2 = 40 + 41 - 4c = 1.540. (3.6) 

Since, to a good approximation, 

we will take this to be an identity. Using this model, we find 

[ Jm&!3)]2 = (u2 + vc”) R,a = (u2 + m R,a, 

and 

T@) = ($$) ( Nc;r’) fw&(u). 
C 

(3.8) 

(3-g) 

-In equation (3.9), the first factor occurs because the orbit time is determined by 

the time it takes to again intersect the core, not the time it takes for the WIMP 
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to weakZy interact with the Earth. The-second factor arises from the fact that, in 

our model, only the core can generate escaping WIMPS, while the whole Earth 

can recapture them. (Recall that N, is the number of Fe nuclei in the core.) 

Using equations (3.8) and (3.9), equation (3.5) can thus be rewritten 

P 
veff = v, + & /dz2 z3exp(-z2), 

0 
(3.10) 

where 

p3--32$ ev T2 T 
T, ’ E12 T, ’ 

(3.11) 

-Clearly, equation (3.10) would be easier to evaluate if the upper limit of the 

integral could be taken to be infinity. Physically, this would correspond to a 

situation where essentially all the WIMPS “escaping” from the Earth were even- 

tually recaptured, so that the entire population in solar orbit could be considered 

part of the Earth’s reservoir. In this limit the density of WIMPS at the Earth’s 

surface would still decline at high temperatures, but this would be due to the fact 

that the bulk of the WIMPS in the Earth’s reservoir were “temporarily” away 

from the Earth in solar orbit rather than because they had escaped permanently. 

In some sense 3.2 is “almost” infinity. That is, the physical situation described 

above essentially prevails. In order to make this statement precise, we will carry 

-forward .the analysis as though the upper limit were infinity, but we will also 

carry along a correction factor in parentheses which is based on the upper limit 
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being 3.2. Thus 

E2 
J 

37rr3 dz2 z3exp(-s2) = ---Z3exp(-Z2) 1+&+-m* N (.731)$ (3.12) 

x2=0 

With this convention, equation (3.10) may be evaluated, 

veff = v, + (.731) (3.13) 

From equation (2.23) and the definition of the evaporation temperature Tev, one 

may write re as 

Thus, 

l (‘-)+exp(33- “&“)I. 
lOw#‘e) Tc 

(3.15) 

Using this version of the effective volume, we now proceed to estimate the 

detection rate in the limits where the core temperature is below and above the 

evaporation temperature. To do this we first find the revised evaporation time. 

This may be calculated by substituting 

To+Tl -+To+Tl+T2; vc + J&T, (3.16) 

-in equation (2.23). If the core temperature is below the evaporation temperature, 

T, < T,,, then Vex will be essentially equal to V, and so the evaporation time will 
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be roughly exp(12) - 25 times larger than before. Thus, from equation (2.30), 

the total number of WIMPS in the Earth will also retain its old value, NW = CT@. 

Consequently, equation (2.36). is still the appropriate limiting form, i.e., in this 

case the results of the section 2 are unmodified. This was to be expected: if the 

WIMPS did not evaporate before, a more accurate treatment of what happens 

when they do evaporate should not alter the result. 

Next consider the limit where the core temperature is above the evaporation 

temperature. Recall that when the Earth was in free space, “above” meant a few 

percent above T,,. Now, from equation (3.15), it is clear that “above” means a 

few per cent above Fe,, which is defined by 

In -$ipoo12(Fe)] [ - 1 o8 T - . 
33 eve (3.17) 

From equation (2.23) [modified by equation (3.16)] and equation (3.13), one finds 

* ---) (.731)? (ho :r/r ~ ) (F) ’ exp(Tz/T,) = 1.58. 
Tc3 2 2 

(3.18) 

Thus, from equation (2.30), th e number of WIMPS in the whole reservoir, includ- 

ing those in solar orbit, is 

NW = (.741)Cr@. (3.19) 

[The parenthesis surrounding the factor .741 in the above equation has the same 

sense as that surrounding the factor .731 in previous equations: if v* was large 

-enough to set the upper limit in equation (3.12) to infinity, then the quantity in 

parenthesis would be unity.] Finally, using equation (2.17) [with the modification 
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(3.16)] and equations (3.19) and (3;13), we find the corrected detection rate [to 

be compared with eqn. (2.33)] 

Nd 0 S(E) = qc-- To 
NC @ ‘e) (To + Tl) exp 

(3.20) 

Equation (3.20) 1 fi c ari es our contention that the cutoff in equation (3.12) could 

“almost” be ignored: inclusion of this cutoff results in a correction N 0.741/0.731 = 

1.01. One may show that this correction factor is a slowly changing function of 

L2 in the neighborhood of Z2 = 3.2. 

