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ABSTRACT 

The consistency of D-dimensional quantum cosmology is studied. It is shown 

that the effective Lagrangian in a minisuperspace for the D-dimensional Einstein 

Lagrangian plus scalar terms with (D-2)- d imensional plane symmetry has exactly 

the same form as that for the bosonic string theory. From this it is derived that the 

maximum number of space-time dimensions for this kind of quantum cosmology 

-must -be D = 29. A local scale invariance is also found in this model, which i’s 

reduced to the 2-dimensional Weyl invariance and a local translation invariance in 

string theory. 
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Super-string theories which automatically unify gravitational and matter fields are currently 
under intensive investigation as serious candidates for a completely unified description of Nature.’ 

Since the interactions of all fields at the microscopic level were important in the very early 
- universe, the cosmological implications of string theories have been sought. For example, one 
may consider the relationship between the restrictions imposed on matter fields by the string 
framework and the value of the cosmological constant. An alternative route toward the unification 
of quantum mechanical phenomena and gravity has been the direct application of quantum field 
theoretic methods to classical general relativity. An approximation to this procedure which has 
experienced a revival of interest in the past few years has been the quantization of the degrees of 
‘freedom of cosmological models in the hope that features of the full theory would survive this 
simplification.2T3 Here we apply string methodology to matter-free cosmological models to 

determine if, as in string theories, restrictions exist on the space-time dimension of the quantized 
system. 

We study a class of cosmologies which lead to an Einstein-Hilbert Lagrangian which can be 
put into close analogy with the Polyakov action for the bosonic string.4 These models are 

described in a coordinate basis by 

( 
g,(o) 0 

- %! = exp(2a) 
1 O exP[2Qi(o)l 6, ’ 

(1) 

where a is some functional which is determined later in terms of AIL so that a resultant 
expression becomes a simplified one, g,(o) stands for a general N-dimensional curved metric 

with si.gnature (-,+,+, . . . ), indices i and j run from 1 to D - N, and a and b from 0 to N - 1. Both 
g,,(o) and Q;(o) are functions only of oa ( a = 0, . . . . N-l ). Two well-known pure gravity 
(vacuum) cosmological solutions to Einstein’s equations are members of this class for D = 4. 
They are the spatially homogeneous Kasner model ( N = 1 )5 and the plane symmetric single 
polarization Gowdy T3 model ( N = 2 ).6 The metric form (1) has been chosen to emphasize field 

theoretic and string analogies in the final reduced Lagrangian. If we define a D-dimensional scalar 
curvature R in terms of the Ricci and Riemann-Christoffel tensors as R = Rpp = Rp” pv, then the 

D-dimensional Einstein-Hilbert Lagrangian is given by 

L = dFcD)R , (2) 

where a D-dimensional gravitational coupling 1/(16nG) is set equal to 1 and D-dimensional 

quantities are attached by a pre-superscript (D) to clearly distinguish them from N- and (D-N)- 
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dimensional ones. The D - N dimensional space with a metric exp[2$(o)] Sij is assumed to be - 
compact with its space volume set equal to 1. 

As a first example we study the D-dimensional Kasner model. It will be shown that in the 
- Kasner model, the effective first-quantized Lagrangian in a minisuperspace ( the space of all 3- 

geometries with the prescribed symmetry ) is that which describes a trajectory for a massless 
particle and that the second-quantized Lagrangian corresponds to that for a massless scalar particle 
in D - 1 dimensions. On the other hand it has been noted that Einstein’s equations for the single 
polarization Gowdy T3 (plane symmetric) model in four dimensions bear a striking similarity to 
those for the relativistic bosonic string theory7 and it will be actually shown that in a generalization 

of this model to D dimensions, the effective first-quantized Lagrangian in the appropriate 
minisuperspace is given by that for a bosonic string described by D - 3 massless scalar fields 
embedded in a two-dimensional curved space-time. Therefore to obtain the second quantization of 
this model which becomes the wave equation in quantum cosmology,2 we have to second-quantize 
a bosonic string theory,’ which has not yet been completed although the properties of the D = 4 
quantized model have long since been studied by other methods.’ Here we develop and exploit a 

method which is similar to that used in compactification of higher dimensional theories to obtain 
the resultant effective Lagrangian in a minisuperspace. We also develop in Appendices A and B 

formulae to-diagonalize the symmetric, bilinear kinetic terms, which appear in the final reduced 
Lagrangian. This diagonalization is required to allow the counting of the number of degrees of 
freedom. 