For the 100 gm Si detector for Dirac neutrinos, equation (3.20) gives 

ssi = 
350 

100 gm - day 
qcl~ul~;a, (g) ’ exp [ ( 18.3-2’~~~~v)) g-15.81. 

(3.2i) 

We note that, in equation (3.21), one should use the corrected values for the 

capture rate Cl, discussed at the beginning of this section. Figure 3 shows the 

detection rate of 12 GeV Dirac neutrinos for a 100 gram 28Si detector, comparing 

the corrected rate (3.21) [dotted curve] to that for the Earth in free space, eqns. 

(2.36), (2.37) [ so i 1 d curve]. For core temperatures above the evaporation temper- 

ature, the corrected rate is roughly an order of magnitude larger, i.e., the dotted 

curve is displaced - T,,(ln10)/15.8 - 0.15Tev to the right. Thus, including 

the recapture of escaped WIMPS raises the evaporation temperature by approx- 

imately 15%. As a result, the range of WIMP masses over which the experiment 

would be viable is slightly extended. In particular, at a core temperature of 4200 

“K, WIMPS as light as 7 (as opposed to 8) GeV could be detected. 
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- 4. Conclusion 

In this paper, we have studied in detail the distribution of weakly interacting 

dark matter candidates captured into the Earth. Although we have used the 

example of Dirac neutrinos throughout, we emphasize that our analysis applies to 

any WIMP with appreciable spin-independent nuclear interactions and negligible 

annihilation rate. The detection rate for such particles, shown in Figs. l-3, is 

potentially large over a significant range of WIMP masses [e.g., 7 - 20 GeV for 

Dirac neutrinos], provided detectors with sufficiently small thresholds, 0 (eV), can 

be implemented. In addition, since the Earth-bound WIMP signal is essentially 

confined to a narrow O(eV’s) peak, the background rejection necessary for its 

detection is less severe than that for halo WIMPS [where the signal is spread over 

0 (keV’s) 1. 

In addition, we have shown that trapped particles can be used to extract 

useful information about the central temperature of the Earth. To realize such a 

project in practice, the analytic estimates given here would have to be augmented 

with the numerical analysis outlined in the Appendix; such an analysis would be 

warranted if halo WIMPS are detected. In the absence of ultra-high pressure data 

on the melting point of iron, coupled with the unknown identity of the lighter 

alloying component in the core, WIMPS may provide the only direct geophysical 

probe of conditions near the center of the Earth. 
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APPENDIX 

Numerical Methods 

In the body of the paper, we gave an approximate analysis of our proposed 

experiment. This approximation served to give a good qualitative understanding 

of the dependence of the detection-rate on the Earth’s central temperature. How- 

ever, to actually use such an experiment to determine the central temperature, 

one must have a better quantitative understanding of the distribution of Earth- 

-bound WIMPS. In this Appendix we present the numerical methods necessary 

for such a determination. 

We may divide the WIMPS whose orbits intersect the Earth into three cate- 

gories: 

i. WIMPS in bound Earth orbit. 

ii. WIMPS coming directly from the Galactic halo (in unbound solar orbit). 

iii. WIMPS in bound solar orbit. 

In principle, all three classes contribute to the detection rate. As discussed 

in Section 2, in practice it should be straightforward to distinguish the first from 

the latter two categories because WIMPS in classes ii. and iii. almost always 

deposit far more than O(eV) in the detector. However, as we discuss below, 
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knowledge of the distributions ii. and iii. is required to accurately determine the 

population of WIMPS bound to the Earth. 

The population of WIMPs trapped in the Earth evolves asymptotically to- 

ward a steady state distribution f(r, w) which depends (up to an overall scale 

factor) only on the Earth’s temperature structure and composition. The char- 

acteristic time scale for this relaxation is extremely short compared to the other 

time scales in the problem (rev and re). Thus the distribution may be assumed 

to instantaneously adjust to its asymptotic form whenever a WIMP is captured 

by or evaporates from the Earth. The numerical methods for determining this 

distribution with arbitrary accuracy are given in ref. 9. 