Now we derive a N-dimensional effective Lagrangian for the fields g,(o) and Qi(cr). 

Calculation is tedious but straightforward and is given by 

~%(D)R = @Igab (D)gd (D)R~~~ + PIgab (Wgij ~~~~~~~ + (D)gij (D)$d (D)R,jl , (3) 

where a sum over repeated indices is tacitly assumed. Each term in (3) is given as follows: 

first term = fi R - (N-2)(N-1) G gab aaa aba - 2 (N-l) a,(fi gab ab a ) , (4) 

D-N 

second term = - 2 <g gab C [ ‘a<a ’ @ i)ab(a + pi> ’ (N-2) ‘aaabca + pi)] 
i=l 

- D-2 ‘a(6 gab c ‘b@i> 7 
2(N-2) 

i 
(5) 
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third term = - 2 <g gab c aa(~ + 9i).ab<a + ~j> ) 
i<j 

-where the coefficient of the N-dimensional <g R in (4) is determined to be 1 when 

1 
a=-m c (pi . 

i 

(6) 

(7) 

The final result is given by 

L = <g R - <g gab c aa$i ab@i + && gab 
i 

(T aaoi)(F abqj) 

+ &aa(6i gab c ab@i ) ’ 
i 

(8) 
Note that coefficients of each term depend only on a total dimension D even though the number of 
fields @(CT) is D - N and the space-time dimension of CJ is N. We can check y results by 
comparison with other theoretical models. For instance, (4) with D = N and a = - mln Q has the 

same form as D-dimensional Brans-Dicke theory, Q dq (D)R, with the coupling parameter 
0 = o.9 The final result (8) with N = 4, D = 5 and Q1 = iln $ is nothing but a Kaluza-Klein 

theory in five dimensions and coincides with a known expression.” Now let us apply (8) to the 

two cosmological models. 

1) P-dimensional Kasner model5 

In this model, spatial homogeneity is assumed, hence the metric for this model corresponds 
to the one with N=l and an arbitrary D and is given by 

( 
-e(t) 0 

g pv = exp(W 
> O expP@;(t)l ‘ij ’ (9) 

where a is given by (7) and e(t) may be considered a one-dimensional “metric”. The effective 

Lagrangian in the minisuperspace is given by 
- 

L = e-‘12(t) C (ao+i) 2 
i 

-& (TaOmi) (I$aO@j)] 
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- &a, em112(t) C a,( 
[- 1 .- i 

(10) 
We need to diagonalize the bilinear terms in Qi to find the minisuperspace metric. The space 
spanned by +(t) is the minisuperspace for this model. In Appendix A we derive two different 

recursion formulae depending on the oddness or evenness of D - N. Applying this to a special 
case of our model, i.e., D = 4 and N = 1, a normalized set of fields [vi} is given as follows. 

v=aCR$ (11) 

where the matrices C and R are given by (B2) in Appendix B in case of D = 4 dimensions. 
Inserting this expression (11) into (10) gives us 

l L=T e -li2(t) + ao~,(t)aoVjW 

= p’(t) aovi(t> - i e”2(t) 71ij p’(t) pi(t) , (12) 

where ?l ij .=diag(-,+,+), pi = 6w6(aovi) = q’j e-li2(t) a,w,(t) and a total divergence has been 

neglected. This is nothing but a Lagrangian describing a trajectory for a massless particle with 
one-parameter (t) reparametrization invariance in three dimensions ( i, j = 1, 2, and 3 ) and 
reproduces the standard Hamiltonian formulation fo the Kasner model. The function e(t) plays a 
role of a one-dimensional metric, which may be gauge-fixed to be 1. As is well-known, this first 
quantized Lagrangian yields upon second-quantization a Lagrangian for a massless scalar particle 
@(vi) which satisfies the Wheeler-Dewitt equation and is thus the wave function of this universe. 