The earth-bound WIMP population reaches an equilibrium between capture 

and evaporation. From the asymptotic earth-bound distribution above, we can 

calculate the evaporation rate per unit escape velocity u, 

& 
.d2N - = 
dtdu J 

dr 47rr2f(r, w@[w -+ v; T(r)]; u2 = v2 - [vese(r)]2u (A-1) 
0 

Here, R(w -+ v) is the the rate at which a WIMP of speed w scatters to a speed 

v when it is moving through a Maxwell-Boltzmann distribution of temperature 

T(r). [Of course, R(w + v) depends on the number density and composition of 

the medium as well as its temperature.] The formula for R(w * v) has been given 

explicitly by Gould: along with its integral over all speeds greater than escape 

velocity, veSC (r) . Th us, once the distribution f(r, w) is known, the evaporation 

-rate can be inferred. 

On the other hand, the capture rate into the Earth is a known function 
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of the WIMP distributions in the -halo and in solar orbit.20’21 In calculating 

the capture rate in Sections 2 and 3, the halo WIMPS were assumed to have a 

Maxwell-Boltzmann (isothermal) distribution with a velocity dispersion B = 300 

km/set and a local density Ph& = 0.4 GeV cmT3. All of these assumptions 

are, in fact, suspect: the actual velocity distribution is expected to be both 

anisotropic and non-Gaussian, B is uncertain by lo%, and Ph& is uncertain to a 

factor of 2 or so. At present, more realistic halo models are being constructeda 

and these should give a more accurate picture of the velocity distribution. The 

dominant uncertainty, however, arises from Ph&, since the capture rate is directly 

proportional to it: as Figure 1 shows, a factor 2 uncertainty in .Ph& (and thus 

in capture rate) leads to an uncertainty in T, of a few hundred “K. This source 

of error should be largely eliminated when halo WIMPS are detected (recall we 

.-are assuming this occurs before the detection of Earth bound WIMPS). As ,a 

consequence, we shall assume hereafter that the halo distribution is known to 

good accuracy. Moreover, it may be assumed to be time independent over the 

lifetime of the Earth: the Galactic distribution evolves slowly, and the Earth only 

samples this distribution along the Sun’s nearly circular orbit about the Galactic 

center (the halo is presumably symmetric about the Galactic polar axis). 

Thus, the principal unknown is the distribution, both present and historic, 

of WIMPS in bound solar orbit. In the rest of this Appendix, we discuss the 

calculation of this quantity. In general this will require numerical analysis. How- 

ever, we will make substantial use of analytic approximations (both our own and 

-those of .previous authors) to estimate how much accuracy is required for a par- 

ticular subcalculation. When not much accuracy is needed, we will use analytic 
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approximations and arguments in place of numerical calculations. 

The bound solar orbit population has four sources, three forms of internal 

evolution, and two sinks. We consider these in turn. The sources are 

1. Evaporation from the Earth. 

2. Orbit capture from the Galactic halo. 

3. Three-body capture from the Galactic halo. 

4. WIMPS which were originally present when the Earth was formed. 

The first of these is known and is given by equation (A.l). The second is also 

known analytically and is given bymGould.2’ In general, three-body capture will be 

dominated by the larger planets, particularly Jupiter. But, considering only those 

solar bound WIMPS which eventually pass through the Earth, one may show that 

-only three-body capture by the Earth is significant. Since the dynamics of this 

source are intimately related to the internal evolution of the WIMP distribution, 

we defer discussion of it. The fourth source, the initial solar bound distribution, 

is a significant uncertainty, since estimates for it have ranged widely. We also 

postpone discussion of this source until we have discussed internal evolution of 

the distribution. 

The solar bound distribution evolves internally, i.e., without change of num- 

ber, under the influence of three forces: 

1. Scattering via weak interaction with nuclei in the Earth. 

_ 2. Close gravitational interaction with the Earth. 

3. Long range gravitational interaction with the Earth, Jupiter, and other 



planets. 

The effect of weak interaction with the Earth has been worked out analyti- 

cally by Gould.g’21 There is no.hard and fast line separating the latter two forces. 

In principle, it is possible to take account of them simultaneously by simulating 

the evolution of a statistical sample of WIMPS (whose initial distribution is given 

by the sources listed above) on a computer. However, to actually carry out this 

simulation would require following the orbits of thousands of WIMPS, each over 

billions of revolutions. (To date, similar undertakings in asteroid physics have 

succeeded only in following a single particle over tens of millions of revolutions.) 

We therefore follow the treatment of ref.21, which gives an analytic approx- 

imation for the evolution. This method is not sufficiently accurate for present 

purposes, but it serves as a starting point for a more practical numerical analysis. 

We first assume that the long range interactions leave several parameters 

of a WIMP’s orbit fixed, including its angle of inclination, energy, and angular 

momentum. These interactions only cause the orbit to precess about its axis or 

the axis of the plane of the orbit to precess about the axis of the ecliptic. With 

this assumption (and barring for the moment short range interactions), whenever 

the WIMP approaches the Earth, it always has the same velocity (u,B, &d). 

Here u is the speed relative to the Earth, 8 is the polar angle relative to the 

Earth’s direction of motion, and 4 is the azimuthal angle. The upper (lower) sign 

refers to the WIMP’s angle of approach in an outbound (inbound) encounter. In 

a close gravitational encounter the WIMP’s relative speed u is unchanged, by 

_conservation of energy, while the angle hz = (fl, 4) is reoriented. 

The solar bound WIMPS may be divided into two velocity regions: an “upper 
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range” 9 with u > (2i - l)ve;and a “lower range”, where u < (2i - l)ve; here 

ve = 30 km/set is the orbital velocity of the Earth around the Sun. In the lower 

velocity range, all WIMPS are trapped, i.e., all directions n represent bound 

solar orbits. In the upper range, the bound orbits occupy a smaller and smaller 

fraction of the angular (0) phase space. In the lower range, every close encounter 

(or every several close encounters) can be regarded as randomly reorienting R, 

due to large angle scattering. As u increases into the upper range, the change in 

n due to close interactions must be treated as slow drift (diffusion) rather than 

random reorientation. Note that while there may be more or less rapid drift in 

0, u remains absolutely fixed. Then, for fixed u, diffusion in n is, to a very good 

approximation governed by 

2T(,,e,c#p(~~9~) = V2f(U,B,4) (A-2) 

where V2 is the two dimensional divergence on the unit sphere, and 

7~44) = &7ww (!$)‘(zJ yr = 0.47(~,&4) c ( “)5T e- (A-3) 

Here 7(u, 6 4) is a function which is generally of order unity, but which diverges 

as n approaches the boundary of phase space when u is in the upper range. 

Gould21 describes the derivation of 7 and gives an analytic estimate of it which 

is almost certainly accurate enough for present purposes. In any event, it is not 

difficult to get a more accurate estimate of 7 numerically. (The expression for 7 

is complicated and unenlightening, so we do not display it here.) 

- The assumption that long range interactions do not influence certain orbit 

parameters is only useful as a zeroth order approximation. In general, the angle of 
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inclination energy, and angular momentum of the orbit will change. This means 

u will not remain fixed. Our numerical model seeks to retain the conceptual 

framework of the above analysis, while taking into account the drift in u. 

We first adopt the coordinate system above. Every WIMP orbit is described 

by coordinates (u,0,r$), defined by rotating the orbit ellipse (bound WIMP tra- 

jectory) about its major axis until it intersects the Earth’s orbit (idealized as 

a circle one astronomical unit in radius). The coordinates (u,e,d) are just the 

components of velocity in an outbound encounter in this rotated orbit. This 

coordinate system is open to the criticism that it is “pre-Copernican”: not all 

solar orbits can be described with it. In particular, if the perihelion of the orbit 

is above or the aphelion below an astronomical unit, then no matter how the 

ellipse is rotated it will never intersect the Earth’s orbit. For the moment we 

-ignore this problem. 

Next, we seek to describe the diffusion of WIMPS in (u,8,4) space due to 

gravitational interactions. First, we “factor” this diffusion process into its u and 

n components. While we will no longer insist that diffusion in the u direction is 

impossible, we will make the approximation that diffusion in the n directions is 

still given by equation (A.2). To the level of accuracy required here, this assump- 

tion is extremely reasonable and, in any event, can be checked for consistency in 

the course of the numerical calculation below. 