2) D-dimensional plane-symmetric model ( generalized Gowdy model )6 

In this model, the metric components depend on one space direction as well as time hence the 
metric for this case is given by (1) with N = 2 and an arbitrary D. The two dimensional metric 
g,(o) must be non-diagonal in general to allow the ( now two-dimensional ) reparametrization 

invariance. Therefore the effective Lagrangian in a minisuperspace is already given by (8) with N 
= 2 and an arbitrary D, where g,(o) is a 2-dimensional metric and o” = t and o1 = x. In N = 2 
dimensions, the first term <g R becomes a total divergence and is neglected as is the last term in 

(8). This assumes of no contribution from the boundary and requires that x be compact. Since a 
coefficient matrix of remaining bilinear terms in Q;(o) is symmetric and real, it can be in principle 

diagonalized by an orthogonal matrix. The actual diagonalization is found by using recursion 
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formulae in Appendix A. After appropriately normalizing the diagonalized bilinear terms and - 
neglecting total divergent terms, we obtain 

L = - +&i t% gab(@ qi j  aavi(o)abvj(o) , (13) 

where the v,(o) are linear combinations of the $(Q. In Appendix B, it is proven that there is one 
zero and (D - 3) +l eigenvahres for a coefficient matrix of @ i(o>$j(o) in (8) in the case of N = 2 and 
D 2 4. Hence the metric in (13) is given by qY = diag(+ ,..., +,O), where the last component vD- 
.2(cr) is chosen to be that with zero eigenvalue. This is consistent with the results9 obtained for the 
D = 4 Gowdy T3 model7 with the ADM method,” in which just one polarization of gravitational 

waves is obtained although N = 2. The final effective Lagrangian is nothing but that for string 
theory, i.e., a massless scalar Lagrangian embedded in a two-dimensional curved space-time. In 
the minisuperspace {@Jo)}, the first quantization of this model with the reduced Lagrangian (13) 

in contrast to the Kasner model with (12) has a conformal or BRST anomaly due to the conformal 
invariance in 2 dimensions. The closure of the BRST global symmetry12 is necessary to second- 
quantize this model. If the exact BRST symmetry for this Lagrangian (13) is required to have a 
consistent second-quantized model or a consistent wave equation, the conformal anomaly should 
vanish. This is achieved by setting the well-known coefficient of the anomaly ((D-3) - 26) equal 
to zero 4 i.e , * -, 

D = 29. 

A normalized set {~,(o>} in D = 29 is given by 

(14) 

(15) 

where matrices Ri and Ci are given in Appendix D, a vector w includes the component ~~~(0) 

which does not appear in (13) and an appropriate matrix multiplies the right hand side of this 
equation to ensure that the missing component is in the 27th position. The complete second 
quantization of this model, which is equivalent to the solution of the Wheeler-Dewitt equation in 
quantum cosmology, is not known. 

-We may consider the following: 

0 As one may easily notice, D = 29 is the maximum value for the dimension to have a 
consistent quantum cosmology. If the .addition of matters to the Einstein-Hilbert action is allowed, 
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one may construct a similar Lagrangian to (13) in D less than 29 dimensions but with more explicit - 
scalar terms of the form 

(16) 

where the v,(o) has the same space-time dependence as the g,(o) and $(cJ). The total number of 

scalar terms must be 26 to make the conformal anomaly vanish. 
ii) The final effective Lagrangian corresponds to a free bosonic string theory. One way to 
include interaction terms may be to consider a two-polarization model of the Gowdy type,13 which 

is characterized by nonlinear coupling between the two polarizations. With interaction terms we 
may consider creation and annihilation of universes of this particular type just like those of strings 
in string theory. 
iii) We must discuss the meaning of the disappearance of one degree of freedom in the 
resultant effective Lagrangian for N = 2 and D 2 4. In (13), we have assumed that the component 
~~-~(o) disappeared from the result after a sti,table renumbering of indices. Let us locally translate 
all the Q;(o) ( i = l,..., D-2 ) by an amount $ i (0). The v,(o) are transformed by 

w + w+w’=R(Q+$‘)=R@+RQ’ , (17) 

where R is a matrix calculated by using (A3) and (A7) in Appendix A with an appropriate 
normalization matrix. The Lagrangian (13) is invariant under this transformation if 