We now describe the calculation of the diffusion in the lower range of veloc- 

ities, u < (2+ - l)ve. From equation (A.3), it is clear that the diffusion time 

-scale is short compared to re, and in the bottom part of this range it is ex- 

tremely short. Thus, we may assume that WIMPS which have newly diffused to 
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speed u instantaneously redistribute themselves so that their flux at the Earth 

is isotropic, i.e., they populate the orbit (u,B,4) with density proportional to 

7(u, 8,r$). Consequently, we need only calculate the diffusion rate in the (one- 

dimensional) u-space. This problem is tractable, though by no means trivial, 

using numerical methods. One would simply track, over say 100,000 revolu- 

tions, a statistical sample of - 100 WIMPS of speed u drawn randomly from the 

isotropic distribution described above, and measure their speed distribution as a 

function of time. Since the diffusion rate is presumably a smooth function of u, 

this would only have to done for - 20 different values of u over the lower range. 

How accurately must the diffusion rate in the lower range- be calculated? 

If the core temperature is above the evaporation temperature, then according 

to equation (3.20), recapture from the lower part of the lower velocity range 

-enhances the detection rate by a factor of - 10. It would thus be extremely 

important to get an accurate estimate of the diffusion rate in this regime. On 

the other hand, from the analytic estimates of ref.21, the indirect capture rate 

from orbit-captured WIMPS in the lower range is at most comparable to the 

direct capture rate from the galactic halo. Thus, if the core temperature is below 

the evaporation temperature, one may be a little more lax about calculating the 

diffusion rate in this regime. 

In the upper range, u > (23 - 1) ve, unlike the lower range, the problem 

of diffusion is integrally bound up with the problem of S-body capture into, and 

S-body expulsion from, the solar system. This is because all WIMPS which are 3- 

-body captured have a speed relative to the Earth of at least (2; - l)ve, and only 

WIMPS with at least this relative speed are eligible for expulsion. (Of course, it 

48 



is also possible for a WIMP to-be S-body captured into the upper range and then 

diffuse into the lower range.) Thus, before proceeding to the analysis of diffusion 

in this range, we show that there is a unique solar-bound WIMP distribution for 

which 3-body capture and 3-body expulsion are in equilibrium. 

To see this, first note that by equation (3.18), the effective evaporation time 

is at least of order re, which in turn is very large compared to the - 200 million 

year orbit time of the Sun about the Galactic center. It is therefore appropri- 

ate to time-average the Galactic WIMP distribution in the frame of the Sun 

over the Galactic orbit time. An accidental symmetry renders this time-averaged 

distribution almost completely isotropic.21 Moreover, since the WIMPS eligible 

for orbit capture have speeds - ve, while the characteristic speed of the galac- 

tic WIMP distribution is - 250 km s-l, this time-averaged distribution in the 

.-relevant speed range has the form (in the frame of the Sun) 

&(t)dt = nt2dt 9 t < V@, (A.4) 

where n is a constant and t is’the speed of the WIMP far from the Sun. Since 

the escape velocity from the Sun at the position of the Earth is 21i2ve, in the 

neighborhood of the Earth (but the frame of the Sun) the unbound WIMPS have 

a distribution 20,21 

fjunbound)(s)ds = /cs2ds B(s2 - 243, s << “0, 

where 

s2 = t2 + 2v2 CB’ (A4 

We now claim that the-equilibrium distribution of solar-bound WIMPS is isotropic 
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and is given by 

fib Ound) (s)ds = /cs2ds, s2 < 24. (A-7) 

The proof of this claim is straightforward. If the bound distribution is given by 

equation (A.7), th en in the frame of the Earth, the total distribution (bound plus 

unbound) will (by a Galilean transformation) be isotropic and given by 

fe(U)du = Ku2du. (A.81 

Because the Earth is spherically symmetric, if the incoming distribution is isotropic, 

the gravitationally scattered outgoing distribution will likewise be-isotropic. Thus 

the Earth will 3-body capture exactly as many WIMPS as it 3-body expels. The 

time-scale of the approach to this equilibrium distribution is given by equation 

-(A.3), so equilibrium is reached rather rapidly compared to the lifetime of the 

Earth for speeds u in the lower part of the upper range. On the other hand, in 

the upper part of this range (say, u > ve) equilibrium will not be reached even 

over the lifetime of the Earth. 

The equilibrium distribution described above is a useful tool for understand- 

ing how accurately the diffusion in the upper range must be calculated. If the 

equilibrium distribution prevailed over the entire lifetime of the Earth (and if a 

similar distribution were present in the much smaller lower range), then the total 

capture rate would be virtually the same as if the Earth were in free space. If 

we assume for the moment that the initial distribution was somewhere between 

zero and.twice the equilibrium distribution then on very general grounds we may 

conclude that over most of the lifetime of the Earth and over most of the relevant 
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phase space, the actual distribution was very nearly the equilibrium distribution. 

Furthermore, by comparing the calculation for direct capture when the Earth 
20,21 is and is not treated as being. in free space, we can see that it is only for 

WIMPS below 9 GeV that there is even a factor of 2 difference. From this we 

may conclude that even a crude calculation of diffusion will be sufficient provided 

that the WIMPS are heavier than 9 GeV and the initial distribution is less than 

twice the equilibrium distribution. We will describe such a crude calculation. 

More sophisticated (but certainly attainable) methods will be required if either 

of these two criteria is not met. 

First consider the lowest part of the upper range (say u < .6va). This regime 

is quite important because diffusion from the lowest part of the upper range is 

the principle source of WIMPS in the lower range, which in turn is an impor- 

tant source for capture. In this regime, the time scale [eq (A.3)] is still short 

enough that the WIMPS of speed u may be assumed to instantaneously redis- 

tribute themselves so that their flux at the Earth is “isotropic” (just as was the 

. case for the lower range). We have put “isotropic” in quotes because in the upper 

range only a part of the 4?r incident directions are bound orbits so that the flux 

is isotropic over only these allowed directions. In addition since the time scale 

diverges near the boundary of the bound and unbound orbits, the flux will not 

have time to achieve the isotropic value in this boundary region. However, the 

boundary region is precisely the region which reaches the equilibrium distribu- 

tion first, so that the flux in this region may be considered known. From this 

description it is clear that the diffusion rates for speeds u in the lowest part of 

the upper range may be obtained by methods very similar to those for speeds in 
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the lower range. 

In the upper parts of the upper range it is not so important to get an accurate 

fix on the diffusion rate because the capture rate for various speeds, u, does not 

vary very much. Thus, even though it is not necessarily valid to assume that 

the WIMPS with these speeds will distribute themselves so that their flux at the 

Earth is isotropic, this distribution may be used to estimate the diffusion rate. 

On the other hand, the diffusion in the n directions may be obtained by direct 

numerical integration of equation (A.2)) using the initial distribution of WIMPS 

and the low-speed galactic distribution of WIMPS as the initial and boundary 

conditions. This completes our discussion of the forms of internal evolution of 

the bound solar orbit WIMP distribution. 

The two sinks of this distribution are 

1. WIMPS weakly captured by Earth. 

2; WIMPS which are 3-body expelled. 

The first sink is understood analytically20’21 and the second has been covered 

in the context of forms of internal evolution above. 

There are several loose ends yet to be tied up. First, when we discussed evap- 

oration from the Earth as a source of the bound solar distribution, we implicitly 

assumed that this would be determined by the current temperature distribution 

inside the Earth. One might object that evaporation was far more rapid early 

in the Earth’s lifetime when its core was hotter. If the temperature distribution 

were known as a function of time over the entire history of the Earth this would 

pose no problem. However, since it is the aim of the experiment to measure 
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the current temperature, this-history can hardly be assumed known. Thus the 

measurement would appear polluted in an unknown way by this history. Actu- 

ally, this objection is not well founded. There is good reason to believe that the 

central temperature has not changed significantly over most of the lifetime of the 

Earth.15 Also, it is not the absolute magnitude of the Earth’s temperature but 

only its rate of decline which must be known in order to predict the effect on 

evaporation. Finally, even substantial changes in the Earth’s temperature over 

its lifetime would, in fact, have relatively little effect on our proposed experiment. 

This can be seen from equation (3.18): the effective evaporation time is actu- 

ally longer than an Earth lifetime-even if the core temperature is well above the 

evaporation temperature. The great majority of WIMPS which “escape” from 

the Earth early in its history are recaptured and re-escape several times. Thus, 

-the present day ratio of WIMPS in the two parts of the “effective volume” of the 

Earth (that inside the Earth and that in solar orbit) reflect the Earth’s temper- 

ature structure today and in the recent past, not conditions of the early solar 

system. 