or @ ’ = R-l w’ , (18) 

which since the Lagrangian is independent of the (D-2)-th component of the vector v(o). In the D- 

dimensional language, the transformation invariance can be reexpressed through the metric, 
containing Weyl invariance in N = 2 dimensions, as - t ( exp wt+Ja I2x2 0 

qlv + gpv = 0 exp[2{(cr)] Sij g, ’ 
> 

(19) 
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where $w(o) is a gauge function for the Weyl transformation and D-2 4.ii (CJ) satisfy the condition 
given by (19). Notice the condition (19) includes only one gauge function w ie2(o), i.e., all D-2 
Q;(o) are expressed only by vie2(o). Our argument here shows that when it is expressed by (2), 

-our Lagrangian (13) has a local scale invariance which becomes two-dimensional Weyl invariance 
and local translational invariance in the bosonic string theory. Since it becomes trivial when the 
Lagrangian is expressed in terms of completed square terms, the local translational invariance in 
string theory does not exist so that the field associated with it must vanish in the Lagrangian. 
iv) Even though the Lagrangian (17) is exactly the same form as that for string theory, the 
general Lagrangian given by (2) even with additional scalar terms is not completely equivalent to a 
general string theory. This can be readily seen when one notices that the mass term <glt2 which is 

allowed in the usual formulation of string theory in two dimensions does not appear in our 
formulation in D dimensions. The term d-does not include the term <gp2 at all and there is no 

other way to produce such a term from D-dimensional gravity. 

v> Our analysis in this paper may be used in the opposite sense. That is, one can embed string 
theory in a D = 29 dimensional Kaluza-Klein type metric. This computation may lead to interesting 
features of string theory. 
vi) We have shown the equivalence between a bosonic string theory and a particular quantum 
cosmology with (D-2)-dimensional plane symmetry. Since the Lagrangian in quantum cosmology 
is written -in a minisuperspace while the one for string theory is written in real space-time 
coordinates, there is no physical connection between these two models. The match of the two 
different models may, however, suggest an alternative framework for the study of both 
cosmological models and superstring theories. For this purpose, extension of the analogy to a 
more general class of cosmological models is required. In particular, the relation between a 
supersymmetric quantum cosmology’4 and a (super-) string theory should be studied. There must 

be a restriction on the maximum value of the dimension D for a supersymmetric cosmology as was 
found here. Imposing a supersymmetry on a cosmology might also yield a restriction on the form 
of the superstring theory. 
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Appendix A 

In this appendix we derive recursion formulae to diagonalize the sum of the following 
- bilinear terms: 

I,[{x’P’}, a] = 2 (x(p))’ - a 2 x(q) 2 . 
i=l 

( > 
i=l 

(Al) 

‘i) even n = 2m 

We define a new basis {x(‘)} by 

x(1>+ xm (1) (1) 
1 2 

- .(;) 
, x(;) = x ’ a 

x(l> 
n-l + x n 

x(l> 

xw = 

- .(L) 

1 
fi 

, . . . . x:j = ~ , x(f) = n-1a , (A2) 

. . 

or 

x(l! = R x(O) , R = R 
0 

1 
mxm ’ 

, 

where I mxm is a m by m unit matrix. Since the Jacobian for this transforn lation is det R = 1, there 
exists an inverse matrix R-r, which means both {x(y)} and {x(t)} form d complete basis. Then 

(A 1) becomes 

= 2 (xyQ’+ I,[{xit{}, 2a ] . 
i=l 

(A4) 

.- 

Hence we only need to diagonalize the second term by using either recursion formula in this 
subsection when m = even or one in the next subsection when m = odd. 



ii) oddn=2m+ 1 - 

In this case we define a new basis {x(‘)} by 

x(l)+ xw 
1 2 

xw _ p 
1 2 

x(l) n-2 + xL!i x(l) 
n-2 - xy; 

(0) _ 
x1 - 

(0) _ 
a ,x2- &) , . . . . x:;= a ,xfy= fi , 

m 

xn 
to) = x(;’ + b 

c 
(1) 

x2i-1 ’ 045) 
i=l 

where b is determined so that the final expression is separated into terms with even indices and 
those with odd indices, 

,=di?& 
l-a ’ 646) 

or 

RO Imxm O 
x(l) = R x(o) , R = 

-&...-k 1 
> 

. 