Another loose end concerns the initial distribution of WIMPS. As mentioned 

above, if this initial distribution is very roughly the equilibrium distribution or 

less, then there is no problem. However, if this distribution is many times the 

equilibrium distribution, as some authors have claimed:’ then there would have 

been an exceptionally large capture rate early in the Earth’s history before the 

distribution was driven toward equilibrium. If we then assumed that the present 

distribution of bound WIMPS were always present, we would vastly underesti- 

mate the capture rate. Recently, Griest 22 has shown that the initial distribution 
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is almost certainly very close-to the- equilibrium value and, even under the most 

extreme conditions, cannot exceed it by more than a factor of three. In addition, 

one can in principle measure the distribution of bound WIMPS in the upper part 

of the “upper range”, u >> (2’i2 - l)ve: according to equation (A.3), if u > ve, 

then I >> re, so this part of the distribution should reasonably reflect the initial 

conditions. Such a measurement would involve determining both the energy and 

direction of these WIMPS. It remains to be seen whether a device with such 

capability can be built. 

Finally, we address the problems posed by our “pre-Copernican” coordinate 

system introduced above. WIMPS which are near the “boundary” of this coor- 

dinate system, i.e., which have aphelions and perihelions near one astronomical 

unit, may leak out of the system. Conversely, other WIMPS whose orbits have 

-aphelions just below or perihelions just above 1 A.U. may leak into it. These 

effects are almost certainly small because the boundary region is small compared 

to the total phase space of orbit-captured WIMPS. The effect may be calculated 

by integrating WIMP orbits in a standard coordinate system to see how may 

drift back and forth across the boundary. 

54 



-REFERENCES 

1. See, for example, D. Hegyi and K. Olive, in Inner Space/Outer Space, ed. 

by E. Kolb, etal. (University of Chicago press, 1986). J.R. Primack, in 

Proc. of Intl. School of Physics UEnrico Fermi”, Varenna, Italy 1984. 

2. S. P. Ahlen, F. T. Avignone, R. L. Brodzinski, A. K. Drukier, G. Gelmini, 

D. N. Spergel, Phys. Lett. 195B, 603 (1987). D. 0. Caldwell, in “Neutrino 

Masses and Neutrino Astrophysics”, Proc. of Telemark IV Conference, eds. 

V. Barger et al. 

3. A. K. Drukier, Acta Physica Polonica m (1986) 229. A. K. Drukier, K. 

Freese and D. N. Spergel, Phys. Rev. D23 (1986) 3495. E. Fiorini, T. 0. 

Njinikski, Nucl. Instrum. Methods 224 (1984) 83; S. H. Moseley, J. C. 

Mather, D. McCammon, J. Appl. Phys. 56 (1984) 1257; D. McCammon, 

S. H. Moseley, J. C. Mather, R. F. Musotzky, J. Appl. Phys. 56 (1984) 

1263; B. Cabrera, L. M. ‘Krauss, F. Wilczek, Phys. Rev. Lett. 55 (1985) 

25; H. H. Anderson, Nucl. Instrum. Methods B12 (1985) 437; B. Cabrera, 

D. Caldwell and B. Sadoulet, Proc. of 1986 Summer Study on Physics 

of the SSC, Snowmass, CO, July 1986. R.E. Lanou, H.J. Maris, G.M. 

Seidel, Phys. Rev. Lett. 58, 2498 (1987). B. Sadoulet, J. Rich, M. Spiro, D. 

Caldwell, Ap. J. 324, L75 (1988). F or a review, see J. Primack, D. Seckel 

and B. Sadoulet, to appear in Ann. Rev. Nucl. Part. Sci. 

- 4. K. .Freese, Phys. Lett. 167B, 295 (1986). L. Krauss, M. Srednicki and F. 

Wilczek, Phys. Rev. m, 2079 (1986). 

55 



5. D. Spergel, W. H. Presq Ap. J. 294 (1985) 663; W. H. Press, D. N. Spergel, 

Ap. J. 296 (1985) 679; J. Faulkner, R. Gilliland, Ap. J. 299 (1985) 663; 

L. M. Krauss, K. Freese, D. N. Spergel, W. H. Press, Ap. J. 299 (1985) 

1001; G. B. Gelmini, L. J. Hall, M. J. Lin, Nucl. Phys. B281 (1987) 726; 

S. Raby and G. West, Nucl. Phys. B292 (1987) 793; Phys. Lett. 194B 

(1987) 557; 200B (1988) 547; 202B (1988) 47; G. Steigman, C. Sarazin, H. 

Quintana and J. Faulkner, Astron. J. 83 (1978) 1050. 

6. K. Griest, Fermilab preprint. 

7. J. Silk, K. A. Olive and M. Srednicki, Phys. Rev. Lett. 55 (1985) 257. 

M. Srednicki, K. A. Olive and J. Silk, Nucl. Phys. B279 (1987) 804. 

L. Krauss, K. Freese, D. Spergel and W. Press, Astrophys. J. 299 (1985) 

1001. K. Freese, Phys. Lett. 167B (1986) 295. L. Krauss, M. Srednicki and 

F. Wilczek, Phys. Rev. D33 (1986) 2079. T. Gaisser, G. Steigman and S. 

Tilav, Phys. Rev. D34 (1986) 2221. K. Greist and D. Seckel, Nucl. Phys. 

B283 (1987) 681. K. Ng; K. Olive and M. Srednicki, Phys. Lett. 188B 

(1987) 138. A. Gould, Astrophys. J. 321 (1987) 571. 

8. K. Griest and D. Seckel, ref.7 

9. A. Gould, Ap. J. 321, 560 (1987). 

10. After completion of this paper, we learned of a recent claim that the direct 

detection bound on Dirac and scalar neutrinos is as low as 12 GeV (D.O. 

Caldwell, etal., preprint.) 

11. A. Drukier and L. Stodolsky, Phys. Rev.m, 2295 (1984). 

56 



12. S.P. Clark and A.E. Ringwood, Earth’s Mantle, ed. by M. Gaskell, p.111 

(Academic Press, 1967). H. Jeffreys, The Earth, (Cambridge University 

Press, 1976). 

13. F.D. Stacey, Phys. Earth Planet. Inter. l5, 341 (1977). R. Jeanloz and F. 

Richter, J. Geophys. Res. 84, 5497 (1979). S. Spiliopoulos and F. Stacey, 

J. Geodyn.l, 61 (1984). R. Jeanloz and S. Morris, Ann. Rev. Earth Planet. 

Sci.l4, 377 (1986). 

14. F.D. Stacey, Physics of the Earth, (Wiley, New York 1977). 

15. For a review of core models, see F.D. Stephenson, Science, 214,611 (1981). 

16. Q. Williams, R. Jeanloz, J. Bass, B. Svendsen and T.J. Ahrens, Science, 

236, 181 (1987). 

17.. M. Goodman and E. Witten, Phys. Rev.m, 3059 (1985). I. Wasserman, 

Phys. Rev.m, 2071 (1986). K. F reese, J. Frieman, A. Gould, Phys. 

Rev.m, 3388 (1988). 

18. I.R. King, A.J. 7l, 64 (1966) and private communication. 

19. Moseley, etal., ref.3 

20. A. Gould, ref.7 

21. A. Gould, Ap.J.328, 919 (1988) 

22. K. Griest, Fermilab preprint. 

- 23. The orbit period is defined as the time from apogee to apogee. This orbit 

will not be closed. For the specific case of a harmonic oscillator potential 

57 



(which arises for a constant density core), this period is exactly half the 

period of the closed elliptic orbit. 

24. D. Richstone and D. Spergel, talk presented at Moriond conference, 1988, 

and paper in preparation. J. Villumsen, J. Frieman and A. Gould, in 

preparation. 

25. G. Steigman, C.L. Sarazin, H. Quintana and J. Faulkner, Astrophys. J. 83, 

1050 (1978). 

58 



FIGURE CAPTIONS 

1) Dirac neutrino signal rate per day for 100 gm silicon detector with 1 eV 

threshold, plotted as a function of Earth’s central temperature. Shown 

are WIMP masses of 8 GeV (solid line), 12 GeV (dotted curve), and 15 

GeV (dashed curve). To illustrate the effect of theoretical uncertainties, 

the upper dotted curve displays twice the value of the lower 12 GeV curve. 

Also shown is the rate for a 15 GeV neutrino with a 4 eV detector threshold 

(dot-dash curve). In all figures, we set r] = 1. 

2) Recoil energy spectrum (rate per eV per day) for 100 gm Si detector of 12 

GeV Dirac neutrinos for two values of the central temperature, Tc = 4600°K 

and 6400°K. The vertical dashed line indicates a 1 eV detector threshold. 

3) -Signal rate for 12 GeV Dirac neutrinos for Earth in free space (solid curve) 

and corrected for solar gravitational potential (dotted curve). 
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