Since the Jacobian for this transformation is det R = 1 again, there exists an inverse matrix R-‘, 
which means both {x(p)} and (x(i)} form a complete basis. Then (Al) becomes 

Appendix B 

In this appendix we prove thai one eigenvalue is zero and others are 1 for the coefficient 
matrix M(“) given by (Al) with a = - D-2 and N = 2 ( which corresponds to n = D - 2 ); 

10 



Mtn) = 1 nxn - a E(“) , (Et”)).. = 1 for i, j-= 1, . . . . n . l, 

-Eigenvectors for E(“) are readily constructed as 

031) 

where the eigenvectors vi are orthogonal to each other and are normalized to be 1 with appropriate 
normalizations Ni. The eigenvalues of vi are given by 

EC”) v = n v 
1 1 ’ 

Etn) vi = 0 for i # 1 . (B3) 

That is all eigenvalues are zero except for n for vt. Since the vi are also eigenvectors of a unit 

matrix Inxn with eigenvalues 1, they are eigenvectors of the coefficient matrix MC”). Therefore 

M(“).v 
1 

= (1 - an ) v 1 ’ 
Mtn) v. = v 

i 
for i # 1 . 

1 
(B4) 

1 
Since a - D-2 --andn=D-Ningeneral, the eigenvalue of vr is given by 

N-2 l-anzDw2, (B5) 

which vanishes if N = 2 irrespective of a value of D. Using normalized eigenvectors given by 
(B2), one can directly diagonalize M(“) by an orthogonal matrix 0 as 

0 Mtn) OT = diag( 1, . . . . 1,O) , 0 = 036) 

i’ 

where T is a transpose operator and we change the order of vectors so that a zero eigenvalue 
appears as the last component in the diagonalized form. 
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Appendix C 
- 

In this appendix we apply recursion tQe formulae derived in Appendix A to diagonalize the 
sum of the bilinear terms for n = 3 and a = 7 which describes the kinetic term in (10) for D = 4 

and N = 1. Only the recursion formula for n = odd is necessary with the final result given by 

~ (X$2 - “d;: Xi~ =-(Y1>2+(Y2)2+(Y3)2 ’ 
i=l ‘Cl 

(Cl) 

where 

Here C is a normalization matrix and R is a rotational matrix. 

_ Appendix D 

In this appendix we apply recursiop formulae derived in Appendix A to diagonalize the sum 
of the bilinear terms for n = 27 and a = 27 which is used to diagonalize the kinetic term leading to 

(12) for D = 29 and N = 2. Both of the recursion formulae for n = even and odd are necessary 
with the final result given by ( for the decomposition 27 = 2x13 + 1 ; 13 = 2x6 + 1 ; 6 = 2x3 ; 3 = 

2+1) 

y = C4 xt4) = C, R, % C, R, C, R, x(O) . @I> 

First since 27 is odd, we apply (A7) to x(O), i.e., C, x(l) = C, R, x(O) , 

@2) 

where R is given by (A3); next since 13 is odd, we apply (A7) to x(l), i.e., C, x@) = C, R, Z (l) 
with Z (9 = (C1 ~(l))~~-r = x$?l (i = l,..., 13) and 
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@3) 

since 6 is even, now we apply (A3) to xt2), i.e., xt3) = % Z (2) with x - ‘f’ G (c, x(2))2i-1 = x2(iz_)1 

(i = l,..., 6) and 

% = R, I3x3 ; @4) 

and finally since 3 is odd, we apply (A7) again to xc3), . ., i e C d4) = C, R, z c3) with Z (T) E x$;-i 4 

(i = l,..., 3), 

R4=( 4R: 7. c4=( IT;’ &) 7 

and 

@5) 

@6) 

As seen from the final step given by @6), one degree of freedom , x(t), drops out of the final 

expression as we have expected from a general argument in Appendix B. In (D2) - @6), matrices 
R,, l$ I$, R4, C,, C,, and C, operate only on appropriate components of each vector. 
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